Potential and limitations of ²²⁸Th/²³²Th disequilibria for the dating of high sedimentation marine sequences: Example from Herschel Basin, Beaufort Sea

VLADISLAV CARNERO-BRAVO¹, CLAUDE HILAIRE-MARCEL¹, BASSAM GHALEB¹, ANNE DE VERNAL¹, JADE FALARDEAU¹, LÉO CHASSIOT², JORIEN VONK³, GEORGE TANSKI³, HUGUES LANTUTI⁴, MICHAEL FRITZ⁴

¹Geotop and Département des sciences de la Terre et de l'Atmosphère, Université du Québec à Montréal, P.O. Box 8888, Station Centre-Ville, QC, Canada, H3C 3P8 vladislavc@gmail.com

²Département de géographie, CEN, Université Laval, Québec City, QC, Canada, G1V0A6

³Department of Earth Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 1081 HV

⁴Permafrost Research Unit, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Telegrafenberg A45, 14473 Potsdam, Germany

Short live isotopes chronologies (210Pb and 137Cs) are widely used to understand recent mass accumulation and sediments rates. For high sedimentation rate sites, disequilibria between $^{228}\mathrm{Th},~^{228}\mathrm{Ra}$ and $^{232}\mathrm{Th}$ provide information on ~10 yr (excess in ²²⁸Th) and ~30 yr (deficit in ²²⁸Ra) time scales. A two step alpha counting measurement of ²²⁸Th/²³²Th radioactive disequilibrium in each sample, with a \geq 6 months time interval in between, is used to get information on the intermediate ²²⁸Ra/²³²Th activity ratio. This approach has been tested in the coastal area of the Herschel Basin (Beaufort Sea, Canada). Two sediment cores were analyzed for their ²¹⁰Pb, ¹³⁷Cs contents and ²²⁸Th/²³²Th activity ratios. At the shallower site, with coarse sediment deposition, ²²⁸Th depicts a deficit vs ²³²Th thus indicating losses of intermediate ²²⁸Ra during sediment transport and deposition, but no significant ²²⁸Th uptake meanwhile. Advection of this isotope towards finer sediments site deposition areas seems responsible of this anomaly. Nonetheless, return to equilibrium between ²²⁸Th and ²³²Th at the site follows the growth cruve of the intermediate ²²⁸Ra and thus helps putting constraints on the last 30 yr sedimentary history at the site.