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Jene  5, Lorraine Lisiecki6, alan Mix4, Rajeev Saraswat7, Elizabeth Sikes8, Claire Waelbroeck9, 
Julia Gottschalk10, Jörg Lippold11, David Lund12, Gema Martinez-Mendez13, Elisabeth Michel  14,  
Francesco Muschitiello15,16, Sushant Naik17, Yusuke Okazaki  18, Lowell Stott19,  
antje Voelker20,21 & Ning Zhao  22

We present the first version of the Ocean Circulation and Carbon Cycling (OC3) working group database, 
of oxygen and carbon stable isotope ratios from benthic foraminifera in deep ocean sediment cores 
from the Last Glacial Maximum (LGM, 23-19 ky) to the Holocene (<10 ky) with a particular focus on the 
early last deglaciation (19-15 ky BP). It includes 287 globally distributed coring sites, with metadata, 
isotopic and chronostratigraphic information, and age models. A quality check was performed for all 
data and age models, and sites with at least millennial resolution were preferred. Deep water mass 
structure as well as differences between the early deglaciation and LGM are captured by the data, 
even though its coverage is still sparse in many regions. We find high correlations among time series 
calculated with different age models at sites that allow such analysis. The database provides a useful 
dynamical approach to map physical and biogeochemical changes of the ocean throughout the last 
deglaciation.

Background & Summary
The stable isotopic ratio of carbon and oxygen of benthic foraminifera, commonly expressed in delta notations 
(δ13C and δ18O) when compared with the ratio of established standards, are often used as tracers of ocean circula-
tion, climate and carbon cycle processes. δ18O values from CaCO3 tests of epibenthic to shallow infaunal foramifera 
have been linked to bottom water temperatures and sea level1,2, sea water densities3, transport rates4–6 as well as the 
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transport in the deep ocean7. The δ13C values from CaCO3 tests traces the δ13C values of bottom water dissolved 
inorganic carbon (DIC) and is used to infer carbon cycling and the distribution of deep ocean water masses8–11.

Despite the relatively large amounts of existing data, the use of stable isotope compilations in paleoclimate 
research is hindered by the following issues:

•	 Heterogeneous, dispersed data: Data from sediment cores are typically processed, analyzed, and archived sep-
arately in data repositories or personal computers. The format and content of the data files varies across cores 
and operators, and often different data files for a single core exist. Thus, paleoceanographic data in existing 
repositories are highly heterogeneous. This makes compiling data difficult and time-consuming, complicating 
their reusability.

•	 Age models: Interpretations of paleoceanographic data require age-depth models to associate the depths in 
core with calendar ages. Different types of age constraints exist, for instance 14C dates12, ash layers13, align-
ment to benthic or planktonic foraminiferal δ18O variations14, surface temperatures, magnetic properties15 
or 14C features16. Additionally, multiple age models can be produced from the same underlying age data 
depending on the software package used, adjustable parameters within the software package, the atmospheric 
radiocarbon calibration curve used, and the radiocarbon reservoir ages assumed for the core site. The diver-
sity of methodologies makes it difficult to compare stable isotope time series from cores provided by different 
sources, especially for climate change events such as during the last deglaciation (~20-10 thousand years 
before present (ky BP)).

•	 Species offsets: Because of its epifaunal (i.e., on and slightly above the sea floor) habitat, δ13C determined from 
tests of the genus Cibicidoides, in particular Cibicidoides wuellerstorfi, has the lowest offsets with respect to 
δ13C of DIC11, making it the preferred analyzed species for δ13C values of seawater DIC reconstructions. How-
ever, numerous sites include δ13C values determined from other species or even genera, including infaunal 
Uvigerina, which yield higher offsets. Benthic foraminiferal δ18O values are also affected by species offsets17, 
and some publications include species-specific corrections to obtain equilibrium or seawater δ18O18.

The Ocean Circulation and Carbon Cycling (OC3) working group of the Past Global Changes (PAGES) 
program seeks to understand global ocean carbon cycling, ocean circulation and climate during the last deglaci-
ation. One major goal is to create a global database of δ13C and δ18O data from benthic foraminifera that would 
overcome the shortcomings outlined above. OC3 members have developed specific targets, criteria for inclusion 
of data, a quality control procedure, and a database structure. One of the specific goals is that the new database 
should be easy to update in the future and extendable to other variables. Specifically, the OC3 database is an 
ever-evolving database that can be used for many different purposes beyond the specific scientific goals of OC3. 
Its first version, which is presented here, consists of a compilation of high-resolution benthic foraminiferal δ13C 
and δ18O time series from the global ocean. Stable isotopes of oxygen and carbon of benthic foraminifera as well 
as data used for the calculation of age models are compiled, including different age models for each site, when 
available. All components undergo a quality control to standardize the database, and we only include sites that 
can resolve millennial-scale changes associated with the last deglaciation.

One important goal of OC3 is to quantify uncertainty. This includes chronostratigraphic uncertainties. For 
this purpose, we included different age models for sediment cores, if multiple age model approaches are avail-
able. The OC3 database archives both stable isotope data and age model information, yet separately. In other 
words, isotope data are kept separate from age model information, but a connection of both is provided by the 
OC3 database. This facilitates future updates of age models without information loss. When available, the data-
base includes all relevant data necessary to construct the age model, such as radiocarbon dates, reservoir age 
corrections, and tie points to reference records.

The purpose of this paper is to describe the first version of the OC3 database. We describe its structure and 
list the sites and age models included. We then describe several programming tools used to facilitate analysis of 
the database. Finally, we illustrate the utility of the database by comparing different age models across the last 
deglaciation.

Methods
Data acquisition. Benthic foraminiferal δ13C and δ18O data from global marine sediment core sites were col-
lected from on-line repositories, original publications, personal communications, and recent data compilations 
(Tables 1–6). Species included in the database are displayed in Table 7. We include benthic foraminiferal species 
from the genus Cibicidoides, especially Cibicidoides wuellerstorfi. Some Uvigerina stable isotope data are also 
included, in particular for the sake of documentation of previously-unpublished sites. We define a data quality 
control protocol to identify “good data”, of sufficient quality and resolution according to the following criteria:

•	 The temporal resolution of the benthic foraminiferal δ13C and/or δ18O data is 1 ky or better for the Last Glacial 
Maximum (LGM, 23-19 ky BP) and/or early deglaciation (ED, 19-15 ky BP).

•	 The original publication, as well as the source of the isotope data and age models, were checked for differences 
with the values presented in the database. When possible, a quality control was performed by the original 
author or compiler of the data. Data sources labeled as personal communications were provided directly from 
the original owner of the data to the authors of this work.

•	 We identified whether species-specific corrections were applied to the raw stable isotope data. Both uncor-
rected and corrected data are reported in the database.

•	 Outliers and hiatuses, when reported in the original publications, were checked for and marked.
•	 Species names were checked and standardized within the database.
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Site Latitude (°N) Longitude (°E) Depth (m) Isotope data reference Age models

ATLANTIC OCEAN

ALB226 17.95 −21.05 3100 Sarnthein et al.40 OC320

BOFS14K 58.63 −19.43 1756 Bertram et al.41 J + R; OC320

BOFS17K 58 −16.5 1150 Shimmield et al.42 J + R

BOFS26-6k 24.45 −19.84 3680 Beveridge et al.43 J + R

BOFS28-3K 24.61 −22.76 4900 Beveridge et al.43 J + R

BOFS29-1K 20.52 −21.12 4000 Beveridge et al.43 J + R

BOFS30_1K 19.74 −20.72 3580 Beveridge et al.43 OC320

BOFS31_1K 19.00 −20.16 3300 Beveridge et al.43 OC320

CD154-10-06P −31.17 32.89 3076 Simon et al.44 OC320

CH69-K09 41.76 −47.35 4100 Waelbroeck et al.45 J + R; OC320; W13; W20

CH73-139 54.63 −16.35 2209 Duplessy et al.46 J + R; OC320

CH74-227 −35.27 −29.25 3225 Labeyrie et al.47 J + R; OC320

CH75-04 10 −56 3820 Curry et al.48 J + R

CH82-20PC 43.5 −29.87 3020 Keigwin et al.49 J + R; OC320

EW9209-1JPC 5.91 −44.19 4056 Curry et al.48 J + R; OC320; W13; W20

EW9209-2JPC 5.64 −44.47 3528 Curry et al.50 J + R; OC320

EW9209-3JPC 5.31 −44.26 3288 Curry et al.50 J + R; OC320

EW9302-24GGC 62 −21.67 1629 Oppo et al.51 J + R; OC320

EW9302-25GGC 62.06 −21.47 1523 Oppo et al.51 OC320

EW9302-26GGC 62.32 −21.46 1450 Oppo et al.51 OC320

GeoB1105-4 −1.66 −12.43 3225 Bickert et al.52 J + R; OC320

GeoB1515-1 4.24 −43.67 3129 Vidal et al.53 OC320

GeoB16202-2 −1.91 −41.59 2248 Voigt et al.54 J + R; OC320; W20

GeoB16206-1 −1.58 −43.02 1367 Voigt et al.54 J + R; OC320

GeoB16224-1 6.66 −52.08 2510 Voigt et al.54 J + R; OC320

GeoB1711 −25.53 12.63 1967 Waelbroeck et al.45 OC320; W13; W20

GeoB1720-2 −28.99 13.83 1997 Dickson et al.55 J + R; OC320; W13; W20

GeoB2104-3 −27.28 −46.37 1503 Mulitza et al.56 OC320

GeoB3004-1 14.60 15.92 1803 Schmiedl et al.57 OC320

GeoB3104 −3.67 −37.72 767 Arz et al.58 J + R; P; OC320

GeoB3808-6 −30.81 −14.71 3213 Jonkers et al.59 J + R; OC320

GeoB4216-1 30.63 −12.4 2324 Freudenthal et al.60 J + R; OC320

GeoB4240-2 28.89 −13.23 1358 Freudenthal et al.60 J + R; OC320; W13; W20

GeoB4901-8 2.68 6.72 2184 Zabel et al.61 J + R

GeoB6408-4 −43.61 −20.44 3797 Mulitza et al.62 OC320

GeoB6718 52.2 −12.8 900 Dorschel et al.63 P

GeoB6719-1 52.15 −12.77 758 Ruggeberg et al.64 OC320

GeoB7010-2 8.57 −53.20 2549 Govin et al.65 OC320

GeoB7920-2 20.8 −18.6 2278 Tjallingii et al.66 J + R; P; OC320; W13; W20

GeoB9506-1 15.61 −18.35 2956 Mulitza et al.62 OC320

GeoB9508-5 15.5 −17.9 2384 Mulitza et al.67 J + R; P; OC320; W13; W20

GeoB9510-1 15.42 −17.65 1566 Völpel et al.68 OC320

GeoB9526 12.4 −18.1 3223 Zarriess et al.69 J + R; P; OC320; W13; W20

GeoB13601-4 12.43 −18.00 2997 Just et al.70 OC320

GeoB13731-1 35.41 −2.55 362 Fink et al.71

Wang et al.72 OC320

GeoB17402-2 8.00 126.57 556 Shao et al.73 O; OC320

GEOFAR-KF13 37.58 −31.84 2690 Jonkers et al.23 J + R; OC320; W13; W20

GEOFAR-KF16 38 −31.13 3050 Repschläger et al.74 OC320; W13; W20

GIK11944-1 35.65 −8.06 1765 Weinelt et al.75 J + R

GIK12379-3 23.1 −17.8 2136 Sarnthein et al.40 P

GIK12392-1 25.17 −16.85 2575 Sarnthein et al.40 OC320; W13; W20

GIK13289-2 18.07 −18.01 2485 Sarnthein et al.40 J + R; OC320

GIK15612-2 44.36 −26.54 3050 Sarnthein et al.40 J + R; OC320

GIK15637-1 27 −18.99 3849 Sarnthein et al.40 J + R; OC320

GIK15666-6 34.9 −7.1 803 Weinelt et al.76 J + R; P

Continued
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For most sites, the depth-in-core scale is a quantity directly measured in the core. However, some records 
are based on spliced sections (mainly Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program/
International Ocean Discovery Program (IODP) sites) of several nearby cores to generate a composite with a 
corresponding composite depth to define the seafloor referenced depth scale for the site. When available, these 
depth models are documented in the database, accompanied by archival depths that correspond to the original 
depth within each cored interval.

To have a measure of the uncertainty in the timing of deglacial shifts in isotope time series, we include as 
many published age models associated with the data series as attainable. Only those age models that include 
information about how they were calculated are included. Age models were either obtained from original publi-
cations and recent syntheses, or generated for this work. We include age models from three published compila-
tions, which focus mostly on Atlantic sites:

•	 From Peterson et al.19 we include age models for 48 sites, calculated using benthic foraminiferal δ18O values 
combined with radiocarbon-based age models14. These age models are referred to as P hereafter.

•	 From Waelbroeck et al.12 we include Undatable software age models20. They were calculated from planktic 
foraminiferal calibrated accelerator mass spectrometry (AMS) radiocarbon dates in low- and mid-latitude 
sites. In areas of large changes in surface reservoir ages, they were calculated using a combination of radiocar-
bon dates and alignment tie points between sea surface temperature or magnetic property records to ice core 
records. We include age models for 44 sites from the original publication, with radiocarbon data calibrated to 
the IntCal1321 curve, and age models for 48 sites from an update using the IntCal2022 calibration curve. These 
age models are referred to as W13 and W20, respectively, hereafter.

•	 From compilations by Jonkers et al.23 and Repschläger et al.18 we include age models from 151 sites (referred 
to as J + R hereafter). We combine these two compilations because they share Atlantic sites and methodol-
ogies. Most age models are based on AMS radiocarbon dates on planktic foraminifera using the software 
BACON24 version 2.3.9.1 within the data management toolbox PaleoDataView25 and calibrated to the  
IntCal1321 curve. Some additional age models in Repschläger et al.18 were calculated using benthic foraminiferal  
δ18O stratigraphy or using automated alignment with a stacking method described in Lee et al.26.

The database includes several sets of age models calculated for this publication:

•	 41 new age models for Pacific sites calculated based on benthic foraminiferal δ18O stratigraphy aligned to the 
LR04 stack27 between the LGM and the early Holocene.

•	 17 new age models calculated from AMS radiocarbon dates on planktic foraminifera calibrated to the Int-
Cal1321 curve with the software BACON24 version 2.3.9.1. All parameters are recorded in the database as age 
model text files. These age models were calculated before the release of the IntCal2022 calibration curve.

•	 211 new age models calculated using the software BACON24 version 2.3.9.1 within the data management 
toolbox PaleoDataView25. Radiocarbon data were calibrated using the IntCal20 calibration curve22. Prior to 
calibration and BACON age modeling, a local reservoir age simulated with the Large Scale Geostrophic ocean 
general circulation model28 over the last 55 ky29 was subtracted. To produce local time series of the total radi-
ocarbon age versus reservoir age, we added the modelled reservoir ages to the IntCal20 radiocarbon ages (by 
associating the modeled and IntCal20 calendar ages). For each measured radiocarbon age we then selected 
the corresponding local reservoir age. Specifically, the surface (0–50 m) reservoir age range corresponding 
to the measured radiocarbon age range from the nearest gridbox in the simulated data were extracted. The 
downcore age model and its uncertainties is based on 1000 BACON age-depth realizations. All parameters 
are recorded in the database as age model text files. The sites in this age model ensemble include the 17 sites 
for which we calculated age models with IntCal13 calibration as described above.

Data Records
Data Availability. The database was developed by the OC3 community, following the FAIR (Findability, 
Accessibility, Interoparability, Reusability) guiding principles for scientific data management and stewardship30. 
Conforming to the accessibility principle (the “A”) of the FAIR data standard, the database has been stored in the 
public repository Zenodo31. This repository allows updates on the database after publication. Future additions of 
new sites and age models will be uploaded by the OC3 members.

Site Latitude (°N) Longitude (°E) Depth (m) Isotope data reference Age models

GIK15669-1 34.89 −7.82 2022 Sarnthein et al.40 OC320; W13; W20

GIK15670-5 34.91 −7.58 1482 Sarnthein et al.40 J + R; OC320

GIK16004-1 29.98 −10.65 1512 Sarnthein et al.40 J + R; P; OC320

GIK16006-1 29.3 −11.5 796 Sarnthein et al.40 P; OC320

GIK16017 21.3 −17.8 812 Sarnthein et al.40 P; OC320

Table 1. Sites from the OC3 deglacial compilation. Age models citations are listed with letter and number 
codes: (J + R)23 or18; (P)19; (W13 and W20)12, using the IntCal13 or 20 calibration curves, respectively; (OC313) 
this work, calculated from 14C AMS dates using the IntCal13 calibration curve; (OC320) this work, calculated 
from 14C AMS dates using the IntCal20 calibration curve; (M) this work, calculated with δ18 O alignment; (O) 
from the original publication (quality checked).
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Site Latitude (°N) Longitude (°E) Depth (m) Isotope data reference Age models

ATLANTIC OCEAN

GIK16030 21.2 −18.1 1500 Sarnthein et al.40 P; OC320

GIK16402 14.4 −20.5 4202 Sarnthein et al.40 P

GIK16415 9.6 −19.1 3841 Sarnthein et al.40 P

GIK17045-3 52.42 −16.66 3663 Sarnthein et al.40 J + R

GIK17049-6 55.26 −26.72 3331 Jung et al.77 J + R; OC320

GIK17050-1 55.47 −27.89 2795 Jung 78 J + R

GIK17051 56.2 −31.9 2295 Jonkers et al.23 J + R; P

GIK23258-2 75 13.97 1768 Sarnthein et al.79 J + R; OC320

GIK23415-9 53.18 −19.14 2472 Jonkers et al.23 J + R; OC320; W13; W20

GIK23416-4 51.57 −20 3616 Jung 78 J + R

GIK23417-1 50.7 −19.4 3850 Jung et al.77 P

GIK23418-8 52.6 −20.3 2841 Jung et al.77 P; OC320

GIK23419-8 54.96 −19.75 1487 Jung 78 J + R; P

GIK23519-5 64.8 −29.6 1893 Millo et al.80 J + R; P; OC320

GL-1090 −24.92 −42.51 2225 Santos et al.81 OC320; W20

GL-1180 −8.45 −33.55 1037 Nascimento et al.82 O

GS07-150-17_1GC −4.22 −37.08 1000 Voigt et al.54

Freeman et al.83 O; OC320; W20

IOW226920-3 −22.45 12.36 1683 Mollenhauer et al.84 OC320

HU-90-013-013P 58.21 −48.37 3380 Hillaire et al.85 J + R

IODP-303-U1308 49.88 −24.23 3883 Hodell et al.86 P

KNR110-50GGC 4.87 −43.21 3995 Curry et al.87 J + R; OC320

KNR110-55GGC 4.95 −42.89 4556 Curry et al.87 J + R

KNR110-58GGC 4.79 −43.04 4341 Curry et al.87 J + R

KNR110-66GGC 4.56 −43.38 3547 Curry et al.87 J + R

KNR110-71GGC 4.36 −43.7 3164 Curry et al.87 J + R

KNR110-75GGC 4.34 −43.41 3063 Curry et al.87 J + R

KNR110-82 4.34 −43.49 2816 Curry et al.87 J + R

KNR140-39GGC 31.67 −75.42 2975 Keigwin et al.88 OC320

KNR140-51GGC 32.78 −76.28 1790 Keigwin et al.89 J + R; OC320; W13; W20

KNR159-5-14GGC −26.68 −46.5 441 Lund et al.34 OC320

KNR159-5-17JPC −27.7 −46.49 1627 Lund et al.34 P; OC320

KNR159-5-20JPC −28.64 −45.54 2951 Lund et al.34 P; OC320

KNR159-5-22GGC −29.78 −45.58 3924 Lund et al.34 J + R; P; OC320

KNR159-5-30GGC −28.13 −46.07 2500 Lund et al.34 P; OC320

KNR159-5-33GGC −27.57 −46.18 2082 Lund et al.34 P; OC320

KNR159-5-36GGC −27.27 −46.47 1268 Oppo et al.90 J + R; P; OC320; W13; W20

KNR159-5-42JPC −27.76 −46.63 2296 Lund et al.34 P; OC320; W13; W20

KNR159-5-54GGC −29.53 −43.33 4003 Hoffman et al.91 J + R

KNR159-5-63GGC −28.36 −45.84 2732 Lund et al.34 P; OC320

KNR159-5-78GGC −27.48 −46.33 1829 Lund et al.34 P

KNR159-5-90GGC −27.35 −46.63 1105 Lund et al.34 P; OC320

KNR159-5-125GGC −29.53 −45.08 3589 Lund et al.34 J + R; P; OC320

KNR166-2-26JPC 24.33 −83.25 546 Lynch-Stieglitz et al.92 J + R; OC320; W13; W20

KNR166-2-29JPC 24.28 −83.27 648 Lynch-Stieglitz et al.92 J + R; OC320; W13; W20

KNR166-2-31JPC 24.22 −83.3 751
Came et al.93

Came et al.94

Lynch-Stieglitz et al.92
J + R; W13; W20

KNR166-2-73GGC 23.74 −79.43 542 Lynch-Stieglitz et al.92 J + R; OC320; W13; W20

KNR166-2-132JPC 24.85 −79.28 739 Lynch-Stieglitz et al.92 J + R; OC320

KNR197-10-5GGC 37.09 −31.93 2127 Repschläger et al.18 J + R

KNR197-3-9GGC 7.93 −53.68 1100 Oppo et al.95 OC320

KNR197-3-46CDH 7.84 −53.66 947 Oppo et al.95 OC320

KNR197-3-47CDH 7.84 −53.66 671 Oppo et al.95 OC320

KNR197-3-53GGC 8.23 −53.23 1272 Oppo et al.95 OC320

KNR197-3-60GGC 8.44 −52.97 2642 Oppo et al.95 OC320

KNR197-10-17GGC 36.41 −48.54 5010 Keigwin et al.96 J + R; OC320; W13; W20

Continued
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Database description. Sites included in Version 1.0 of the OC3 database are listed in Tables 1–6, with 
citations for isotope data and age models. They come from the global ocean and a water depth range between 
200 and 5000 m (Fig. 1, top). 98% of sites report stable isotope data from Cibicidoides spp., and 74% correspond 
to Cibicidoides wuellerstorfi (Fig. 1, middle). We include some sites that report unpublished data obtained from 
other species, mostly Uvigerina spp. The number of isotope measurements at each site (Fig. 1, bottom) for 23-15 
ky BP has a mean of 16 and a median of 12 data points available per record. 84% of sites have a time resolution 
of at least 1 ky for either the 23-19 or 19-15 ky BP time slices. The remaining sites were included because they 
either have 1 ky or higher resolution for the subsequent 15-11 ky BP time slice, or because they present new, 
unpublished data (see Tables 1–6). We include in Zenodo a table with the number of data points for the 23-19, 
19-15, and 15-11 ky BP time slices at each site31. Users may use that tables or software tools that accompany this  
publication31 to discern, based on temporal resolution and region, which sites to include in their analyses. Binning 
the data into 500-year time slices between 23 and 15 ky BP, yields 130 to 200 coring sites per time slice (Fig. 2), 
with a higher number in the ED. Geographically, 63% of sites correspond to the Atlantic, 28% are from the Pacific, 
and 9% correspond to the Indian Ocean. 12% sites lie in the Southern Ocean (south of 35 °S).

Database structure. The database is organized in different folders, each named after and corresponding to 
a specific coring site. The folders contain comma separated value (csv) files (Fig. 3). The file format choice makes 
the files easily machine-readable on computers with different operating systems, conforming to the interoperabil-
ity principle (the “I”) of the FAIR data standard. It also makes them human-readable, which facilitates access and 
editing. Each site folder contains at least one of each of the following file types:

•	 A metadata file, with ocean basin, site name, latitude, longitude, and seafloor depth.
•	 A depth model file with depth scale information.
•	 An age data file, with measured age constraints (e.g., radiocarbon) and/or tie points information, including 

type of age constraints and references.
•	 Isotope data files, with δ13C and/or δ18O data on a depth scale, and measurement methodology, taxon, and 

reference. There can be more than one isotope data file, each corresponding to different taxa, or as new data is 
added to the site. The different isotope files are identified in their names with dates of addition to the database 
in year-month-day (yyyymmdd) format, author name, and/or taxon name.

•	 Age model files, with depth scale and age determinations, and information on age model type and source. 
There can be more than one age model file, each corresponding to a different age model. The different age 
model files are identified in their names with dates of addition to the database in year-month-day (yyyymmdd)  
format and/or author name.

The csv files are accompanied by unformatted text files where additional information is documented. All files 
are identified with the same site name as in the database, to conform the findability principle (the “F”) of the 
FAIR data standard.

In addition to the raw data and age models, we include the reference and when available, name of the labo-
ratory and methodology followed for analysis. For radiocarbon-based age models calculated with the software 
BACON, we include all parameters used in the calculation in separate age model text files included within each 
of the site folders. This aims to fulfill the reusability principle (the “R”) of the FAIR data standard. Columns are 
left blank when the information is not available, but they could be filled in with new version releases and new 
contributions. The data type and format of each column in the csv files is specified as follows. Missing data are 
indicated with a blank column. Columns with the “Notes” label in their name are to be used by operators to add 
unformatted information that they consider relevant. For stable isotopes the units used are permil, in terms of 
Vienna PDB (VPDB).

•	 site_metadata.csv
Ocean: Pacific, Indian, Atlantic (includes Arctic and Mediterranean).
Sea: A more specific region, if it corresponds, e.g., South China Sea
Site: Site name. Corresponding to the name that appears in the files and folder names. For Deep Sea Drill-
ing Project (DSDP)/ODP/IODP sites we use DSDP/ODP/IODP-leg/expedition-site as name convention.
Latitude (degN): Latitude, with the highest precision possible. Between −90 and 90 °N)

Site Latitude (°N) Longitude (°E) Depth (m) Isotope data reference Age models

KNR207-2-3GGC 26.14 −44.8 3433 Middleton et al.97

Middleton et al.98 J + R; OC320

KNR207-2-6GGC 29.21 −43.23 3018 Middleton et al.98 J + R

KNR31-GPC5 33.69 −57.61 4583 Keigwin et al.99

Keigwin et al.100 J + R; OC320; W13; W20

KNR33-GPC5 33.88 −57.63 4583 Keigwin et al.101 J + R

M35003-4 12.1 −61.2 1299 Hüls 102 J + R; P; OC320; W20

M125_469-3 −10.94 −36.21 1897 Campos et al.103 OC320

Table 2. Continuation of Table 1.
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Site Latitude (°N) Longitude (°E) Depth (m) Isotope data reference Age models

ATLANTIC OCEAN

MD01-2461 51.75 −12.91 1153 Peck et al.104 OC320; W20

MD03-2698 38.24 −10.39 4602 Lebreiro et al.105 W13; W20

MD03-2707 2.5 9.39 1295 Weldeab et al.106 J + R; OC320; W13; W20

MD07-3076Q −44.2 −14.2 3770 Walebroeck et al.45 J + R; P; OC320; W13; W20

MD08-3180 38 −31.13 3050 Repschläger et al.74 J + R; W13; W20

MD09-3256 −3.55 −35.39 3537 Skinner et al.107 OC320

MD09-3257 −4.24 −36.35 2344 Skinner et al.107 OC320

MD13-3455G 35.44 −2.51 319 Fentimen et al.108

Risebrobakken et al.109 OC320

MD95-2037 37.09 −32.02 2159 Labeyrie et al.110 OC320; W13; W20

MD95-2039 40.6 −10.4 3381 Schönfeld et al.111 J + R; P; W13; W20

MD95-2040 40.6 −9.9 2465 Schönfeld et al.111 J + R; P; W13; W20

MD95-2042 37.78 −10.17 3146 Hoogakker et al.112 J + R; W13; W20

MD95-2043 36.14 −2.62 1841 Cacho et al.113 J + R

MD99-2339 35.89 −7.53 1177 Voelker et al.114 J + R

MD99-2334 37.8 −10.2 3146 Skinner et al.115

Skinner et al.107 O; P; OC320; W13; W20

MD99-2343 40.5 4.03 2391 Sierro et al.116

Frigola et al.117 J + R; OC320

MSM05-5-712-1 78.92 6.77 1491 Werner et al.118 J + R

MSM05-5-712-2 78.92 6.77 1389 Werner et al.118 J + R

NA87-22 55.5 −14.7 2161 Duplessy et al.119 J + R; P; OC320; W13; W20

NEAP_04K 61.5 −24.17 1627 Rickaby et al.120 J + R

OCE205-2-100GGC 26.07 −78.03 1057 Slowey et al.121

Came et al.94 J + R; OC320; W13; W20

OCE205-2-103GGC 26.07 −78.06 965 Curry et al.50 J + R; W13; W20

ODP-108-658 20.75 −18.58 2274 Tiedemann et al.122 J + R

ODP-162-983 60.4 −23.6 1984 Raymo et al.123 P; OC320; W13; W20

ODP-162-984 61 −24 1650 Praetorius et al.124 J + ; P; OC320

ODP-172-1059 31.67 −75.42 2985 Hagen et al.125 J + R

POS457-905-2 62.69 −14.35 1598 Mirzaloo et al.126 OC320

POS457-909-2 62.84 −12.99 756 Mirzaloo et al.126 OC320

PS1243 69.37 −6.55 2177 Bauch et al.127 J + R; OC320

PS2082-1 −43.22 11.738 4610 Mackensen et al.128 OC320

PS2498-1 −44.15 −14.23 3783 Mackensen et al.128 J + R; OC320

PS2561-2 −41.86 28.54 4465 Krueger et al.129 OC320

RAPiD-10-1P 62.97 −17.59 1237 Thornalley et al.130 W13; W20

RAPID-12-1K 62.09 −17.82 1938 Thornalley et al.130 J + R; OC320

RAPiD-15-4P 62.29 −17.13 2133 Thornalley et al.131 J + R; OC320

RAPiD-17-5-P 61.48 −19.54 2303 Thornalley et al.131 J + R; W13; W20

RC11-83 −41.6 9.8 4718 Charles et al.132 J + R; OC320

RC16-119 −27.71 −46.51 1567 Oppo et al.90 J + R; OC320

RC16-84 −26.71 −43.33 2438 Oppo et al.90 J + R; OC320

SAN-76 −24.43 −42.28 1682 Toledo et al.133 OC320

SHAK-03-6K 37.71 −10.49 3729 Skinner et al.107 OC320

SHAK-14-4G 37.84 −9.72 2063 Skinner et al.107 OC320

SO164-17-2 24.08 −80.89 954 Bahr et al.134 J + R

SO75-3-26KL 37.82 −9.5 1099 Zahn et al.135 J + R; OC320

SO82-5-2 59.19 −30.9 1416 van Krevald et al.136 J + R; OC320; W13; W20

SU81-18 37.77 −10.18 3135 Duplessy et al.137 J + R; OC320; W13; W20

SU90-03 40.1 −32 2475 Cortijo et al.138 P; OC320

SU90-08 43.35 −30.41 3080 Missiaen et al.139 OC320

SU90-24 61.3 −23 18 Elliot et al.140 J + R; OC320; W13; W20

SU90-39 52.5 −22 39 Labeyrie 47 P

V23-81 54.25 −16.83 2393 Jansen et al.141 J + R; OC320

V24-253 −26.95 −44.68 2069 Oppo et al.90 J + R; OC320

V25-59 1.37 −33.48 3824 Sarnthein et al.142 J + R

Continued
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Longitude (degE): Longitude, with the highest precision possible. Between −180 and 180 °E
Site Depth (m): Depth of the sea floor below modern mean sea level, with the highest precision possible, in 
negative numbers.

•	 site_depth_model.csv
Site: Site as in metadata file.
sample_label: Label of individual sample from original publication, if available.
hole_label: Label for holes in the site, for sites that include more than one hole.
section_label: Label of section in the core.
published_archival_depth (m): In cases where only one core is sampled at each site, this usually coincides 
with the reported depth in core of the original publication. For sites with more than one core (e.g., IODP 
sites), it is defined as the value assigned by the estimated depth of the bottom of the drill string below the 
sea floor, plus the sum of the depths in sections in the cores shallower than the section being analyzed.
current_depth_model (m): It coincides with the archival depth in sites where only one core is sampled. 
For sites with more than one core (e.g., IODP sites), the depth model transforms archival depths into true 
sample depths, considering processes such as compression/expansion during the coring process.
current_depth_model_note: Any important information on the depth model.
DEPTH(mid) (m): As defined for IODP cores32.
MBSF(mid) (m): Meters below sea floor, as defined for IODP cores32.
MCD(mid) (m): Meters composite depth, as defined for IODP cores32.

Site Latitude (°N) Longitude (°E) Depth (m) Isotope data reference Age models

V26-176_b 36.048 −72.37 3942 Curry et al.48 J + R; OC320

V28-14 64.78 −29.57 1855 Curry et al.48 J + R

V28-122 11.93 −78.68 3623 Oppo et al.143 OC320

V28-127 11.65 −80.13 1800 Oppo et al.144 J + R

V29-202 61 −21 2658 Oppo et al.145 J + R; OC320; W13; W20

V29-204 61.18 −23.02 1849 Curry et al.50 J + R

Table 3. Continuation of Table 2.

Site Latitude (°N) Longitude (°E) Depth (m) Isotope data reference Age models

INDIAN OCEAN

AAS9_21 14.51 72.65 1807 Naik et al.146 O; OC320

FR10-95-GC17 −22.129 113.50 1093 Murgese and De Deckker 147

van der Kaars and De Deckker 148 OC320

GeoB12615-4 −7.14 39.84 446 Romahn et al.149 OC313; OC320

GeoB12616-4 −6.98 40.39 1449 Romahn et al.149 OC313; OC320

M5_3a-422_2 24.39 58.04 2732 Sirocko et al.150 OC320

MD01-2378 −3.1 121.8 1783
Holbourn et al.151

Xu et al.152

Durkop et al.153
J + R; P; OC320

MD02-2588 −41.33 25.83 2907 Ziegler et al.154 OC313; OC320; W13; W20

MD02-2589 −43.38 25.25 2660 Molyneux et al.155 OC313; OC320

MD12-3396Cq −47.73 86.69 3615 Gottschalk et al.156 O; OC320

MD77-176 14.5 93.1 1375 Ma et al.157 O; OC320

MD77-191 7.5 76.7 1254 Ma et al.158 O

MD77-203 20.70 59.57 2442 Sarnthein et al.142 OC320

MD84-527 −43.82 51.32 3262 Pichon et al.159 OC320

MD88-769 −46.07 90.11 3420 Rosenthal et al.160 OC320

Orgon4-KS8 23.5 59.2 2900 Sirocko et al.161 P; OC320

RC12-344 12.77 96.07 2140 Naqvi et al.162 OC313; OC320

SK129-CR2 3 76 3800 Piotrowski et al.163 OC313; OC320

SK157-GC14 5.18 90.08 3306 Ahmad et al.164 J + R; OC313

SK157-GC15 7.8 90.25 2855 Raza et al.165 OC313; OC320

SK157-GC16 8.77 90.3 2920 Raza et al.165 OC313; OC320

SK157-GC18 11.98 90.02 3069 Raza et al.165 OC313; OC320

SO236-52-4 3.92 73.14 381.1 Bunzel et al.166 OC313; OC320

SO42-74KL 14.3 57.3 3212 Sirocko et al.167 J + R; P; OC320

WIND-28K −10.15 51.01 4157 McCave et al.168 J + R; OC313; OC320

Table 4. Continuation of Table 3.
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CCSF(mid) (m): Core composite depth below sea floor, as defined for IODP cores32.
depth_model_1 (m): Spaces to include older depth models. This column is usually filled with a copy of the 
published_archival_depth (m) column.
depth_model_note_1: Any important information on depth_model_1.
older_depth_model_2 (m): Spaces to include older depth models. More columns of this kind may be 
added if needed.
older_depth_model_note_2: Any important information on older_depth_model_2.

•	 site_isotope_data_yyyymmdd.csv
Site: Site as in metadata file.
Sample Label: Label of individual sample.
archival_depth (m): Archival depth at which data were taken.
d13C (permil): Benthic foraminiferal δ13C values without any vital effect corrections.
d18O (permil): Benthic foraminiferal δ18O values without any vital effect corrections.
d13C_corrected (permil): Benthic foraminiferal δ13C values with vital effect corrections.
d18O_corrected (permil): Benthic foraminiferal δ18O values with vital effect corrections.
Number of shells: Number of shells measured.
Minimum mesh size (um): Minimum mesh size used for (dry) sample sieving prior to picking.
Maximum mesh size (um): Maximum mesh size used for (dry) sample sieving prior to picking.
Taxon: Taxon of sample, e.g., Cibicidoides wuellerstorfi.

Site Latitude (°N) Longitude (°E) Depth (m) Isotope data reference Age models

PACIFIC OCEAN

EW0408-26JC 56.96 −136.43 1623 Praetorius et al.169 M

EW0408-85JC 59.56 −144.15 682 Davies et al.170 M

EW0408-87JC 58.77 −144.50 3680 Praetorius et al.169 M

EW9504-02PC 31.25 −117.58 2042 Stott et al.171 J + R

EW9504-03PC 32.05 −117.58 1299 Stott et al.171 J + R; OC320

EW9504-04PC 32.04 −118.4 1759 Stott et al.171 J + R; OC320

EW9504-05PC 32.48 −118.13 1818 Stott et al.171 J + R; OC320

EW9504-08PC 32.8 −118.8 1442 Stott et al.171 J + R; OC320

EW9504-09PC 32.95 −119.95 1194 Stott et al.171 J + R; OC320

EW9504-13PC 36.99 −123.27 2510 Mix et al.172 M

EW9504-13TC 36.99 −123.27 2510 Mix et al.172 M

EW9504-14PC 39.39 −124.15 889 This work (Alan Mix) M

EW9504-17PC 42.24 −125.89 2671 This work (Alan Mix) M

FR1-97-GC12 −23.57 153.78 990 Bostock et al.173 J + R; M; OC320

GIK17940-2 20.12 117.38 1727 Wang et al.174 J + R; OC320

GIK17961-2 8.51 112.33 1795 Wang et al.174 J + R

H214 −36.93 177.44 2045 Sikes et al.13 J + R; M; O; OC320

HYIV2015-B9 10.25 112.73 2603 Li et al.175 OC320

IODP-323-U1339 54.67 −169.98 1867 Cook et al.176 M

KS15-4-St3PC2 29.46 133.56 2787 This work (Yusuke Okazaki) OC313; OC320

MD01-2416 51.27 167.72 2317 Gebhardt et al.177 OC320

MD01-2420 36.06 141.82 2101 Sagawa et al.178

Okazaki et al.179 OC313; OC320

MD02-2489 54.39 −148.92 3640 Gebhardt et al.177 J + R; OC320

MD02-2499 41.68 −124.94 904 Lopes and Mix 180 M

MD05-2904 19.45 116.25 2066 Huang et al.181 OC320

MD06-2986 −43.45 167.9 1477 Ronge et al.182 J + R; OC320

MD06-2990 −42.31 169.88 943.5 Ronge et al.182 J + R

MD97-2106 −45.15 146.28 3310 Moy et al.183 OC320

MD97-2120 −45.53 174.93 1210 Pahnke et al.184 M; P; OC320

MD97-2121 −40.38 177.99 2314 This work (Elisabeth Sikes) O

MD97-2138 −1.25 146.23 1900 This work (Alan Mix) M

MD97-2151 8.7 109.9 1598 Chen et al.185 P; OC320

MD98-2181 6.3 125.83 2114 Stott et al.186 J + R; OC320

ME0005-24JC 0.02 −86.46 2941 Dubois et al.187 M; OC320

ME0005A-27JC −1.85 −82.79 2203 Kish 188 M

ME0005A-43JC 7.86 −83.61 1368 This work (Alan Mix) M

Table 5. Continuation of Table 4.
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Taxon_flag: A number that identifies the species. See Table 7 for the list of taxon flags.
Taxon_note: A note on the taxon.
Taxon_note2: Space for notes on taxon or methodology.
Taxon_note3: Space for notes on taxon or methodology.
Additional_note: Note on methodology.
Publication source: Publication from where data were obtained.
Original reference: Original publication associated with the data.
File name: File name in original repository.
Data source: Publication where data is found. Usually a Digital Object Identifier (DOI).
Quality control: 1 means that the data has been quality controlled as described in the data acquisition  
section. 0 means that the data were defined as an outlier or bad data in the quality control process.

Site Latitude (°N) Longitude (°E) Depth (m) Isotope data reference Age models

PACIFIC OCEAN

ML1208-31BB 4.68 −160.05 2857 Mulitza et al.56 OC320

ODP-138-846 −3.1 −90.82 3296 Mix et al.189 J + R; M

ODP-138-849 0.18 −110.52 3839 This work (Alan Mix) M

ODP-167-1019 41.68 −124.93 980 This work (Alan Mix) M

ODP-167-1020 41.01 −126.43 3039 This work (Alan Mix) M

ODP-202-1234 −36.22 −73.68 1015 Heusser et al.190 M

ODP-202-1238 −1.87 −82.78 2203 This work (Alan Mix) M

ODP-202-1239 −0.67 −82.08 1414 This work (Alan Mix) M

ODP-202-1242 7.86 −83.61 1364 This work (Alan Mix) M

P7 2.60 −83.99 3085 Pedersen et al.191 J + R; OC320

PAR87A-10 54.36 −148.47 3664 Zahn et al.192 OC320

PC75-1 −44.24 179.37 967 Shao et al.193 OC320

PLDS-7G −3.34 −102.45 3253 Keigwin et al.194 OC320

PS75-056-1 −55.16 −114.79 3581 Ullermann et al.195 OC320

PS75-059-2 −54.21 −125.42 3613 Ullermann et al.195 J + R; OC320

PS75-104-1 −44.77 174.52 835 Ronge et al.196 O

RC13-110 −0.1 −95.7 3231 Imbrie et al.197 M; P

RC13-115 −1.65 −104.84 3621 This work (Alan Mix) M

RR0503-125JPC −36.2 176.89 2541 Sikes et al.13 M; O; OC320

RR0503-41JPC −39.88 177.67 3836 Sikes et al.13 M; O

RR0503-79JPC −36.96 176.59 1165 Sikes et al.13 M; O; OC320

RR0503-83TC/JPC −36.74 176.64 1627 Sikes et al.13 M; O

RR0503-87JPC −37.26 176.64 663 Sikes et al.13 M; O

RR0503-87TC −37.26 176.64 663 This work (Alan Mix) M

RS147-GC07 −45.15 146.28 3300 Sikes et al.13 M; O; OC320

SCS90-36 17.99 111.49 2050 Huang et al.198 OC320

SO136-003GC −42.30 169.88 944 Ronge et al.182 J + R; OC320

SO201-2-85 57.50 170.41 975 Max et al.199 J + R; OC320

SO213-2-59-2 −45.83 −116.88 3161 Tapia et al.200 J + R; OC320

SO213-2-82-1 −45.78 176.60 2066 Ronge et al.182 J + R; OC320

SO213-2-84-1 −45.12 174.58 972 Ronge et al.182 J + R; OC320

TR163-25T −1.65 −88.45 26 Hoogakker et al.201 OC320

TTN013-18PC −1.84 −139.71 4354 Murray et al.202 M

TTN013-72PC 0.11 −139.4 4298 Murray et al.202 M

V19-27 −0.467 −82.07 1373 Lyle et al.203 J + R; M; P

V24-109 0.4 158.8 2367 Shackleton et al.204 P

Vi-37GC 50.42 167.73 3300 Keigwin 205 OC320

W8402A-14GC 0.95 −138.95 4287 Jasper et al.206 M

W8709A-13PC 42.12 −125.75 2712 Lund et al.207 M; OC320

Y69-106P 2.98 −86.56 2870 Lyle et al.203 J + R

Y69-71P 0.08 −86.48 2740 Clark et al.208 M

Y71-9-101P −6.38 −106.93 3175 This work (Alan Mix) M

Z2112 −33.53 166.53 2858 Sikes et al.13 M; O; OC320

Table 6. Continuation of Table 5.
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•	 site_age_data.csv
Site: Site as in metadata file.
Sample label: Label of individual sample.
sample_depth: Depth in core (meters below the sea floor) for the sample, in meters.
technique: Method used to calibrate age data into calendar age.
lab. code: Identifying code of the laboratory where the age data were taken.
species/material: Species or type of material used for age measurements.
radiocarbon_age (y): Measured conventional radiocarbon ages (using Libby’s half-life).
radiocarbon_age_error_plus (y): Uncertainty of the radiocarbon dates in the positive direction.
radiocarbon_age_error_minus (y): Uncertainty of the radiocarbon dates in the negative direction.
reservoir_age (y): Estimated reservoir age used to calculate the calendar age
reservoir_age_error_plus (y): Uncertainty of the estimated reservoir age in the positive direction.
reservoir_age_error_minus (y): Uncertainty of the estimated reservoir age in the negative direction.
calendar_age (y BP): Calibrated age.

Fig. 1 (Top) Positions and depths (in m) of all sites included in our database. (Middle) Isotope data species 
codes: (orange) Cibicidoides wuellerstorfi, (blue) other Cibicidoides, (black) other benthic foraminifera. (Bottom) 
Number of data points at each site in the 23-15 ky BP time interval.

Fig. 2 Number of sites per 500 y time slice in our data base.
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calendar_age_error_plus (y BP): Uncertainty of the calibration in the positive direction.
calendar_age_error_minus (y BP): Uncertainty of the calibration in the negative direction.
calibration curve: Calibration curve used to calculate calendar ages (e.g., IntCal13; IntCal20).
note1: Unformatted information considered relevant.
note2: Unformatted information considered relevant.
original reference: Reference on the age data and/or the calibrated age.
data doi: age data DOI and/or reference.

•	 site_age_model_yyyymmdd.csv
Site: Site as in metadata file.
Sample Label: Label of individual sample.

Fig. 3 Diagram of a general OC3 site folder, with its file structure as described in the text.

Species Flag

Cibicidoides wuellerstorfi 1

Cibicidoides kullenbergi 2

Cibicidoides lobatulus 3

Cibicidoides pachyderma 4

Uvigerina spp. 5

Cibicidoides mckannai 6

Cibicidoides spp. 7

Planulina ariminiensis 8

Cibicidoides pseudoungerianus 9

Cibicidoides teretis 10

Cibicidoides mundulus 11

Cibicidoides mabahethi 12

Table 7. Taxon flags associated with the different benthic foraminifera species included in our data base.

Age model type Flag

Ash layers 1
14C plateau tuning 2
14C accelerator mass spectrometry dates 3

Tuned age model using benthic δ18 O data with benthic stacks 4

Tuned age model using δ18 O aligment with high resolution land archives (e.g. ice cores) 5

Biostratigraphy 6

Table 8. Age model flags associated with different methodologies included in the data base.
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Fig. 4 (Left) Zonally-collapsed Cibicidoides δ13 C values from our database for an LGM time slice (21-19 ky BP).  
(Right) Cibicidoides δ13 C difference between a deglacial time slice (17-15 ky BP) and the LGM. In order to 
calculate differences between the time slices, all data were binned into a latitude-depth grid of 5°×200 m 
resolution. The most recent age model available at each site was used to make this plot. The lengths of the time 
slices were chosen such that both were 2000 y long.

Fig. 5 As Fig. 4, but for Cibicidoides δ18 O data.
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age_model_depth (m): Depths at which the age model is calculated.
age_model (y BP): Modeled calendar age.
age_model_sigma_plus (y BP): Uncertainty of modeled age in the positive direction.
age_model_sigma_minus (y BP): Uncertainty of modeled age in the negative direction.
upper_95_percent (y BP): 95% confidence level of modeled age in the positive direction.
lower_95_percent (y BP): 95% confidence level of modeled age in the negative direction.
age_flag: Number flag indicating age model method. See Table 8.
age_model_note: Any note on the age model.
age_model_collection.
quality control: 1 means that the data has been quality controlled as described in the Data acquisition section.

All file names begin with a string referring to the core site that matches the site name in the metadata files. 
Isotope data and age model files also include a date in their names, which corresponds to the date at which the 
information was added to the database, and it is written in yyyymmdd (year-month-day) format. If more than 
one isotope data and/or age model is available for a particular site, separate files with different dates are created 
for each one. For sites that include isotope data and/or age models from other syntheses, additional isotope 
data, age model, and depth model files are included in the corresponding folders, with a distinctive string added 
to their names. In cases where more than one species was reported for a site, we keep the isotope data and age 
model associated with each species in separate files, with the species specified in the file names. The name 
structure and use of csv files in the database allows the user to make specific updates. New isotope data and age 
models can be easily added, using the date format described above.

technical Validation
Time slice comparison. Despite its sparsity, the coverage of the database resolves the general structure 
of deep water masses in depth-latitude plots (Fig. 4). During the LGM, the North Atlantic shows high benthic 
foraminiferal δ13C values in the North Atlantic above 2500 m, associated to the glacial equivalent North Atlantic 
Deep Water9 (NADW). Deeper Atlantic waters exhibit lower δ13C values related with a mixture of glacial NADW 
and Antarctic Bottom Water. In the Pacific, δ13C-depleted Pacific Deep Water can be distinguished, as well as shal-
lower, δ13C-enriched waters in the Southern Ocean associated with the transport of Antarctic Intermediate Water.

In the Atlantic, compared with the LGM, deglacial benthic foraminiferal δ13C values from the 17-15 ky time 
slice (Fig. 4, right) is lower in northern-component waters (above 2500 m) and higher in most sites in regions 
of southern-component waters. This is in agreement with previous reconstructions19,33,34, and consistent with 
Atlantic Meridional Overturning Circulation shallowing and accumulation of respired carbon in deep waters35. 

Fig. 6 (Left) Time series of Cibicidoides δ13 C values calculated with age models from different compilations, 
as indicated. Age uncertainty bars are included. (Right) Age models as a function of depth in core. Shadings 
correspond to the reported age uncertainties, based on 95 % confidence intervals. Two example sites from the 
database are displayed: (top) MD07-3076Q and (bottom) SO82-5-2. Plots for the rest of the sites are included 
in the Zenodo repository31. Age models labeled as “calculated by Stefan Mulitza” were calculated for this work 
from radiocaron dates with the IntCal20 calibration curve, as explained in the Methods section (OC320 age 
models in Tables 1–6).
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Benthic foraminiferal δ13C is also higher in the Pacific and Indian Oceans in the 17-15 ky time slice time slice 
compared with the LGM.

Concerning benthic foraminiferal δ18O values, inter-laboratory calibration offsets of several tenths of a per 
mil complicate the analysis of anomalies36,37, proving it difficult to have a quantitative measure of LGM-deglacial 
changes. However, a decrease is observed in most regions between the 17-15 ky time interval and the LGM 
(Fig. 5). This decrease reflects deglacial changes in temperature and δ18O values of deep waters38.

Age model comparisons. The OC3 database includes sites with more than one age model (Tables 1–6), 
allowing an evaluation of the sensitivity of the reconstructed time evolution of benthic foraminiferal δ13C and 
δ18O values with respect to different age models. Such analysis gives insights into the bias associated with age 
model uncertainties and enables us to investigate the robustness of leads and lags between deglacial stable isotope 
records.

We include in the Zenodo repository31 plots of benthic foraminiferal δ13C and δ18O values versus age of 
all sites. The lags between age models are not constant through the LGM and ED (e.g., South Atlantic site  
MD07-3076Q in Fig. 6) with lags generally comprised between 0 and 1 ky. Even for sites where lags of the order of 2 
ky exist (e.g., North Atlanitc site SO82-5-2, Fig. 6), there is overlap among the uncertainty intervals of the age models, 
meaning that differences in timing are likely smaller than the uncertainties of the respective age estimates.

To further assess the impacts of age model on the data assessment, we calculated the correlation coefficient R 
and root mean square error RMSE at each site, between the benthic foraminiferal (Cibicidoides) δ13C time series 
generated for this work from 14C-calibrated age models (labeled as OC320 in Tables 1–6) and with other age mod-
els, namely the J + R, W20, and P (previous compilations). The time window chosen for this analysis is 23-15 ky 
BP, and mostly Atlantic Ocean sites are used, since most sites with multiple age models are situated there (Fig. 7). 
To allow the calculation of correlations and RMSE, all data were linearly interpolated to a regular age grid with a 
500 y time step. Other time steps were trialed (100 and 1000 y), yielding no different results. Correlation coeffi-
cients have values higher than 0.60 in 73% and 54% of the sites for the comparison of OC320 with the W20 or P 
age models, respectively. The comparison of Cibicidoides δ13C time series generated with the OC320 and J + R age 
models yields correlation coefficients higher than 0.60 for 75% of the sites, highlighting the high compatibility of 
14C age models that use the same methodology. Discrepancies in several North Atlantic sites, that lead to low and 
even negative correlations between time series (Fig. 7, left), are due to surface reservoir age differences among age 
model approaches. The comparison among time series calculated with either of the age models yields RMSE values 
lower than 0.3 permil in 90% of the cases (red circles in Fig. 7, right panels). The discrepancies among time series 
of Cibicidoides δ13C values associated with the use of different age model approaches are thus generally lower than 
estimates of LGM-Holocene changes in benthic foraminiferal δ13C values (0.38 permil39).

Another approach to assess age model uncertainty is to compare time slices generated with the same data, 
but with different age model approaches. We compare sites with radiocarbon age models calculated for this 
publication (OC320 in Tables 1–6) and other age model compilations. We calculated at each site the Cibicidoides 
δ13C difference between the 21-19 and 17-15 ky BP time slices (Fig. 8). Due to the scarcity of records in other 
basins, the analysis is limited to the Atlantic Ocean. The Cibicidoides δ13C time slice difference calculated using 

Fig. 7 Map distribution of correlation coefficient R and RMSE of Cibicidoides δ13 C from OC3 sites between 23 
and 15 ky BP calculated with the age models from this work (OC320 in Tables 1–6) and (top) J + R; (middle) 
W20; (bottom) P age models.
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OC320 age models is similar in spatial structure to the time slice differences calculated using J + R, W20, and  
P age models (comparison of left- and right-side plots in Fig. 8). Correlation coefficients are 0.83, 0.75, and 0.90, 
respectively. This reflects a high agreement in the direction of deglacial changes in δ13C values, irrespective of 
which age model is used. The corresponding RMSE′s are 0.20, 0.19, and 0.13 permil, which is of the same order 
of magnitude as the differences in δ13C values between the two time slices at each individual site (Fig. 8). This 
indicates that the resulting magnitude of Cibicidoides δ13C changes between time slices may differ considerably 
when using different age model approaches. We repeated the analysis for the single 17-15 ky BP time slice, 
without calculating a time slice difference (Fig. 9). In that case we get correlation coefficients higher than 0.9 
for the three Cibicidoides δ13C time slice comparisons, and RMSE′s lower than 0.20 permil. The result reflects 
that Cibicidoides δ13C in single time slices may be less dependent on the age model approach than the difference 
between Cibicidoides δ13C values from different time slices.

The above analyses illustrate that the OC3 database coverage is sufficient to resolve deep ocean water mass 
features through time. The number of sites in the Pacific and Indian Oceans is still considerably lower than in 
the Atlantic Ocean, and future versions of the database will focus on improving the coverage for those basins. An 
analysis of stable isotope distributions through the LGM and ED, whose time dimension were calculated from 
different age model approaches, shows that the direction of changes may be captured, irrespective of the age 
model approach used, but the magnitude of those changes differs among age model approaches. The database 
features allow to construct a four-dimensional picture of stable carbon and oxygen isotopes through the LGM 
and last deglacial periods. The included software tools31 allow quick calculations and the selection of sites for 
data analysis or model-data comparisons.

Usage Notes
The choice of csv format for the OC3 database allows accessibility from a wide variety of computer software, and 
very light computational needs. In order to facilitate analysis, we have created a number of python programming 
language scripts that perform tasks for users. Because the scripts are equipped with simple user interfaces, no 
knowledge of python is required.

The python scripts are included in the repository Zenodo, in the same location of the dataset31. They are 
simultaneously compiled and run by entering, in the command line (Windows systems) or terminal (UNIX sys-
tems), “python scriptname.py”, where scriptname refers to the name of the chosen python script. The minimum 
python version required is 3.6. The scripts run locally. In order to retrieve OC3 data, the entire or parts of the 

Fig. 8 Comparison of latitude-depth Atlantic sections calculated for the difference between the 21-19 and 
17-15 ky BP time slices. First row of plots: Cibicidoides δ13 C time slice calculated with OC320 (as in Tables 1–6) 
age models at sites where both OC320 and J + R age models are available. Left(right) plot shows the time slice 
calculated with OC320(J + R) age models. Second(third) row of plots: Same as top plots but for OC320 and 
W20(P) age models. Data were binned to the same grid than in Fig. 3. Correlation coefficients and RMSE are 
(OC320 and J + R comparison) 0.83, 0.20 permil; (OC320 and W20 comparison) 0.75, 0.19 permil; (OC320 and 
P comparisons) 0.90, 0.13 permil, respectively.
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OC3 database needs to be downloaded to the local system. In order to run, the scripts need a number of python 
packages to be installed. The packages needed for each script are listed in the repository31.

The scripts provided for analyzing the OC3 database are as follows:

•	 list_positions.py: This script retrieves the position and site name metadata of a region of interest (defined by 
longitude, latitude and depth ranges) and lists them in a single csv file. This allows users to quickly visualize 
the position and basin information of all sites in a chosen region.

•	 time_series_d13c.py and time_series_d18o.py: These scripts retrieve the data and age models from the OC3 
database location and create time series plots (encapsulated postscript (eps) files) of benthic foraminiferal 
δ13C and δ18O values, respectively, with all age models available for each of the sites. The name of the site 
and the benthic foraminifera species are displayed in the time series images. Age model uncertainties are 
displayed as error bars when available.

•	 merge_cores_files_database.py: This script grabs the isotope data from the OC3 location, and lets the user 
choose one of the available age models to linearly interpolate to the isotope data’s depth-in-core scale. Once 
the age model is chosen, the script generates a folder of merged csv files with position, age, isotope data, and 
taxon information for each site. The number of rows of all columns in each generated file is the same, in order 
to facilitate access with any data analysis software. The following python scripts included with the database 
make use of the merged csv files generated with this scirpt:
•	 list_time_resolution.py: This script lists the number of data points at each site inside a predefined time 

slice. The result is saved in a csv file.
•	 time_slice.py: This script lets the user define a taxon group (Cibicidoides wuellerstorfi, any Cibicidoides, 

or all taxa), a time interval, and a region of interest (defined by longitude, latitude and depth ranges), and 
calculates the time mean of the benthic foraminiferal δ13C and δ18O data for all sites that include data in 
the defined time interval and region. The result is saved in a csv file, and plotted in longitude-latitude, 
latitude-depth, and longitude-depth two dimensional scatter plots. The images are saved as eps files.

•	 compare_time_slices.py: This script lets the user define a taxon group as in the previous script and two 
time intervals. It plots, in latitude-depth sections for each basin, the benthic foraminiferal δ13C or δ18O 
data from the first time slice (left panels), and the benthic foraminiferal δ13C or δ18O difference between 
the second and first time slices (right panels). The images are saved as eps files. In order to calculate the 
differences and visualize, the scripts bins the data positions into a regular 5°×200 m grid.

Fig. 9 Comparison of latitude-depth Atlantic sections calculated for 17-15 ky BP time slice. First row of plots: 
Cibicidoides δ13 C time slice calculated with OC320 (as in Tables 1–6) age models at sites where both OC320 and 
J + R age models are available. Left(right) plot shows the time slice calculated with OC320(J + R) age models. 
Second(third) row of plots: Same as top plots but for OC320 and W20(P) age models. Data were binned to the 
same grid than in Fig. 8. Correlation coefficients and normalized RMSE are (OC320 and J + R comparison) 
0.93, 0.18 permil; (OC320 and W20 comparison) 0.93, 0.19 permil; (OC320 and P comparisons) 0.97, 0.11 
permil, respectively.
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For authors who are not familiar with running python scripts, we also include in Zenodo31 merged files  
(in csv format) that contain metadata, depth, age model, and isotope data for all sites. We include one merged 
file for each of the age model groups available.

Code availability
All code used to generate the figures and analysis of this paper is available in the Zenodo repository31.
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