Ramped pyrolysis-oxidation-¹⁴CO₂: A versatile method to elucidate organic carbon reactivity in sediments

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

Laura Kattein¹ (laura.kattein@awi.de), Hendrik Grotheer^{1,2}, Torben Gentz¹, Malte Höhn¹, Gesine Mollenhauer^{1,2}

Introduction

Ramped Pyrolysis Oxidation (RPO) is a versatile method that separates OM fractions based on their thermochemical stability.

Project Aims

- Establish RPO system optimized for operation with 1) self-constructed trap system & ¹⁴C analysis of gas samples with AWI's MICADAS
- method in two individual studies RPO Apply focussing on Southern Ocean sediment stratigraphy

Advantages of new system VS.

- **Time efficient**: ~4h: (2 runs, ¹⁴C analysis as gas)
- **Blank reduction**: gas tight system & minimum # of preparation steps
- Technical guarantee & maintenance support
- Large sample size: ≤ 3g
- Calibration of **T reading inside crucible**
- **Digital control** of trapping; continuous automated record of T, time and CO₂

Other Systems

- Time intensive: >14h (2 runs, re-combustion, graphitization, ¹⁴C analysis)
- Multiple blank sources: pre-treatment, leaks, re-combustion, graphitization, AMS measurement
- Self conducted maintenance & repairs
- Small sample size: ≤ 400 mg
- Varying positioning of thermocouple \rightarrow imprecise T control in reactor
- Analog reading of T at random times

and organic carbon cycling

Technical Setup

- Pyrolysis products + $O_2 \rightarrow CO_2$
- Gas stream is filtered through glass wool (d)

4: Trapping

- Gas stream from soliTOC flows over zeolite trap in trap/valve system & CO₂ adsorbs
- To trap new fraction: multiposition value is actuated \rightarrow gas stream flows over next zeolite trap

OM fractions with distinct characteristics decompose at different temperatures, leading to the formation of the four, sub-peaks visible (dashed orange shaded peaks). The large CO₂ peak at 1300 s is created when non-pyrolyzable components are combusted with O_2 .

5: Measurement

- Entire trap/valve unit is detached from soliTOC & attached to MICADAS
- Each trap is heated to ~400°C \rightarrow trapped CO₂ desorbs & is transferred into MICADAS
- Each fraction is measured individually

Application studies

East Antarctica: Improve Sediment Chronology

Carrier gas

+ CO₂ exit

• Aim: Provide sediment chronology & reconstruct ice sheet retreat by dating OM

South Georgia Island: OC preservation & reactivity

• Aim: Characterize reactivity of OM released from retreating glaciers & permafrost

Exemplary RPO results. Left: Thermogram of an Antarctic sediment sample and the individually trapped fractions (boxes) with their respective ¹⁴C age (Figure: Rosenheim et al., 2008). Right: Comparison of age models for an Antarctic sediment based on foraminifera, bulk sediment and RPO ¹⁴C analyses (data: Subt et al. 2017).

Distinct OM fractions are separated, trapped & ¹⁴C analysed. The age is determined for a thermochemically labile & young fraction of marine OM associated with transition towards seasonally open marine conditions during ice sheet retreat.

Inverse modelling is applied to derive the energy required to break chemical bonds within organic molecules and between OM & minerals. Findings are correlated to ¹⁴C signature of individual fractions to characterize their reactivity and possible preservation potential.

References

Cui, X., Mucci, A., Bianchi, T. S., He, D., Vaughn, D., Williams, E. K., Wang, C., Smeaton, C., Koziorowska-Makuch, K., Faust, J. C., Plante, A. F., & Rosenheim, B. E. (2022). Global fjords as transitory reservoirs of labile organic carbon modulated by organo-mineral interactions. Science Advances, 8(46), eadd0610. https://doi.org/10.1126/sciadv.add0610 Dorschel, Boris et. al., (2022): The International Bathymetric Chart of the Southern Ocean Version 2. Scientific Data, 9(1), 275, https://doi.org/10.1038/s41597-022-01366-7

Rosenheim, B. E., Day, M. B., Domack, E., Schrum, H., Benthien, A., & Hayes, J. M. (2008). Antarctic sediment chronology by programmed-temperature pyrolysis: Methodology and data treatment.

Geochemistry, Geophysics, Geosystems, 9(4). https://doi.org/10.1029/2007GC001816

Subt, C., Yoon, H. I., Yoo, K. C., Lee, J. I., Leventer, A., Domack, E. W., & Rosenheim, B. E. (2017). Sub-ice shelf sediment geochronology utilizing novel radiocarbon methodology for highly detrital sediments. Geochemistry, Geophysics, Geosystems, 18(4), 1404–1418. doi:10.1002/2016GC006578.

https://www.elementar.com/en/products/toc-analyzers/soli-toc-cube

https://www.sggis.gov.gs/

Affiliations

¹Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven

²MARUM, University of Bremen, Bremen

	*
Marum	

BREMERHAVEN
Am Handelshafen

27570 Bremerhaven Telefon 0471 4831-0 www.awi.de