Postglacial permafrost depositional history of Grøndalen, West Spitsbergen

Lutz Schirrmeister¹, Nikita Demidov², Vasily Demidov², Sebastian Wetterich^{1, 3}, Sergey Verkulich²

¹ Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Permafrost Research Section, Potsdam

² Arctic and Antarctic Research Institute, St. Petersburg, Russia

³ Technische Universität Dresden, Institute of Geography, Physical Geography with Focus on Paleoenvironmental Research

The postglacial landscape evolution on the western coast of Nordenskiöld Land (West Spitsbergen) was studied in the framework of the Russian Scientific Arctic Expedition on Spitsbergen (RAE-S) between 2016 and 2021.

The drill transect near Barentsburg stretches over 20 km and comprises 19 drill locations reaching from 5 to 25 m depths below surface on the marine terraces at Isfjorden, along the Grønfjorden, and in the Grøndalen and in the Iradalen valleys.

Permafrost cores were taken with a portable gasoline powered rotary drilling rig (UKB 12/25). Core segments of 30-50 cm length were cryolithologically descripted and photographed.

Analyses of gravimetric moisture/ice content and ion content of water extracts were carried out already in the Barentsburg Station. Further studies of grain-size distribution, mass-specific magnetic susceptibility, organic components (TOC, TC, TN, δ^{13} C) and radiocarbon dating were undertaken at the AWI.

Position of the study area and of the individual study sites in West-Spitsbergen at the Isfjorden, the Grønfjorden, in the Grøndalen and the Iradalen valleys.

Core location Bbg-7 at Kap Finneset (Grønfjorden) Grøndalen Valley, view over the group of pingos (Fili, Kili, Oin, Gloin)

Drilling of the core Bbg-8

123456789

Permafrost core examples:

(a) Gravel of massive cryogenic structure (Bbg-15, pingo Kili), 2.8–3.2 m bs; (b) Ice oversaturated deposits (Bbg-16, at pingo Nori), 3.4– 3.6 m bs; (c) injection ice (pingo Nori, Bbg-9), 17.5–17.7 m bs; (d) Loam with a subvertical ice schlier (Bbg-15, pingo Kili), 11.2–11.6 m bs.

100 100

Bbg 2

Data example: Cryolithological profiles, hydrochemical and sedimentological data from the study subarea A (Isfjord terraces)

Hydrochemical Piper diagram of all permafrost deposits water extracts showing in the diamond graph Na-Cl but also Ca-Mg-SO₄ and sometimes Na-HCO₃ dominance, mostly Na+K dominance for cations, and no specific focus for anions Clay – silt – (sand + gravel) diagram of all studied cores showing a wide range from coarse grained sandy gravelly (fluvial) to fine grained silty (alluvial) deposits

Stage	Time	Indicators	References
Slope and alluvial	until now	Granulometry,	This study
deposition, pingo		thaw lakes on pingo tops	Demidov et al (2019)
deformation			Demidov et al. (2022)
Pingo formation	since about 5 cal ky		
	BP (?),		Demidov et al. (2019)
	before 1938	Aerial imagery analysis	Demidov et al. (2020,2021, 2022)
Periglacial fluvial and	Since about 5 cal kyr	Granulometry, water extracts	this study
alluvial deposition	BP	(fresh water)	
Marine transgression	11.2-10.7 cal ky BP	¹⁴ C dating of shells and	Landvik et al. (1987)
	(max. 64 m asl),	whalebones;	
	7.1-6.4 cal ky BP	Salty (EC >1 mS/cm) water	this study
	(12.5 m asl)	extracts of permafrost	
		deposits from 10 to 72 asl	
Deglaciation started	Between 15.0 and	Marine shells above late	Mangerud & Svendsen (1990)
	13.8 cal ky BP (12.3	Weichselian till below Linné	
	\pm 0.19 ky BP)	Lake, west of Grønfjorden	

Comparison of electrical conductivity and cation data from all studied cores showing salty layers with higher EC values (1.2 mS/cm at 70 m asl, Bbg-2 to max. 12 mS/cm at 15 m asl, Bbg-8)

Stages, periods and indicators of landscape history in the study area

References

Demidov et al. (2019). Geochemical signatures of pingo ice and its origin in Grøndalen, West Spitsbergen. The Cryosphere 13: 3155-3169.

Demidov et al. (2020). Geocryological and hydrogeological conditions of the western part of Nordenskiold Land (Spitsbergen Archipelago). Izvestiya, Atmospheric and Oceanic Physics 56(11): 1376–1400.

Demidov et al. (2021). Pingo drilling reveals sodium-chlorine dominated massive ice in Grøndalen, West Spitsbergen. Permafrost and Periglacial Processes 32: 572–586.

Demidov et al. (2022). Distribution of pingos on Svalbard. *Geomorphology* 412, 108326.

Landvik, J.Y. et al. (1987) The Late Weichselian and Holocene shoreline displacement on the west-central coast of Svalbard. Polar Research 5 (1), 29-44,

Mangerund. J. Svendsen. J.I. (1990) Deglaciation chronology inferred from marine sediments in a proglacial lake basin. western Spitsbergen, Svalbard. Boreas 19 (3). 249-272.