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Abstract. The SiDroForest (Siberian drone-mapped forest inventory) data collection is an attempt to remedy
the scarcity of forest structure data in the circumboreal region by providing adjusted and labeled tree-level and
vegetation plot-level data for machine learning and upscaling purposes. We present datasets of vegetation com-
position and tree and plot level forest structure for two important vegetation transition zones in Siberia, Russia;
the summergreen–evergreen transition zone in Central Yakutia and the tundra–taiga transition zone in Chukotka
(NE Siberia). The SiDroForest data collection consists of four datasets that contain different complementary
data types that together support in-depth analyses from different perspectives of Siberian Forest plot data for
multi-purpose applications.

i. Dataset 1 provides unmanned aerial vehicle (UAV)-borne data products covering the vegetation plots sur-
veyed during fieldwork (Kruse et al., 2021, https://doi.org/10.1594/PANGAEA.933263). The dataset in-
cludes structure-from-motion (SfM) point clouds and red–green–blue (RGB) and red–green–near-infrared
(RGN) orthomosaics. From the orthomosaics, point-cloud products were created such as the digital eleva-
tion model (DEM), canopy height model (CHM), digital surface model (DSM) and the digital terrain model
(DTM). The point-cloud products provide information on the three-dimensional (3D) structure of the forest
at each plot.
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ii. Dataset 2 contains spatial data in the form of point and polygon shapefiles of 872 individually labeled trees
and shrubs that were recorded during fieldwork at the same vegetation plots (van Geffen et al., 2021c,
https://doi.org/10.1594/PANGAEA.932821). The dataset contains information on tree height, crown diame-
ter, and species type. These tree and shrub individually labeled point and polygon shapefiles were generated
on top of the RGB UVA orthoimages. The individual tree information collected during the expedition such
as tree height, crown diameter, and vitality are provided in table format. This dataset can be used to link
individual information on trees to the location of the specific tree in the SfM point clouds, providing for
example, opportunity to validate the extracted tree height from the first dataset. The dataset provides unique
insights into the current state of individual trees and shrubs and allows for monitoring the effects of climate
change on these individuals in the future.

iii. Dataset 3 contains a synthesis of 10 000 generated images and masks that have the tree crowns
of two species of larch (Larix gmelinii and Larix cajanderi) automatically extracted from the
RGB UAV images in the common objects in context (COCO) format (van Geffen et al., 2021a,
https://doi.org/10.1594/PANGAEA.932795). As machine-learning algorithms need a large dataset to train
on, the synthetic dataset was specifically created to be used for machine-learning algorithms to detect
Siberian larch species.

iv. Dataset 4 contains Sentinel-2 (S-2) Level-2 bottom-of-atmosphere processed labeled image patches with
seasonal information and annotated vegetation categories covering the vegetation plots (van Geffen et al.,
2021b, https://doi.org/10.1594/PANGAEA.933268). The dataset is created with the aim of providing a small
ready-to-use validation and training dataset to be used in various vegetation-related machine-learning tasks.
It enhances the data collection as it allows classification of a larger area with the provided vegetation classes.

The SiDroForest data collection serves a variety of user communities. The detailed vegetation cover and struc-
ture information in the first two datasets are of use for ecological applications, on one hand for summergreen and
evergreen needle-leaf forests and also for tundra–taiga ecotones. Datasets 1 and 2 further support the generation
and validation of land cover remote-sensing products in radar and optical remote sensing. In addition to providing
information on forest structure and vegetation composition of the vegetation plots, the third and fourth datasets
are prepared as training and validation data for machine-learning purposes. For example, the synthetic tree-crown
dataset is generated from the raw UAV images and optimized to be used in neural networks. Furthermore, the
fourth SiDroForest dataset contains S-2 labeled image patches processed to a high standard that provide training
data on vegetation class categories for machine-learning classification with JavaScript Object Notation (JSON)
labels provided. The SiDroForest data collection adds unique insights into remote hard-to-reach circumboreal
forest regions.

1 Introduction

Circumpolar boreal forests represent close to 30 % of all
forested areas and are changing in response to climate, with
potentially important feedback mechanisms to regional and
global climate through altered carbon cycles and albedo dy-
namics (e.g., Loranty et al., 2018). These forests are located
primarily in Alaska, Canada, and Russia. Forest structure is
a crucial component in the assessment of whether a forest is
likely to act as a carbon sink or source under changing cli-
mate (e.g., Schepaschenko et al., 2021). Publicly available
comprehensive datasets on forest structure are rare, due to
the involvement of governmental agencies, public sectors,
and private actors who all influence the availability of these
datasets. That said, the Arctic–Boreal Vulnerability Experi-
ment (ABoVE) run by the NASA Terrestrial Ecology Pro-
gram provides open-source data collections from boreal and
arctic regions in Alaska and Canada (ABoVE Science Def-

inition Team, 2014). Globally, the Forest Observation Sys-
tem (FOS, http://forest-observation-system.net/, last access:
20 July 2021) provides publicly available forest data for
Earth Observation (validation and algorithm development)
such as described in Chave et al. (2019) and a global above-
ground biomass (AGB) database (Schepaschenko et al.,
2019) containing a high number of plot level datasets from
the boreal forest domain. Schepaschenko et al. (2017) used
inventories from the old Soviet Forest Inventory and Plan-
ning System (FIPS) and the new Russian National Forest In-
ventory (NFI) to compile and publish a highly comprehen-
sive forest AGB data collection at plot level, specifically for
Eurasia. These data collections (Schepaschenko et al., 2017)
and FOS (Schepaschenko et al., 2019) both distribute aggre-
gated plot level information.

However, there is still a lack of usable data for satellite and
unmanned aerial vehicle (UAV) imagery classification tasks
for the boreal zone as a whole. Additionally, there is a lack
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of usable training data for automatic needle-leaf tree-crown
detection. The central and eastern Siberian boreal zones with
their forest types are especially underserved as there are no
open-source UAV forest data available. Furthermore, for the
circumboreal, still, few data are publicly available at tree or
plot levels that are ready to use for machine-learning appli-
cations in the field of remote sensing, e.g., optimized data
containing annotated vegetation categories.

The SiDroForest (Siberian drone-mapped forest inven-
tory) data collection provides open-source forest structure
data at tree, plot, and upscaling levels for boreal forests in
central and northeastern Siberia, Russia. At individual tree
level, the data consist of conventional forest inventory data
such as tree height, tree-crown diameter, and species labels.
The individual tree-level data labeling per plot provides op-
portunities for further machine-learning applications in the
form of validation data. At plot level, the data collection
contains UAV structure-from-motion (SfM) point clouds,
georeferenced orthoimages and products derived from point
clouds providing structural forest information. On top of
these state-of-the art forest inventory data and SiDroForest
UAV products that are enriched by labeling, we prepared
two datasets that can be directly used for machine learning
in remote-sensing applications. One dataset is a synthetically
generated image dataset on tree crowns in the common ob-
jects in context (COCO) format (Lin et al., 2014) that we
constructed from selected red–green–blue (RGB) UAV im-
agery from plot data. The other dataset fit for machine learn-
ing contains labeled Sentinel-2 (S-2) image patches cover-
ing the vegetation plots related to the vegetation composi-
tion. These labeled S-2 image patches can, e.g., be used for
machine-learning training for a boreal forest land cover clas-
sification using S-2 satellite images. In its current stage, the
SiDroForest S-2 data collection is not published with per-
formance testing, and we do not consider it as a benchmark
dataset for remote-sensing image interpretation (e.g., as de-
fined in Long et al., 2020). The SiDroForest-labeled collec-
tion of S-2 image patches is available as a small training and
validation dataset so far providing underrepresented vegeta-
tion categories, that will save future users time when attempt-
ing to classify vegetation cover.

By making SiDroForest public, we aim to remedy public
data scarcity on UAV data of boreal forest plots, on tree-level
forest data, and specifically for annotated data for the bo-
real forests in central and northeastern Siberia, and encour-
age the use of the data presented here for further analyses and
machine-learning tasks.

Study region

The data collection we provide contains tree level, plot
level, and upscaling level forest structure data from impor-
tant boreal transition zones located in central and north-
eastern Siberia that are specifically vulnerable to climate
change: these are the tundra–taiga (in Chukotka) and the

summergreen–evergreen (in central Yakutia) transition zones
(Fig. 1).

The tundra–taiga transition zone occurs where boreal
forests reach their maximum northward position and form
a treeline ecotone (MacDonald et al., 2007). Here, the transi-
tion from open forest stands with decreasing stand densities
towards treeless tundra in the north takes place. A warming
climate drives the transition from tundra in the tundra–taiga
transition zone to open taiga forests (Rees et al., 2020). Dur-
ing the snow-covered season, the taiga has a lower albedo
than tundra due to the trees that emerge above the snow. A
change from tundra to taiga albedo can result in a positive
feedback loop of vegetation change which, in combination
with the warming climate, may lead to dramatic environ-
mental changes in the Arctic (Bonan, 2008). Remote-sensing
data have been previously used to assess vegetation dynamics
in Chukotka. Through vegetation monitoring using Landsat
satellite data, Shevtsova et al. (2021) report that shrubifica-
tion has expanded by 20 % in area in the tundra–taiga zone
and by 40 % in the northern taiga as well as tree infilling
occurring in the northern taiga. Extensive satellite remote-
sensing work was done by Montesano et al. to assess the veg-
etation dynamics in Siberia using LiDAR and synthetic aper-
ture radar data (2014) and Landsat satellite data (2016). To
be able to expand on these satellite-derived remote-sensing
findings, in-depth monitoring at a vegetation plot level in
this region is important. Clear overviews of species distribu-
tion over the varying types of land cover are useful to study
the impacts of climate change on the eastern Siberian tree-
line that is not studied well enough yet, in part due to sparse
data being available for the region (Shevtsova et al., 2021).
Our open-access data collection will considerably improve
insights into the tundra–taiga transition zone.

The second relevant forest transition zone included in the
SiDroForest data collection is the summergreen–evergreen
transition zone in central Yakutia. Summergreen needle-
leaf tree species covered in the SiDroForest data collection
consist of two species of larch trees: Larix gmelinii and
Larix cajanderi. The evergreen species present are pine and
spruce: Pinus sibirica, Pinus sylvestris, and Picea obovata.
In forests, the light-demanding summergreen Larix trees are
outcompeted by evergreen tree taxa (Troeva et al., 2010).
Yet, it is an open question as to how Larix forests, once
established, hinder their replacement by evergreen forests
and thus maintain a vegetation–climate equilibrium (Mamet
et al., 2019). This self-stabilization that takes place in the
Larix-dominated forests in central and eastern Siberia most
likely results from a combination of unique climate drivers
for the region, such as vegetation, climate, fire, and per-
mafrost (Simard et al., 2011). Datasets such as the one pre-
sented here are a snapshot of the current state that can be used
to monitor individual trees over time to gain insight into the
vegetation dynamics of the region.
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Figure 1. Overview of the Siberian transition zones: the tundra–taiga transition in Chukotka and the summergreen–evergreen transition
in central Yakutia that were covered by the 2018 Chukotka expedition (yellow points represent 2018 field sites with vegetation plots).
The overview map (background © OpenStreetMap contributors 2022. Distributed under the Open Data Commons Open Database License
(ODbL) v1.0) shows forest coverage by green color-coded NASA forest height (Simard et al., 2011) and the northern treeline (CAVM Team
2003, for Arctic Climate Impact Assessment, ACIA).

Figure 2. Overview of the four datasets all related to the 2018 expedition plots (UAV-derived products, individually labeled shapefiles, syn-
thetically created Siberian larch tree-crown dataset, Sentinel-2 labeled image patches) and their content and interconnections in SiDroForest
(see text for details on the labels).
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Table 1. Overview of vegetation plots per transition zone, region, and subregion along with the subregion codes.

Transition zone Geographical region Subregions Subregion codes Plot names

Taiga to tundra transition
zone

Central Chukotka Bilibino
Lake Ilirney
Lake Rauchuagytgyn

BI
LI
LR

EN18000; 18028-35 (n= 9)
EN18001-18027 (n= 27)
EN18051-18055 (n= 5)

Summergreen to evergreen
transition zone

Central Yakutia Yakutsk
Magaras
Vilnuyi
Nyurba
Suntar West
Suntar
Mirny
Mirny-Lensk
Lake Khamra

YA
MA
VI
NY
SW
SU
MI
ML
LK

EN18061 (n= 1)
EN18062 (n= 1)
EN18063-66 (n= 4)
EN18067-70 (n= 4)
EN18071 (n= 1)
EN18072-74 (n= 3)
EN18075-76 (n= 2)
EN18077-78 (n= 2)
EN18079-83 (n= 5)

2 SiDroForest data and methods

The SiDroForest data collection contains a variety of data
types that were selected to create the most comprehensive
insights into the boreal forest in Siberia.

The SiDroForest data collection is divided into four
datasets (Fig. 2):

1. UAV-based SfM point clouds, point-cloud products, and
orthomosaics from UAV image data (yellow hexagon
symbols) of expedition vegetation plots in Chukotka and
Central Yakutia in summer 2018 (mint green rectangle).

2. Individual labeled trees surveyed during the field-
work, including information on height, tree crown, and
species. These tree-individual labeled point and poly-
gon shapefiles (light green symbols) were generated and
are linked to the UAV RGB orthoimages of the expedi-
tion vegetation plots.

3. Synthetically created Siberian larch tree-crown dataset
of 10 000 instances in Microsoft’s COCO format (pink
triangle symbols). The images and masks contain the
tree crowns of two species of larch (Larix gmelinii
and Larix cajanderi), manually extracted from selected
UAV RGB images.

4. Sentinel-2 Level-2 bottom-of-atmosphere labeled im-
age patches with seasonal information (red shape sym-
bol) covering the expedition vegetation plots.

Each data type has been enhanced to best use the data for
vegetation-related analyses. Dataset three and four have addi-
tionally been optimized and annotated for machine-learning
tasks. Machine-learning tasks often require validation data
and also the annotated datasets 1 and 2 contain data for such
an application. The combined data types aim to provide a
multi-purpose application dataset on the current state of the
vegetation cover in Central Yakutia and Chukotka.

The SiDroForest products are in common software for-
mats: there are point and polygonal shapefiles (shp), raster
files are in the georeferenced tagged image file format
(GeoTiff), shapefile formats and JavaScript Object Notation
(JSON) can be read and visualized in any open-source and
commercial GIS and remote-sensing software tools and a
wide range of libraries in R, Python, and other program-
ming languages. The point clouds are provided in the stan-
dard LASer (LAS) binary file format that can be handled in
any software that supports this format such as CloudCompare
(CloudCompare, 2022) or R (R Core Team, 2020) or Python
libraries specifically developed for this data type.

2.1 SiDroForest field data

Extensive expeditions from the Alfred Wegener Institute
(AWI) Helmholtz Centre for Polar and Marine Research
from Germany in cooperation with the North-Eastern Fed-
eral University of Yakutsk (NEFU), Yakutia, in the summer
of 2018 covered a bioclimatic gradient ranging from treeless
tundra via extremely open larch forest with mean tree heights
around 5 m close to Lake Ilirney in central Chukotka (tundra–
taiga transition zone) in northeastern Siberia to dense mixed
tree species stands near Lake Khamra in southwestern central
Yakutia (summergreen–evergreen transition zone) (Fig. 1).
The larger regions were subdivided into 12 subregions that
were named based on the nearest city or lake to the plots: in
Chukotka, we defined 3 subregions encompassing 41 vegeta-
tion plots (Fig. 3a) and 9 subregions encompassing 23 vege-
tation plots for central Yakutia (Fig. 3b). The vegetation plots
have different tree cover: from treeless tundra to open larch
forests on slopes and in lowlands, with tree density depend-
ing on slope and slope aspect. All data types included in this
dataset are linked to each other using a two-letter code sig-
nifying the subregion (Table 1) and the vegetation plot num-
bers.

A detailed vegetation inventory was conducted for each
of the plots visited during fieldwork. The 15 m radius cir-
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Figure 3. Subregions and plots (yellow points) for (a) Chukotka and (b) Central Yakutia: Bilibino (BI) (EN18000, 18028–35), Lake Ilir-
ney (LI) (EN18001–27), and Rauchuagytgyn (RA) (EN18051–55), Yakutsk (YA) (EN18061), Magaras (MA) (EN18062), Vilnuyi (VI)
(EN18063-66), Nyurba (NY) (EN18067–70), Suntar West (SW) (EN18071), Suntar (SU) (EN18072–74), Mirny (MI) (EN18075–76), Mirny-
Lensk (ML) (EN18077–78) and Lake Khamra (LK) (EN18079–83). See also Table 1. The overview map (background © OpenStreetMap
contributors 2022. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.) shows forest coverage by green color-
coded NASA forest height (Simard et al., 2011) and the northern treeline (CAVM Team, for Arctic Climate Impact Assessment, ACIA).

cular plots for the projected cover of trees and tall shrubs
(Fig. A1) were set within 30 m× 30 m rectangular vegeta-
tion plots for ground projective cover of vegetation taxa.
The plots and the field data collection are described in fur-
ther detail in Shevtsova et al. (2019, 2020a, b, c, 2021). In
the field, two tape measures, each 30 m long, were laid out
along the main cardinal directions, intersecting in the plot
center, marking the main axes of a circular area with a radius
of 15 m. A minimum of 10 individuals of each tree and shrub
species present were selected per plot. The selection of trees
was based on how representative the tree types were for this
forest type so that it represents the vegetation as well as pos-
sible. To make sure that the data are evenly distributed, we
included at least 10 trees per species, if there were as many
on the plot. For each individual tree we measured the stem
diameter at breast height and at the base. The tree-crown di-
ameter, tree height, and vitality were estimated as described
in Brieger et al. (2019). There were three deviations from the
standard method of vegetation inventory. On plot EN18014
and EN18065, all trees were recorded, and plot EN18070
was recorded by a transect with three segments: edge, transi-
tion, and center.

Post fieldwork, we assigned 11 vegetation classes to the
64 plots (Table A1). The class assignment was based on the
previous classes determined by Shevtsova et al. (2020a) for
Chukotka. For plots in central Yakutia, we applied a similar
method incorporating principal component analysis (PCA),
tree density information from the UAV data, and recorded
tree species information per plot (Figs. A2 and A3 show the
field data information).

In addition to the fieldwork forest inventories that were
obtained, 60 of the 64 vegetation plots were overflown
with a consumer grade DJI Phantom4 quadcopter carrying
MAPIR Survey-3W red–green–blue (RGB) and red–green–
near-infrared (RGN) cameras to obtain spatially mapped de-
tailed two- and three-dimensional (2D, 3D) forest structure
information. The UAV imagery covered a minimum areal
extent of 50 m× 50 m over the 15 m radius plots with a stan-
dardized flight plan following a double-grid in near-nadir po-
sition and a circular flight facing the plot center at take-off
elevation (Fig. A4). Further details are described in Brieger
et al. (2019).

2.2 SiDroForest dataset 1: structure-from-motion (SfM)
point-cloud products and orthomosaics

2.2.1 SfM point-cloud products of the plots

Due to the availability of multiple overlapping images from
different camera viewpoints, point-cloud processing and the
generation of 3D products and successive generation of or-
thoimages were possible. We manually rejected images that
had been taken during take-off and landing, as well as under-
or overexposed images, from further processing (see also
Brieger et al., 2019). The remaining images were used to gen-
erate the 3D SfM point clouds and related products directly
from the point-cloud data.

The SfM point clouds were constructed with Agisoft Pho-
toScan Professional (Agisoft, 2018) according to methods
described in Brieger et al. (2019). Tracked Global Position-
ing System (GPS) information was automatically integrated
into the images during this process. The parameters were
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Figure 4. (a) Example of a full red–green–blue (RGB) structure-from-motion (SfM) point cloud for plot EN18074. Panel (b) shows the
segmented RGB point cloud containing only the points of the ground layer, named groundonly and (c) shows the segmented RGB point
cloud with the aboveground vegetation, named treesonly.

tuned with the highest-resolution settings to capture as much
detail of the complex tree structures as possible. The depth
filtering in the dense cloud generation was changed from the
default to a mild filtering to preserve more detail, especially
in tree crowns (details in Brieger et al., 2019). The RGB point
clouds have been further segmented into two separate point
clouds with a cloth simulation filter (CSF; Zhang et al., 2016)
as described in Brieger et al. (2019) to produce two RGB
point clouds. One of the point clouds contains the points of
the ground and low vegetation (here named “groundonly”)
and the other contains the points of the higher vegetation
(here named “treesonly”) (Fig. 4).

We chose to segment the RGB point clouds into
“groundonly” and “treesonly” because it reduces the size of
the individual point clouds and at the same time, it remains
easy for users to merge them together. It can also be inter-
esting to have the two segmented when attempting to ana-
lyze the below-canopy vegetation or ground-cover classes.
Plots with dense vegetation such as EN18077 and EN18063
could not be segmented into “groundonly” and “treesonly”
due to the ground not being visible in the images. The fi-
nal SiDroForest dataset includes three point-cloud types per
plot: “treesonly” and “groundonly” in RGB and the full
point cloud in RGN. The created point-cloud products in-
clude a digital terrain model (DTM), a digital surface model
(DSM), a canopy height model (CHM), and a digital eleva-
tion model (DEM). The point-cloud products were produced
in R (R Core Team, 2020) and exported as georeferenced
GeoTiff raster files at 3 cm× 3 cm pixel resolution in the re-
spective Universal Transverse Mercator (UTM) projection of
the field site location. The DEM products were cropped to a
defined area in the form of a polygon (here named the outer
polygon) due to the better quality of the points within this
region. The outer polygon is the area covering the camera
positions plus a buffer of 5 m. In addition to the clipped prod-
uct versions and the shapefiles of the outer polygon, the fully
covered area that was not clipped to the outer polygon is also
supplied for the orthomosaics and the point clouds to give the
user a dynamic dataset to work with.

Digital Terrain Model. The definition of a DTM is that
the surface represents the ground level with all natural and

built features above the ground removed. The DTM is cre-
ated from the RGB ground cover and lower vegetation
(groundonly) point cloud, therefore, the SiDroForest DTM
represents the top of the canopy of the lowest vegetation
canopy layer in case of low-structure vegetation.

Digital Surface Model. The definition of a DSM is that
the surface represents the highest-level elevation including
natural and built features. The DSM is produced from the full
point cloud, and interpolated between the highest points in
each grid cell representing the top of the highest tree canopy
layer if trees are present in the plot.

Canopy Height Model. The definition of a CHM is that
it represents the difference between the DSM and the DTM
(CHM=DSM – DTM), and thus normalizes the DSM to
the ground. Because the CHM is derived from a subtrac-
tion of the DSM and the DTM, it may contain no data values
where the tree crown covers a large amount of ground and the
ground data are missing due to this coverage. The SiDroFor-
est CHM represents the vegetation height above the ground.

Digital Elevation Model. The DEM is a quantitative repre-
sentation of the elevation of Earth’s surface. The SiDroForest
DEM provides the terrain relief referenced to the vertical da-
tum of the World Geodetic System 1984 (WGS84) without
the lowest canopy layer in contrast to the SiDroForest DTM
that contains the lowest ground vegetation layer.

2.2.2 Orthomosaics of the plots

The UAV-derived orthomosaics are geometrically corrected
images that are by standard georeferenced by topography
(the relief) and vegetation (the top-of-canopy elevation). The
orthomosaics were constructed from the multiple RGB and
RGN overhead photo images that were corrected for perspec-
tive and scaled with Agisoft PhotoScan Professional (Ag-
isoft, 2018) using structure from motion/multi-view stereo
(SfM-MVS) techniques as described in detail in Brieger et al.
(2019). The RGN orthomosaics have been coregistered to the
RGB point clouds using the ground control points (GCPs)
distributed in the field to make the RGN and RGB point
clouds align. The orthomosaics were exported as georefer-
enced GeoTiff files at 3 cm× 3 cm pixel resolution in the re-
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spective Universal Transverse Mercator (UTM) zone projec-
tions.

Not all RGB orthomosaics have the same high quality, as
varying flight or weather conditions affected the construction
of the final products. The canopy moved due to wind that
cannot be avoided in the acquisition process at high latitudes
in the field, where there are nearly never wind-free time slots.
This resulted in “blurry” parts in some of the orthomosaics
(EN18030, EN18078, and EN18079). These blurry regions
affect less than 20 % of the image, therefore the orthomosaics
of these plots are included in the data publication. Figure 5
shows an example of the high-quality type of an RGB and
RGN orthoimage product.

2.2.3 Automated extracted tree-crown polygons

The SiDroForest data collection also contains 19 342 auto-
matically detected tree-crown polygons (Kruse et al., 2021).
The tree crowns were captured in the CHM by analysis of
watershed segmentation using the R package ForestTools
(Plowright, 2018) and successive automatic generation of a
polygon around them following Brieger et al. (2019). This
automated tree-crown detection algorithm was run for all
plots and the resulting shapefiles are provided for each plot
that contained trees. Quality assurance was performed for
each plot by carefully examining each plot based on expert
knowledge and assigning a quality score of Q1 (good qual-
ity), Q2 (medium quality), or Q3 (poor quality) to the shape-
file products.

2.3 SiDroForest dataset 2: individually labeled trees

The individuals from within the 15 m radius vegetation sur-
vey plots that could be located in the orthoimages were
marked in a point and polygon shapefile that outlines the tree
crown of the individual tree, containing the individual num-
ber of the tree, the species, and its form (tree or shrub). The
form attribute was added because in the Chukotka plots there
are Pinus species that are not the Pinus tree but the Pinus
shrub form. The tree identification, exemplified in Fig. 6, is
the first letter of the genus of tree and the total number of in-
dividuals recorded (e.g., L259 is the 259th Larix specimen).
The total number of Larix recorded is a cumulative num-
ber over all the plots recorded. The individual number was
recorded during fieldwork and corresponds to information
stored in the extensive database of Kruse et al. (2020a) con-
taining measurements concerning the individual tree, which
are now also accessed via the SiDroForest dataset in the form
of attributed shapefiles.

The point shapefiles also include the geographical x and
y coordinates of the point in decimal degrees. The individual
number can be used to link the tree or shrub to the rest of
the information collected during the expedition such as tree
height, crown diameter, and vitality. This information is pro-
vided in form of a csv file in Kruse et al. (2021a).

In addition to the two shapefiles that are linked to the indi-
vidually recorded trees, another shapefile is provided per plot
with species-level information (Fig. 6). It contains a min-
imum of 10 labeled polygon shapefiles that cover trees or
large shrubs (> 1.3 m height). These labeled polygons only
cover the inside of the tree or shrub to minimize noise from
the ground layer for classification purposes. For the species
polygon, trees and shrubs that were seen in the rest of the or-
thoimages were also included, not only the individuals from
the fieldwork records.

2.4 SiDroForest dataset 3: synthetic larch tree crowns

The synthetic dataset contains larch (Larix gmelinii (Rupr.)
and Larix cajanderi (Mayr.)) tree crowns extracted from the
onboard camera RGB images of five selected vegetation plots
from fieldwork, placed on top of fully resized images from
the same UAV flights.

To create the dataset, backgrounds and foregrounds
were needed. The RGB images included for the back-
grounds were from the field plots: EN18062 (62.17◦ N,
127.81◦ E), EN18068 (63.07◦ N, 117.98◦ E), EN18074
(62.22◦ N, 117.02◦ E), EN18078 (61.57◦ N, 114.29◦ E), and
EN18083 (59.97◦ N, 113◦ E), located in central Yakutia,
Siberia (Fig. 7).

The plots were selected based on their vegetation content
and their spectral differences, as well as UAV flight angles
and the clarity of the UAV RGB images. For each plot, 35 im-
ages were selected in order of acquisition, starting at the
15th image in the flight to establish the backgrounds for the
dataset. The first 15 images were excluded because they often
contain a visual representation of the research team (for ex-
ample, Fig. 8). Excluding these images reduces noise in the
dataset as we aimed to include only forest and natural ter-
rain in the images. The UAV camera acquisitions were taken
on different dates during the 2-month long expedition, when
visiting the vegetation plots. The fieldwork dates are added
in Table A1. There was no color matching later as these were
acquisitions in the field under different illuminations: over-
cast with no shadows as best condition for spectral imag-
ing, and sunny with strong shadow formation of the trees as
the least favorable condition. The cameras of every acquisi-
tion were calibrated and referenced to photo panels, however
this not yet a normalization such as transferring the data into
quasi-reflectance data that would allow to have absolute color
values between acquisitions.

The raw UAV RGB images were cropped to 640 by
480 pixels at a resolution of 72 dots per inch (dpi). These
are later rescaled to 448 by 448 pixels in the process of the
dataset creation. In total there are 175 cropped backgrounds.

The foregrounds used in the dataset consist of 117 tree
crowns and were manually cut out using Gimp V2.10 soft-
ware (GIMP, 2019) to ensure that they were all Larix trees
(see Fig. 9). Of the tree crowns, 15 % from the margins of
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Figure 5. Example of red–green–blue (RGB, displayed with red on red, green on green and blue on blue as true color) (a) and red–green–
near-infrared (RGN, displayed with green on red, NIR on green, and red on blue) (b) orthomosaics for plot EN18000.

Figure 6. Examples of the individual point labels and examples of species polygons. Where possible, the species polygon overlaps the
individuals labeled in the field, e.g., the larch at L34, L35, and L36. Additionally, the Pinus pumila were not recorded in the field but are
added in the species shapefile. Both shapefiles are visualized on the red–green–blue (RGB) orthoimage of plot EN18004.

the image were included to make sure that the algorithm does
not rely on a full tree crown in order to detect a tree.

The COCO format for the SiDroForest synthetic dataset
is stored in a JavaScript Object Notation (JSON) file that
contains the mask and image name, the color category that
was used to create the mask that the category the image falls
under, which in this case is “larch” and the super category
which is “tree” (an example is shown in Table A2). In this
way, the created masks are connected to the created images.

The extracted tree crowns were rotated, rescaled, and repo-
sitioned across the images using the cocosynth algorithm de-
veloped by Kelley (2019), resulting in a diverse synthetic
dataset that contains 10 000 images for training purposes and
2000 images for validation purposes for complex machine-
learning neural networks. In addition, the data are saved in
the Microsoft COCO format (Lin et al., 2014) and can be
easily loaded as a dataset for networks such as the Mask R-
CNN, U-Nets, or the Faster R-NN. These are neural networks
for instance-segmentation tasks that have become more fre-
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Figure 7. Examples of red–green–blue (RGB) images of plots from the selected unmanned aerial vehicle (UAV) flights in the following
order: EN18063, EN18068, EN18074, EN18078, and EN18083.

Figure 8. Example of a red–green–blue (RGB) image that was excluded from the 35 images for plot EN18068.

quently used over the years for forest monitoring purposes.
The Synthetic dataset contains images and labels in the
COCO format and can be loaded into most programming lan-
guages such as R (R Core Team, 2020) and Python.

2.5 SiDroForest dataset 4: sentinel-2 satellite image
patches

Sentinel-2 (S-2) is an ESA optical satellite mission provid-
ing satellite imagery globally and freely available, which fa-
cilitates low-cost broad-scale analyses of circumpolar boreal
forests. The S-2 mission is composed of two identical satel-
lites that were launched in 2015 and 2017 (ESA, 2015). The
S-2 imagery has 13 multispectral bands, where in the native
spatial resolution, 4 bands have the highest (i.e., 10 m) spatial
pixel resolution covering the visible wavelength region with
3 spectral bands (blue, green, red), and 1 spectral band in the
near-infrared (NIR). An overview of the S-2 spectral bands
can be seen in Appendix Table A3.

The best possible acquisitions of S-2 data, that is, cloud-
less and without smoke from forest fires, were retrieved
from the ESA archive from the years 2016 to 2020 for
three distinct time stamps: early summer (May to June, de-
pending on latitude), peak summer (mid-July to early Au-
gust), and late summer (late August to September). The S-
2 Level-1C (top of atmosphere) image data were processed
to Level-2A (bottom of atmosphere) surface reflectance us-
ing the newest version of the atmospheric correction pro-
cessor Sen2Cor (ESA, 2021). Atmospheric correction pro-
cessing was performed mainly with the default configuration
which uses a rural aerosol model with a start visibility pa-
rameter of 40 km corresponding to aerosol optical thickness
of 0.20 at 550 nm. Actual aerosol optical thickness is deter-
mined during the atmospheric correction processing. The two
non-default settings were further enhancements such as the
use of the Copernicus DEM for terrain correction (Coperni-
cus, 2021) and the use of vertical column ozone content from
L1C-metadata instead of a fixed value of 331 Dobson units.
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Figure 9. Examples of cutout tree crowns.

Figure 10. Sentinel-2 NDVI in greyscale of the three periods for the Bilibino subregion in Chukotka: (a) early summer, (b) peak summer,
and (c) late summer.

The data provided in SiDroForest are optimized for
vegetation-related analyses, such as resampling all bands
to 10 m spatial resolution to make them comparable at
the same resolution and removing the 60 m bands that
support atmospheric correction but are not optimal for
land surface classification. The NDVI was calculated using
(B8−B4)/(B8+B4) and masked for surface waters using
the water mask provided with the L2A-product. Areas of
snow and lake and river ice in early season acquisition NIR
bands were masked using an adaptable optimized threshold.
The dataset presented here contains 12 subregions (sites) of
S-2 acquisitions that cover all the 64 locations where field-
work was performed in Siberia in 2018 (Table A1) with the 3
seasonal time stamps included and the water-masked NDVI
band added (Fig. 10 shows an example of the Bilibino subre-
gion NDVI product in early, peak, and late summer).

In a further step, the pre-processed S-2 imagery with
the spectral bands 2, 3, 4 (visible), 5, 6, 7, 8A (NIR),
11, 12 (SWIR; short-wave infrared) at 10 m resampled spa-
tial resolution and the additional water-masked NDVI band
are cropped to 30 m× 30 m image patches around the cen-

ter coordinate of the vegetation plot using UTM-oriented
shapefiles. These shapefiles and the JSON-annotated image
patches receive the annotation of 1 of the 11 vegetation
classes derived from fieldwork and analysis of the UAV data,
described in Sect. 2.2.1, as attributions (Table A1). The labels
are also stored in the JSON file for each plot in accordance
with the patch labeling in BigEarthNet-S2 (Sumbul et al.,
2019). The JSON is an open standard file format and data in-
terchange format that uses human-readable text to store and
transmit data objects consisting of attribute–value pairs and
arrays. It is often used in machine learning as the standard
for stored labels.

3 Results

3.1 Dataset 1: SfM point clouds and point-cloud
products

For most of the plots, especially for the Chukotka plots,
the total number of RGB and RGN point-cloud points (with
“treesonly” and “groundonly” segmented points added to-
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Figure 11. Comparison of the number of points in red–green–near-infrared (RGN; orange bars) and the combination of the two red–green–
blue (RGB) “groundonly” and “treesonly” point clouds (RGB; blue bars).

Figure 12. Ground and aboveground points per segmented point cloud per m2.

gether) were of a similar magnitude (Fig. 11). With higher
vegetation structure, the NIR reflectance enables more data
points in RGN than the RGB point clouds over the high and
dense central Yakutian forest plots.

For the segmented RGB point clouds, the ground to above-
ground ratio confirms that the plots that have substantially
more points in the aboveground (treesonly) part, i.e., a large
proportion of the point cloud is concentrated in the for-
est canopy if the plots also have more vegetation cover in
the higher vegetation layer (Fig. 12). The SiDroForest point
cloud products provide high-quality 2D and 3D data on
the forest stand structure, the tree height and density, and
the ground surface elevation of the plots (see example for
EN18077 in Fig. 13).

The SiDroForest data collection contains 19 342 automat-
ically detected tree-crown polygons. In contrast to the high
quality 2D and 3D point-cloud products, the automatic tree-
crown detection algorithm was not equally successful for
each plot. For this reason, the quality control label (Q1, Q2,
Q3) included with every shapefile in the name is already a
useful indicator for the possible applications of this product.
Figure 14 shows an example of the different quality scores.
Each generated tree crown also has an attribute table assigned

that contains information on tree height, vitality, and crown
diameter among others. Figure A8 provides useful metadata
information.

Each plot has a different number of automatic tree crowns
detected, depending on the density and the quality of the de-
tected crowns in the plot. The percentage of crowns cov-
ering each plot was calculated to show the coverage of
trees per plot (Fig. 15). Low tree-crown cover, i.e., be-
low 50 % coverage, characterize the vegetation plots in the
tundra–taiga transition zone in Chukotka. Tree crown cov-
erage between 50 % and ∼ 90 % is reached in some of the
plots in the summergreen–evergreen transition zone in cen-
tral Yakutia. However, also in the central Yakutian boreal
zone, a tree-crown coverage between 30 % to 60 % only char-
acterizes most of the field forest plots.

3.2 Dataset 2: individually labeled trees

In order to make assumptions and predictions about the con-
tent of the vegetation plots it is important to link the labeled
individual trees from the fieldwork to the processed orthoim-
ages. We located 872 trees and large shrubs in the orthoim-
ages that were surveyed in Siberia during the 2-month field-
work expedition in 2018 (Kruse et al., 2019a) (Fig. 16).
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Figure 13. Digital terrain model (DTM), canopy height model (CHM), digital surface model (DSM) for plot EN18077.

Figure 14. (a) Crown polygons for plot EN18014 with Q1 quality score. (b) Crown polygons for plot EN18014 with Q2 quality score.
(c) Crown polygons for plot EN18014 with Q3 quality score. The scale bar represents 10 m.

For each tree or shrub from fieldwork that is visually
identified in the orthoimages, the created point and polygon
shapefiles contain information about the tree or shrub species
visible in the orthoimages. The field data on species distribu-
tion (trees and tall shrubs), mean tree height, and mean crown
diameter per plot can be seen in the Appendix (Figs. A2, A3,
A6, and A7). For each located individual, the three shapefiles
pinpoint the location, provide a unique identifier, record the
species information, and can be overlain by users on the RGB
or RGN orthoimages of the plots as a useful visualization
(example in Fig. 17). The individual number links to the in-

formation collected during the expedition such as tree height,
crown diameter, and vitality. This dataset can be used to link
individual trees in the SfM point clouds, providing unique
insights into the vegetation composition and also allows fu-
ture monitoring of the individual trees and the contents of the
recorded vegetation plots.

3.3 Dataset 3: synthetic dataset results

This synthetic larch tree-crown dataset was created to
enhance the data collective for upscaling and machine-
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Figure 15. The percentage of the crown coverage in the orthomosaics per plot. A high percentage reflects a denser forest.

Figure 16. Number of individual trees recorded in the field (orange color) and visually identified and relocated (blue color) in the red–green-
blue (RGB) orthomosaics per plot. For plots EN18014 and EN18065 all trees were recorded that were present on the plot.

learning purposes. The synthetic larch tree-crown RGB im-
age database has many different larch-dominated forest
structures and contains 10 000 synthetically produced im-
ages. This creates a large diversity of spatial and spectral fea-
tures for machine-learning tasks. Examples of the results for
the synthetic larch tree crowns include the RGB images that
were generated and the accompanying masks that are used
for the instance segmentation and object detection tasks as
shown in Fig. 18.

3.4 Dataset 4: sentinel-2 labeled image patches

The labeled S-2 image patch dataset comprises 30 m× 30 m
labeled multi-band (10 multispectral bands+NDVI) image
patches with vegetation labels (Table A1) assigned and 3 sea-
sonal representations (early summer, peak summer, and late
summer) for 63 plots and 12 subregions (sites) (Table A1)
with the same multi-band format. Since each 30 m× 30 m
S-2 image patch consists of 9 units (pixels) of 100 m2 ex-
tent each, it amounts to around 550 annotated validation and
training units. Figure 19 provides a schematic overview of
the contents of the dataset, a visual representation of the
11 vegetation classes can be seen in Fig. 20. For easy re-
use and machine-learning purposes, the vegetation classes
are in the file name for each patch as well as in the JSON file.
The classes and their representation in the labeled S-2 image
patches are shown in Table 2.
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Figure 17. Overview of the three types of shapefiles included in the individually labeled trees dataset visualized on top of a red–green–blue
(RGB) orthoimage.

Figure 18. Examples of synthetic images and corresponding masks generated. The images show three drone flight images with a cutout
larch tree overlay. The masks below show the location of the placed trees in the form of masks. Each mask is assigned a different color to
distinguish the masks.
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Figure 19. Overview of the products in the Sentinel-2 labeled image dataset, exemplified for plot EN18028.

Figure 20. Visual representation of the 11 vegetation classes from the orthomosaics (see also Appendix Table A1). The varying quality of
the orthomosaics is described in Sect. 2.2.2.

4 Discussion

4.1 Uniqueness of the SiDroForest comprehensive data
collection on Siberian boreal forests

To date, the most relevant open-source datasets available
on boreal and arctic vegetation data are from the long-term
ABoVE NASA Terrestrial Ecology Program, focusing on bo-
real and arctic regions in Alaska and Canada. The ABoVE
data collections contain field-based, airborne, and satellite
sensor-derived data, providing a foundation for improving
the analysis and modeling capabilities needed to understand
and predict climate change in the arctic and boreal regions. In
2021, there were 50 vegetation-related datasets published so

far in the ABoVE Science Cloud (ASC): 11 thematic maps,
mostly derived from remote sensing and focused on Alaska,
9 vegetation-variable related mapped remote-sensing prod-
ucts, mostly covering large regions, 1 time-series product ex-
tracted for the footprint of a flux tower, and 6 ground-based
vegetation-related data collections, including data from 10
terrestrial lidar vegetation plots (Maguire et al., 2020) and
24 vegetation plot surveys. The circumarctic vegetation map
north of the treeline (CAVM Team, 2003, Walker et al., 2005)
is 1 circumarctic product, the other 49 datasets are all located
in Alaska. In the Arctic Data Center, Alexander et al. (2020)
published vegetation plot data from six locations in Siberia,
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Table 2. Vegetation class labels per plot and percentage of plots for
each classification.

Vegetation label Fraction of plots
with this label (%)

Graminoid tundra 39
Forest tundra and shrub tundra 4
Prostrate herb tundra 21
Open canopy pine with lichen 2
Open canopy pine 2
Closed canopy pine 2
Open canopy mixed forest 10
Closed canopy mixed forest 4
Open canopy larch 4
Closed canopy larch 10
Closed canopy spruce 2

focusing on fire damage to vegetation including information
on tree age.

The SiDroForest provides a new comprehensive data col-
lection with a variety of data types that were selected to
create the most useful insights into specifically the larch-
dominated forests representative of eastern Siberia. The fo-
cus of the SiDroForest data collection is, at this stage, not
to provide thematic maps or upscaled remote-sensing prod-
ucts but to provide a rich, open data source on ground-
based and UAV-derived information and labeled data types
enhanced to best use the data for vegetation-related analyses
and machine-learning tasks.

For eastern Siberia, we had already published 2016 and
2018 vegetation inventories on the projective vegetation
cover in Shevtsova et al. (2019, 2020b), and 2018 biomass
data (Shevtsova et al., 2020c) of vegetation plots for the
tundra–taiga transition zone in Chukotka. Tree-level forest
inventory data from eastern Siberian forest plots were pub-
lished in Kruse et al. (2020a) and Miesner et al. (2022). Ad-
ditionally, we published a first version of 10 ultra-high res-
olution photogrammetric point clouds from the UAV over-
flights in 2018 over forest vegetation plots in central Yakutia
in Brieger et al. (2019a, b). For these 10 plots, the construc-
tion of RGB SfM point clouds was evaluated and optimized
and then used to process all RGB and RGN SiDroForest
point clouds. In the SiDroForest data collection, we provide
the complete and comprehensive dataset of the full range of
standardized SfM-derived products of the 2018 UAV acqui-
sitions in central Yakutia and Chukotka (Kruse et al., 2021b).
In the SiDroForest data collection in addition to all RGN and
RGB point clouds from all 63 overflown vegetation plots, we
provide enhanced field data information such as the individ-
ually labeled tree dataset (van Geffen et al., 2021b). These
existing field inventories (Shevtsova et al., 2019, 2020b, c;
Kruse et al., 2020a; Miesner et al., 2022) are data publica-
tions optimized for ecological applications and not for ma-
chine learning, and upscaling applications. In the PANGAEA

data repository, the individual datasets for ecological appli-
cations and the SiDroForest datasets can all be linked to each
other by the vegetation plot codes. With these interlinked
data types, multipurpose applications, and a more in-depth
understanding of the Siberian boreal forests can be fostered.

4.2 High spatial resolution UAV domain in forest data
collections

The SiDroForest data collection is largely based on pho-
togrammetric UAV-borne products (i.e., SfM point clouds,
digital elevation products, RGB orthomosaics) following a
long application history in forestry and well-defined method-
ological standards (e.g., Jensen et al., 2016; Panagiotidis
et al., 2017). Currently, the use of UAVs in environmental ap-
plications is undergoing an ever faster growing use in forestry
and environmental science due to the landscape-level po-
tential, the flexibility of the data generation and low costs
(Fraser et al., 2016). The SiDroForest data collection ex-
tends our standard ground-based inventories. In addition to
the photogrammetric UAV products, we undertook an auto-
mated tree-crown detection that has become more frequent
due to the availability of state-of-the-art instance segmenta-
tion algorithms from the world of computer vision (Neuville
et al., 2021). An example of previous work using a neural
network tree-crown detection is Braga et al. (2020), where
the Mask R-CNN (He et al., 2017) was used to perform the
tree-crown detection and delineation. In another example, the
Mask R-CNN was used by Hao et al. (2021) to detect tree
crown and canopy height of Chinese fir in a plantation in
China. Tree-crown width and tree height of Chinese fir were
manually extracted from this UAV imagery using a combi-
nation of labeled ground-truth data and canopy height model
(CHM) information and served as validation data. This ex-
emplifies how the synthetic dataset in SiDroForest (van Gef-
fen et al., 2021a) could be used for analysis as the Mask R-
CNN is trained with a COCO-format dataset.

For the United States, the National Ecological Observatory
Network (NEON) provides a 100-million individual tree-
crown dataset covering a large area and standardized lidar
remote-sensing data (Weinstein et al., 2021) created using
machine-learning tools such as DeepForest (Weinstein et al.,
2019). Here, a CHM was used to filter out all canopy tops
over 3 m in height from 37 different NEON sites. The in-
dividual tree crowns in Weinstein et al. (2021) are repre-
sented by a bounding box shapefile that approximates the
crown area and links it to the tree attributes. The SiDro-
Forest tree-crown dataset cannot cover a comparably large
area as the NEON airborne lidar data collection extending
over 1 km× 1 km tiles, and used RGB point-cloud products
and not lidar-derived CHMs. However, the SiDroForest tree-
crown dataset provides 19 342 automatically detected tree-
crown polygons in the form of a crown-delineating polyg-
onal shape enriched with attributes offering plot-size cov-
erage of tree crowns with useful data for machine learn-
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ing and computer vision applications. The tree-crown ex-
traction with 19 342 tree crowns is not complete – what we
addressed assigning quality scores to the products. Brieger
et al. (2019) also report a weak correlation between ob-
served and detected crown diameters (mean R2

= 0.46, mean
RMSE= 0.673 m, mean RMSE%= 24.9 %). We assume that
is due to the reduced quality of the available field data, which
are subjective estimations instead of absolute measurements
and therefore could have decreasing precision with increas-
ing tree heights. The SiDroForest tree-crown data are specif-
ically made to detect Siberian larches in different mixtures
of mixed summergreen needle-leaf and evergreen needle-leaf
forest.

4.3 Upscaling using SiDroForest data types

It is increasingly common in data science and environmental
science to use multiple data types within one analysis. For
example, S-2 images and metadata, topography data, CHM,
as well as their combinations, were used to predict growing
stock volume using deep neural networks in four forestry dis-
tricts in central Finland (Astola et al., 2021). Another exam-
ple of the use of multiple data types in non-machine learn-
ing remote sensing is the work by Wang et al. (2020), where
aboveground biomass (AGB) estimation was performed us-
ing field plots, UAV-lidar strip data, and S-2 imagery. In
Wang et al. (2020), the partial-coverage UAV-lidar data were
used to link ground measurements to S-2 data. These recent
studies show the need for well-labeled publicly available data
to link the data types together and for performance testing of
remote-sensing algorithms. In these studies, the testing data
preparation was undertaken within the project, e.g., Thanh
Noi and Kappas (2018) compared the performance of three
common machine-learning algorithms; a support vector ma-
chine (SVM), a random forest (RF) and k nearest neighbors
(K-NN) on S-2 data from Vietnam. In order to validate the
performance of these algorithms, the training data (training
and testing samples) were collected based on the manual in-
terpretation of the original S-2 data and high-resolution im-
agery obtained from Google Earth and 135 labeled land cover
polygons were produced. Thanh Noi and Kappas (2018) is a
good example of manually labeled data creation for a specific
task and specific research area to be able to use supervised
classification tools. The work done by Abdi (2020) shows a
similar study that assesses the performance of four machine-
learning algorithms for land cover classification of boreal
forests. Here too, the validation and training data are man-
ually created to assess the performance of the algorithms.

However, despite the increased availability of satellite
missions and open-source remote-sensing data and prod-
ucts, challenges remain that are particular to terrestrial high-
latitude ecosystems. Seasonal challenges such as the combi-
nation of snow cover over a long time of the year, a short
and rapidly progressing growing season, high cloud fre-
quency, and low sun angles pose a problem for comprehen-

sive remote-sensing applications in the high-latitude regions
(Beamish et al., 2020). The SiDroForest aims to remedy this
scarcity by providing this multisource dataset, e.g., the high-
quality dataset of S-2 data linked to published field invento-
ries (van Geffen et al., 2021b). The final labels for the S-2 la-
beled image patches are assigned from the in situ information
of multiple datasets from datasets 1 and 2 – information that
can now be upscaled to larger areas by satellite image clas-
sification. By this, we assigned the labels with expert knowl-
edge from the field data, still keeping all transparent, so that
future users of these datasets can adapt the labeling to their
applications, based for example on the detailed information
in the tree level and plot level labeled datasets 1 and 2 that we
provide in this data collection together with the S-2 labeled
image patches for training.

The Yakutia field data collection covered diverse plots
as seen in the vegetation classes assigned (Table 2) which
may pose a problem for classification as the classes are un-
evenly distributed. When the fieldwork was undertaken, mul-
tiple plot sites covering different classes were preferentially
recorded in close proximity to each other for time-related
reasons. The time spent in fieldwork is limited and expen-
sive and a variety of different data can be collected close to
each other. The diversity of the collected fieldwork data has
advantages and disadvantages for machine learning. On the
one hand, it is good to have many different vegetation types
covered in the field plots to log the diversity of the vegetation
cover for the region. On the other hand, more ground-truth
data plots in the same category will greatly improve classifi-
cation of satellite data and too much diversity in the classes
hinders a balanced classification. For example, label 4: Open
Canopy Pine with Lichen, only occurs in one plot. Spectrally,
this plot is different from the others due to the presence of the
almost white-colored lichen. It was therefore important to la-
bel this plot differently from the others, even if this creates
uneven and unbalanced labels.

The classes assigned to the S-2 image patches were tested
with simple machine-learning algorithms. The patches were
extracted for both Yakutia and Chukotka and used together
to classify all sites. A Gaussian Naive Bayes performed best
with 82 % overall average accuracy per class for the Yakutia
sites. The preliminary results for one of the Yakutia sites are
shown in Fig. 21, chosen due to the diverse vegetation at the
site, to show the classification potential.

4.4 SiDroForest labeling and data quality

Labeling accurately is one of the most important aspects for
a usable dataset for machine-learning purposes. If the labels
are inconsistent or very uneven, the classification tools will
have trouble correctly identifying the classes. The SiDroFor-
est data collection contains a variety of labels per dataset.

The labels for the Individual Labeled Tree dataset (van
Geffen et al., 2021c) contain information on species and loca-
tion of the individual tree or shrub. These data have been ver-
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Figure 21. Classification of the Sentinel-2 Vilnuyi subregion based on the vegetation labels in SiDroForest. This is an initial classification
using a Naïve Bayes algorithm with additional classes: water and barren areas.

Figure 22. Dense forest red–green–blue (RGB) orthomosaics for plots EN18077 and EN18063.

ified and checked, yet in some instances two trees are located
very close to each other or the location was not recorded cor-
rectly in the field and an individual tree or shrub could not
be found in that case. The difference between the number of
trees recorded in the field and located in the orthomosaics can
be seen in Fig. 15. The UAV images were inspected based on
expert knowledge to locate the trees as accurately as possi-
ble. However, dense forest plots in Yakutia posed a problem
for locating all the individuals correctly and not all individu-
als recorded in the field could be located in the orthoimages
for those plots. Figure 22 shows an example of dense forest
plots.

The SiDroForest synthetic dataset (van Geffen et al.,
2021a) has written labels in the JSON format (Table A2) that

contain the higher category, or “super category” “Tree”, and
subcategory “Larch”. The two categories exist in case there
are more species added under the higher-level label “Tree”.
The current set identifies all larch trees, regardless of which
species, since the sites covered contain two larch species:
Larix cajanderi and Larix gmelinii. The two species of larch
here only have the one label larch because the aim was to
identify all larch trees in both Chukotka (solely Larix cajan-
deri) and Yakutia (predominantly Larix gemelinii). It would
be an enhancement of the dataset in the future to distinguish
between the two species of Larix in the labels as well. The
dataset can be further enhanced by adding the other dominant
tree species for the region: spruce and pine.
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Figure 23. Examples of unnatural-looking generated images in the synthetic image dataset, the red arrows show the cutout larch trees that
were placed over the UAV images.

The backgrounds were carefully selected for the synthetic
dataset to create diverse scenes and forest information for the
algorithm to learn from. This can help the algorithm detect
larch trees on multiple backgrounds. However, it may also
introduce noise into the dataset. As investigated by Xiao et
al. (2020), on the one hand, there is evidence that models suc-
ceed by using background correlations but on the other hand,
advances in classifiers have given rise to models that use fore-
grounds more effectively and are more robust to changes in
the background. These findings suggest that the performance
of the algorithm is more important than the consistency of
the backgrounds in a dataset. However, it is still important to
be aware of such interference, and extensive benchmarking is
needed to evaluate the performance of an instance segmenta-
tion or object-detection algorithm for the dataset, which we
are planning to undertake.

The dataset also contains generated RGB images that
should contain natural looking scenes. In practice, not all the
RGB images look as natural as others (for example, parts
of images in Fig. 23). The unnatural image construction is
mostly due to variation in size compared to the images placed
on them. Since there are 10 000 images in the dataset, these
unnatural images do not strongly undermine the natural ones
and make up less than 10 % of the total images.

The SiDroForest data collection also provides labeled
S-2 satellite image patches per vegetation plot (van Gef-
fen et al., 2021b) that can be used as ground-truth data
for machine-learning classifications. Though freely available
and operationally downloadable, S-2 data are not ready-to-
use. Despite a frequent acquisition rate at higher latitudes,
S-2 data often contain clouds and finding a cloud- and haze-
free acquisition can take time, even with cloud filtering. It is
common practice that users produce labeled patches of satel-
lite data that function as parameterization for classification
and upscaling purposes. For example, BigEarthNet (Sumbul
et al., 2019) is a large-scale open-source dataset that provides
labeled S-2 image patches (now called BigEarthNet-S2, pre-
viously BigEarthNet) acquired between June 2017 and May
2018 over 10 countries. Each patch includes a JSON file

with the ground-cover labels for the patch. In accordance
with the structure of BigEarthNet-S2, the SiDroForest im-
age patches are also accompanied by a JSON file that con-
tains the class labels per image patch. The BigEarthNet-S2
provides patches of larger area coverage to represent “land-
scapes” such as estuaries. The purpose of the SiDroForest
S-2 image patches and labels lies in the true representation
of vegetation classes and evergreen needle-leaf mixed forest
and the seasonal time stamps of early summer, peak summer,
and late summer.

In its current stage, the SiDroForest S-2 data collection is
not published with performance testing, and we do not con-
sider it to be a benchmark dataset for remote-sensing image
interpretation (e.g., Long et al., 2020). The SiDroForest la-
beled S-2 image patches collection is available as a small
training and validation dataset providing so far underrepre-
sented vegetation categories, that will save future users time
when attempting to classify vegetation of central Siberian
and eastern Siberian boreal forests.

5 Data availability

All four datasets of the SiDroForest data collection are pub-
lished in the PANGAEA data repository and are available for
download:

i. UAV-SfM point clouds, point-cloud products, and or-
thoimages: https://doi.org/10.1594/PANGAEA.933263
(Kruse et al., 2021b),

ii. Individually labeled trees:
https://doi.org/10.1594/PANGAEA.932821 (van
Geffen et al., 2021c),

iii. Synthetically created tree-crown dataset:
https://doi.org/10.1594/PANGAEA.932795 (van
Geffen et al., 2021a),

iv. Sentinel-2 labeled image patches:
https://doi.org/10.1594/PANGAEA.933268 (van
Geffen et al., 2021b).
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6 Conclusions

The circumboreal forests are covering large areas on the
globe. Every new forest dataset collected, processed further,
and published in a ready-to-use format for a wide range of
biological and ecological applications is therefore quite rare
and an important addition for scientific studies that aim to
better understand global forest dynamics.

The datasets presented here provide a comprehensive
overview of the vegetation structure of boreal forest us-
ing a variety of data types. The fieldwork locations are
the anchors that bind all the data types in this data col-
lection together. The datasets include fieldwork informa-
tion from vegetation plots and UAV acquisitions from exten-
sive field expeditions in summer 2018 covering the tundra–
taiga and summergreen–evergreen forest transition zones in
Chukotka and central Yakutia in eastern Siberia. The data
collection spans from forest inventories at the species level,
tree height information and density for each vegetation plot,
UAV-derived SfM point clouds that provide structural forest
information, RGB and RGN orthoimages from the plots, to
S-2 image patches of seasonal information annotated with
vegetation categories that can be used for upscaling purposes
to a larger region.

Combining the data types within SiDroForest can lead to a
better understanding of forest structures and vegetation com-
position. The future states of boreal forest are still largely un-
predictable: labeled field data and remote-sensing data pro-
vide the tools for applications based on machine learning to
help forecast likely scenarios.

The increased use of machine-learning techniques in the
field of remote sensing and forest analyses calls for more and
better labeled data. If forest structure data are rarely available
for the tundra–taiga and summergreen–evergreen transition
zones, even less is available that can be used for machine
learning, such as optimized data containing labeled vegeta-
tion. In addition, due to the remote nature of the dataset loca-
tions, obtaining ground-truth data is difficult and expensive.
The current data collection provides rare data on the cen-
tral Yakutian and northeastern Siberian land cover, optimized
on larch forest across the evergreen–summergreen transition
zone and the northern treeline. Adding future similar datasets
derived from the Northern American boreal domain will con-
sistently enlarge and encompass more tree species and forest
types in the upcoming years. By making this data collection
open source, we aim to remedy data scarcity on tree-level
forest data for the region and we encourage the use of the la-
beled tree-level and plot-level forest datasets presented here
for further analyses and machine-learning tasks.

Appendix A

Figure A1. Sampling scheme of the 2018 expedition vegetation
survey. Projective cover of tall shrubs and trees was estimated on
a circular sample plot with a radius of 15 m (after Shevtsova et al.,
2020b).
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Figure A2. Percentage vegetation cover per plot in Chukotka for all recorded vegetation in the plots.

Figure A3. Percentage vegetation cover per plot in Yakutia for only large shrubs and trees (> 1.3 m).

Figure A4. SiDroForest unmanned aerial vehicle (UAV) data acquisition and flight pattern consisting of a double grid (blue) and a cir-
cular mission (orange). The two 15 m long grid lines (red) divide the plot area into four quadrants of similar size (yellow). From Brieger
et al. (2019).
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Figure A5. Mean tree height (m) per plot from fieldwork measurements.

Figure A6. Mean tree-crown diameter (m) per plot from fieldwork measurements.

Figure A7. Mean heights for trees and shrubs below 1.3 m for unmanned aerial vehicle (UAV)-derived heights (blue) and fieldwork-derived
heights (orange).
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Table A1. An overview of the plots, the latitude and longitude of the central coordinates, the site name, the region (Chukotka or Yakutia),
the visiting date of the vegetation plot in the field in 2018, and the vegetation class (used as labels for the 30m × 30m S2-patches, Table 2).

Plot code Latitude Longitude Site Region Fieldwork date Vegetation class

EN18000 68.09714 166.37544 Bilibino Chukotka 3 Jul 2018 2
EN18001 67.39273 168.34662 Lake Ilirney Chukotka 4 Jul 2018 2
EN18002 67.38677 168.33673 Lake Ilirney Chukotka 5 Jul 2018 1
EN18003 67.39273 168.34702 Lake Ilirney Chukotka 5 Jul 2018 2
EN18004 67.39748 168.35122 Lake Ilirney Chukotka 5 Jul 2018 2
EN18005 67.41965 168.38751 Lake Ilirney Chukotka 6 Jul 2018 1
EN18006 67.41496 168.40287 Lake Ilirney Chukotka 6 Jul 2018 2
EN18007 67.40327 168.37196 Lake Ilirney Chukotka 7 Jul 2018 1
EN18008 67.40213 168.37528 Lake Ilirney Chukotka 7 Jul 2018 2
EN18009 67.40072 168.37968 Lake Ilirney Chukotka 7 Jul 2018 2
EN18010 67.40237 168.36619 Lake Ilirney Chukotka 8 Jul 2018 3
EN18011 67.40404 168.36425 Lake Ilirney Chukotka 8 Jul 2018 1
EN18012 67.40214 168.37807 Lake Ilirney Chukotka 9 Jul 2018 2
EN18013 67.40517 168.35530 Lake Ilirney Chukotka 9 Jul 2018 1
EN18014 67.39530 168.34910 Lake Ilirney Chukotka 11 Jul 2018 2
EN18015 67.42037 168.33061 Lake Ilirney Chukotka 12 Jul 2018 1
EN18016 67.42672 168.39004 Lake Ilirney Chukotka 12 Jul 2018 1
EN18017 67.43229 168.38337 Lake Ilirney Chukotka 12 Jul 2018 3
EN18018 67.45629 168.40596 Lake Ilirney Chukotka 13 Jul 2018 2
EN18019 67.45707 168.40896 Lake Ilirney Chukotka 13 Jul 2018 1
EN18020 67.45915 168.41193 Lake Ilirney Chukotka 13 Jul 2018 2
EN18021 67.39212 168.32881 Lake Ilirney Chukotka 14 Jul 2018 1
EN18022 67.40102 168.34800 Lake Ilirney Chukotka 14 Jul 2018 2
EN18023 67.39923 168.35128 Lake Ilirney Chukotka 14 Jul 2018 1
EN18024 67.37096 168.42636 Lake Ilirney Chukotka 15 Jul 2018 2
EN18025 67.36702 168.42381 Lake Ilirney Chukotka 15 Jul 2018 2
EN18026 67.39608 168.35429 Lake Ilirney Chukotka 16 Jul 2018 2
EN18027 67.39340 168.35905 Lake Ilirney Chukotka 16 Jul 2018 2
EN18028 68.46781 163.35762 Bilibino Chukotka 20 Jul 2018 1
EN18029 68.46560 163.35226 Bilibino Chukotka 20 Jul 2018 1
EN18030 68.40553 164.53273 Bilibino Chukotka 21 Jul 2018 2
EN18031 68.40491 164.54535 Bilibino Chukotka 21 Jul 2018 1
EN18032 68.40486 164.55118 Bilibino Chukotka 21 Jul 2018 2
EN18033 68.40321 164.55180 Bilibino Chukotka 21 Jul 2018 2
EN18034 68.40348 164.54804 Bilibino Chukotka 22 Jul 2018 1
EN18035 68.40316 164.59093 Bilibino Chukotka 22 Jul 2018 2
EN18051 67.80261 168.70471 Lake Rauchuagytgyn Chukotka 18 Jul 2018 1
EN18052 67.79941 168.7083 Lake Rauchuagytgyn Chukotka 18 Jul 2018 1
EN18053 67.79729 168.7107 Lake Rauchuagytgyn Chukotka 19 Jul 2018 1
EN18054 67.79766 168.6904 Lake Rauchuagytgyn Chukotka 20 Jul 2018 1
EN18055 67.79103 168.682500 Lake Rauchuagytgyn Chukotka 21 Jul 2018 3
EN18061 62.07637 129.61858 Yakutsk Central Yakutia 28 Jul 2018 6
EN18062 62.17906 127.80579 Magaras Central Yakutia 30 Jul 2018 10
EN18063 63.77663 122.50100 Vilnuyi Central Yakutia 31 Jul 2018 10
EN18064 63.81459 122.20968 Vilnuyi Central Yakutia 1 Aug 2018 4
EN18065 63.79522 122.44371 Vilnuyi Central Yakutia 1 Aug 2018 9
EN18066 63.79711 122.43807 Vilnuyi Central Yakutia 2 Aug 2018 9
EN18067 63.07636 117.97534 Nyurba Central Yakutia 4 Aug 2018 8
EN18068 63.07423 117.98207 Nyurba Central Yakutia 4 Aug 2018 7
EN18069 63.17328 118.13250 Nyurba Central Yakutia 5 Aug 2018 11
EN18070 63.08291 117.98490 Nyurba Central Yakutia 6 Aug 2018 11
EN18071 62.22509 116.27560 Suntar West Central Yakutia 7 Aug 2018 8
EN18072 62.19957 117.37912 Suntar Central Yakutia 8 Aug 2018 10
EN18073 62.18871 117.40991 Suntar Central Yakutia 8 Aug 2018 9
EN18074 62.21519 117.02159 Suntar Central Yakutia 9 Aug 2018 11
EN18075 62.69699 113.67653 Mirny Central Yakutia 10 Aug 2018 7
EN18076 62.70089 113.67341 Mirny Central Yakutia 11 Aug 2018 10
EN18077 61.89256 114.28862 Mirny-Lensk Central Yakutia 12 Aug 2018 5
EN18078 61.57505 114.29995 Mirny-Lensk Central Yakutia 12 Aug 2018 10
EN18079 59.97491 112.95898 Lake Khamra Central Yakutia 14 Aug 2018 8
EN18080 59.97710 112.96137 Lake Khamra Central Yakutia 14 Aug 2018 7
EN18081 59.97058 112.98709 Lake Khamra Central Yakutia 15 Aug 2018 8
EN18082 59.97764 112.98218 Lake Khamra Central Yakutia 15 Aug 2018 7
EN18083 59.97471 113.00287 Lake Khamra Central Yakutia 16 Aug 2018 7

1=Graminoid tundra; 2=Forest tundra and shrub tundra; 3=Prostrate herb tundra; 4=Open canopy pine with lichen; 5=Open canopy pine; 6=Closed canopy pine; 7=Open canopy mixed
forest; 8=Closed canopy mixed forest; 9=Open canopy Larch; 10=Closed canopy Larch; 11=Closed canopy spruce
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Table A2. Example of common objects in context (COCO) style annotation labels for the masks (1) and images (2).

1: “masks”: { “images/00000000.jpg”: { “mask”: “masks/00000000.png”, “color_categories”: { “(255, 0, 0)”: { “category”:
“larch”, “super_category”: “tree”}
2: { “info”: { “description”: “SiDroForest: Synthetic Tree Crowns”, “url”: “http://immersivelimit.com/datasets/test”, “version”:
“1”, “year”: 2021, “contributor”: “Femke van Geffen”, “date_created”: “12/04/2021”} “00000000.jpg”, “width”: 448, “height”:
448, “id”: 0}

Table A3. Overview of Sentinel-2 spectral bands, spatial resolution, and the central wavelength.

Sentinel-2 bands Central wvelength (nm) Pixel length (m)

Band 1- coastal aerosol 443 60
Band 2- blue 490 10
Band 3- green 560 10
Band 4- red 665 10
Band 5- vegetation red edge 705 20
Band 6- vegetation red edge 740 20
Band 7- vegetation red edge 783 20
Band 8- NIR 842 10
Band 8A- vegetation red edge 865 20
Band 9- water vapor 945 60
Band 10- SWIR-Cirrus 1375 60
Band 11- SWIR-1 1610 20
Band 12- SWIR-2 2190 20

Figure A8. Screenshot of the crowns_polygon shapefile attribute table for plot EN18077 as an example. Height: tree height in meters as
identified with the tree-top finding algorithm, crownAr: area of the tree crown in square meters, CrwnDmt: simplification of the crown
diameter in meters assuming a circular crown, orgHght: maximum height value in meters recorded in the canopy height model (CHM) under
the total crown polygon.
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