Ground-ice origin and age on Herschel Island (Qikiqtaruk), Yukon, Canada
Glacial legacies preserved in permafrost such as buried glacial ice of the last ice age are of increasing concern in the Western Canadian Arctic. Permafrost collapse due to melting ground ice largely follows the margins of the maximum Laurentide Ice Sheet extent and therefore predetermines the postglacial landscape evolution in this region. Another type of ground ice, (i.e., wedge ice) of late Pleistocene and Holocene age associated with permafrost aggradation, is also widespread here. Our study on Herschel Island (Qikiqtaruk, Beaufort Sea) re-examines previous data and applies stable-isotope and dissolved organic carbon (DOC) analyses as well as radiocarbon dating on DOC and particulate plant macrofossil remains preserved in massive ground ice, wedge ice and host deposits. Newly obtained DOC ages of the massive ice span from 32 220 to 25 830 cal BP and extend the only previously available direct age determination (CO2-derived radiocarbon age of 21 290 cal BP) properly into the Last Glacial Maximum as the formation time of the massive ice. Its newly obtained isotopic composition exhibits mean values of −33.1 ± 0.6‰ in δ18O, of −257 ± 4‰ in δD and 7.6 ± 0.9‰ in deuterium excess (d) fitting into previously reported respective data ranges. The very low (negative) stable isotope composition of the massive ice, the numerous enclosed spherical air bubbles as well as the very low mean DOC content of 0.7 ± 0.1 mg L−1 provide strong evidence for an origin as glacier ice that was buried and has survived since deglaciation. The newly studied wedge ice on Herschel Island formed during the Holocene between 9220 and 3470 cal BP, and shows a distinct isotopic composition with mean values of −18.4 ± 1.1‰ in δ18O, −138 ± 9‰ in δD and a mean deuterium excess (d) of 8.8 ± 1.4‰. Such isotopic wedge-ice record as well as its mean DOC concentration of 4.3 ± 2.1 mg L−1 fall within the range of previously studied Holocene ice wedges in the region. The directly-dated stable isotope record of ice-wedge growth on Herschel Island indicates a winter cooling trend towards the mid-Holocene, even though most available records attribute this cooling rather to the warm season while the winter temperatures over this period are not constrained yet. The extraordinarily rich ground-ice inventory of Herschel Island offers insights into the glacial and postglacial landscape evolution of the Western Canadian Arctic. Here, paleoenvironmental research highlights ice sheet-permafrost interactions over glacial, deglacial and postglacial timescales.
AWI Organizations > Geosciences > Terrestrial Environmental Systems
AWI Organizations > Geosciences > Marine Geochemistry
Helmholtz Research Programs > CHANGING EARTH (2021-2027) > PT4:Coastal Transition Zones under Natural and Human Pressure > ST4.1: Fluxes and transformation of energy and matter in and across compartments