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The discrepancy between global loss and local constant species richness
has led to debates over data quality, systematic biases in monitoring
programmes and the adequacy of species richness to capture changes

inbiodiversity. We show that, more fundamentally, null expectations of
stablerichness can be wrong, despite independent yet equal colonization
and extinction. We analysed fish and bird time series and found an overall

richness increase. This increase reflects a systematic bias towards an earlier
detection of colonizations than extinctions. To understand how much this
biasinfluences richness trends, we simulated time series using a neutral
model controlling for equilibrium richness and temporal autocorrelation
(thatis, no trend expected). These simulated time series showed significant
changesinrichness, highlighting the effect of temporal autocorrelation
onthe expected baseline for species richness changes. The finite nature of
time series, the long persistence of declining populations and the potential
strong dispersal limitation probably lead to richness changes when
changing conditions promote compositional turnover. Temporal analyses
of richness should incorporate this bias by considering appropriate neutral

baselines for richness changes. Absence of richness trends over time, as
previously reported, can actually reflect anegative deviation from the
positive biodiversity trend expected by default.

The expectation that species richness remains constantin the absence
of externalforcing atecological time scalesis deeply rooted in ecologi-
cal theories'*assuming a dynamic equilibrium between colonizations
and extinctions®. Assessments of time series in the global change con-
text thus interpret deviations frombalanced dynamics such as positive
and negative trends in species number as a response to improving
or deteriorating environmental conditions, respectively**. Under
increased environmental suitability (Fig. 1), most species will profit, and
the expected positive trends emerge, although colonizations may also
be delayed (‘immigration credit®). On the other hand, one can expect

thatareduction in habitat suitability will affect most species negatively
up to the extinctions of some (Fig. 1). As the exponential decline of
existing populations takes time (for example, because of plasticity,
use of microrefugia), extinction debts will lead to adelayed reduction
in richness®” and the negative richness trends will only emerge later.
The scale- and effort-dependency of species richness as a metric
creates uncertainty around trends®’, while, inaddition, richness does
not capture compositional turnover but rather the net difference
between colonizations and extinctions'>". Even more fundamen-
tally though, the temporal response of richness might not match our

'Plankton Ecology Lab, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Wilhelmshaven,
Germany. 2Institute of Aquatic Ecology, University of Girona, Girona, Spain. ®Department of Life Sciences, Ben-Gurion University of the Negev,
Be'er Sheva, Israel. “Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany.

SAlfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.

e-mail: lucie.kuczynski@hotmail.com

Nature Ecology & Evolution | Volume 7 | July 2023 | 994-1001

994


http://www.nature.com/natecolevol
https://doi.org/10.1038/s41559-023-02078-w
http://orcid.org/0000-0002-4448-2836
http://orcid.org/0000-0001-8477-2574
http://orcid.org/0000-0001-7449-1613
http://crossmark.crossref.org/dialog/?doi=10.1038/s41559-023-02078-w&domain=pdf
mailto:lucie.kuczynski@hotmail.com

Article

https://doi.org/10.1038/s41559-023-02078-w

a b
Environmental suitability | Environmental suit
> >
2 2
= =
c c
[} [}
he] o
[} 173
2 2
(o] (o]
(9] (9]
Q. Q
» »

h .e.q.u.iii.b'rfl.]m

nvironmental suitability

" equilibrium

Species density

EXTP
EXTH
EXTH
coL»
coL»

Fig.1| Conceptual figure of the impact of different anthropogenic changes
onspecies diversity and species density. Yellow lines indicate species
experiencing population declines up to extinction while blue ones indicate
species experiencing increases in density. a, The case of a negative impact
(forexample, increase in pesticides, habitat fragmentation) resultingina
lower equilibrium richness, which can take some time to establish as declining
populations persist (extinction debt). b, A clear positive impact (for example,
enlargement of habitat size through restauration) that leads to a higher

coLyr

equilibrium richness, which might take time to establish as gained populations
need some time to colonize (immigration credit). ¢, A steady change: even
though as many species decline (that s, ‘losers’) as colonize (that is, ‘winners’),
the observed richness increases if new species arrive earlier than species go
extinct. Thisincrease does not disappear, as any new time segment added leads
again to earlier colonizations than extinctions, with no new equilibrium being
reached. EXT, extinction; COL, colonization.

expectation, especially if the environment-driven trajectory is not
clearly negative or positive (Fig. 1a,b) but neutral, as some species
are favoured and can colonize while others decline and eventually go
extinct (Fig. 1c).

To conceptualize the issue, consider a neutral environmental
change suchthat there are equal numbers of ‘winners’and ‘losers’,and
richnessis expected to remain constant. However, under low dispersal
limitation, one can assume that colonizations (defined as the first
colonization event over agiventime series) will be fast (as it needs only
few propagules), whereas extinctions (defined as the last extinction
event over agiven time series) will be delayed because in the absence
of catastrophic mortality population growth will slowly turn negative
forthelosers. For dominant species, the resulting declinein abundance
will resultin extinction after many generations. This extinction process
mightbe further slowed downif density-dependent mortality declines
or populations adapt their phenotypes to the new conditions. This
bias towards earlier colonizations will result in increasing richness
over time, which may be transient if the environmental change stops
atsome point such that colonizations and extinctions can equilibrate
again. However, if environmental change continues, each incremental
increase in observation time will allow further colonizations, result-
inginfurtherimbalance detected as increasing richnessin finite time
series (Fig. 1c). On the other hand, if a community exhibits a strong
inertia in its dynamics, rare species are likely to go extinct and not
locally recolonize. Thus, as the majority of species are rare, decrease
inrichness willemerge.

Results and discussion

Temporal trendsin species richness

Here, we combine observational dataand simulations to test whether
this imbalance is strong enough to fundamentally shift species rich-
ness trends to slopes different from zero by default. We first analysed
speciesrichness trends using 3,036 European empirical freshwater fish
community time series from the highly curated RivFishTIME dataset™
(average duration =24 years), along with 4,317 time series from the
Breeding Bird Survey in North America® (average duration=37 years;
Methods). Across the empirically sampled communities, the average

slopes from the linear mixed-effects (LME) model were +0.02 (stand-
ard error (s.e.) = 0.001, P < 0.001, marginal R>= 0.002, conditional
R?>=0.85)and +0.03 (s.e. = 0.0001, P < 0.001, marginal R*= 0.007, con-
ditional R* = 0.83) for freshwater fish and breeding bird communities,
respectively (Fig. 2a,d). The empirical data thus correspond to previous
meta-analyses*'*% showing no overall decline in local richness, but
rather a small yet significant average increase over time.

Shorter time series revealed more variable estimates for slopes
and larger standard errors (Fig. 3, Supplementary Figs. 3 and 4, and
Supplementary Tables 4 and 5). To test whether the positive overall
richness trend was driven by short time series only, we used ageneral-
ized additive model forlocation scale and shape (GAMLSS'; Methods).
While only the variance in species richness trends was affected by time
series length for freshwater fish (estimate,,,. £s.e.=1x10” +1x107,
P=0.3; estimate,,j,nce = S-€. = —0.04 £2x107,P< 0.001; R*= 0.20), both
the mean and the variance in species richness trends were impacted
for birds (estimate,,,. £s.e.=1x10°+1x 107, P<0.001; estimate
variance £ 5.€.=—0.03 £ 8x10™, P< 0.001; R? = 0.29; Fig. 3a,d). Thus, when
dispersalis not strongly constraining communities (for example, avian
communities), short time series exhibit a duration-related under-
estimation bias in the observed trends. While we fully acknowledge
the time and money already needed to collect such data”, we need to
accept that most currently used worldwide long-term datasets actually
capture relatively short time series'". Therefore, our results strongly
suggest that short time series potentially underestimate diversity loss,
as previously claimed®.

We compared these observations with a null model for which
we fully randomized the observed yearly chronosequences of spe-
cies, thereby fully removing temporal autocorrelation from year to
year in species dynamics. Such null models are often used to provide
abenchmark for a given diversity metric in the absence of driving
processes”.. For both taxa-specific null models, species richness was
steady over time (LME, fish: estimate +s.e.=-8x10°+3x10™,P=0.8,
marginal R? < 0.001, conditional R? = 0.84; birds: estimate + s.e. = -2
x10™+1x10* P=0.2, marginal R*<0.001, conditional R*=0.82;
Fig.2b,e), while the variance was reduced under long time series (fish:
estimate s.e.=-5x102+5x10™*, P<0.001, R?=0.30; birds:

variance —
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Fig.2|Speciesrichness over time for freshwater fish and breeding birds.
a-f, Speciesrichness over time for freshwater fish (a-c) and breeding birds
(d-f). Background lines are the empirical (a,d), null model based (b,e) and
simulated (c,f) trends in species richness estimated with alinear regression for

eachindividualssite. Coloured lines are the output of the LME models (estimate +
s.e.) from which estimates and goodness-of-fit are indicated on each panel.R,?,
marginal R% R 2, conditional R%

estimate, ;unee = 5.€. = -4 x102+310™, P<0.001, R = 0.48; Fig. 3b,e).
However, this classic nullmodel approachis highly unrealistic for bio-
diversity time series as it allows any species to flip between absence,
rare and abundant occurrences, which does not occurinactual popula-
tions. In the absence of catastrophic extinctions, the population size
atany time pointis correlated with the abundance at the previous time
step viathe specificbirth and death rates, resulting in strong temporal
autocorrelationunder regular monitoring when samplingintervals are
not very large compared with generation time.

To analyse whether incorporating temporal autocorrelation mat-
ters for null expectations, we simulated 9,999 time series of neutral
communities. These simulations matched the empirical observations
with respect to mean and variance of time series length and species
richness. We derived these time series from a neutral model*** based
onthetheory ofisland biogeography?, simulating species occurrences
while controlling for equilibrium richness and temporal autocorrela-
tion. We explored a large range of autocorrelations (Supplementary
Table 1), but highlight a case with an autocorrelation level match-
ing the observed temporal autocorrelation. Despite being a neutral

model, simulated time series for river fish exhibited increased spe-
cies richness over time (estimate £s.e.=4x102+9x10™* P<0.001,
marginal R? < 0.001, conditional R? = 0.85), which suggests that these
fish communities are not at equilibrium with their historical context
(Fig. 2¢,f, Supplementary Figs. 1and 2, and Supplementary Tables 2
and 3). By contrast, simulated time series for breeding birds did not
show a significant deviance from neutral trends (estimate £ s.e.=-3
x10™#+2x10™, P=0.2, marginal R*< 0.001, conditional R?=0.80),
which may reflect that bird communities are less constrained in their
dispersal, allowing stronger rescue effect?. The simulated slope of
richness over time was significantly independent from time series
length (fish: estimateg,pe £s.e.==6 x10°+1x107, P=0.6, R*= 0.20;
birds: estimate,,. ts.e.=2x107 +4 x107, P=0.7, R*= 0.48), only
variance in species richness trends decreased with longer time series
(fish: estimate,, ;e £ 5.€. =—5x102 £ 9x10™, P< 0.001; birds: estimat-
€yariance £ 5-€. = —4 %1072+ 5x107*, P< 0.001; Fig. 3¢,f). This pattern holds
for most of the settings of autocorrelation and balance between colo-
nization and extinction we have tested (Supplementary Figs. 3 and 4,
and Supplementary Tables 4 and 5). Thus, the observed departure from
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Fig. 3 | Effect of time series length on species richness trends for observed,
randomized and simulated data for riverine fish and breeding birds.

a-f, Effect of time series length on species richness trends for observed
(a,d), randomized (b,e) and simulated (c,f) data for riverine fish (a-c) and
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breeding birds (d-f). For each panel, on the right side, the distribution of the

species richness trends is represented, and the solid black lines represent
percentile curves estimated with GAMLSS.

azeroslope forsimulated data, especially in the case of riverine fish, is
not linked to the empirical time series being too short?.

Netimbalance between colonizations and extinctions
Richness increases are inevitable when population dynamics exhibit
strongautocorrelation (for example, strong dispersal limitation), which
may mask the true richness trends (expected to be null in the simula-
tions), even for time periods substantially longer than our observa-
tions. Our simulations turntheinterpretation of the RivFishTIME data
around: on average, richness increases, but less than expected froma
neutral community with similar autocorrelation. The observed posi-
tive trend thus is a negative deviation from the neutral expectation,
meaning that colonizations happen slower and/or extinctions faster
than needed to balance winners and losers. To test whether the bias
towards positive richness trends is based on the imbalance between
colonization and extinctions, we compared the cumulative number
of colonizations (C,,,) and extinctions (E,,) over time in observed,
randomized and simulated data. We used optimal linear estimation
(OLE) models®* to estimate true colonization and extinction times
of each species, as the raw first and last sightings are biased by the
finite time frame of the time series. When OLE models estimated that
colonizations probably occurred before the observation period and
extinctions thereafter, the species was considered persistent. Based
onallspecies, we calculated the netimbalance between colonizations
and extinctions (NICE) over time. A perfect balance resultsinNICE =0,
while positive valuesindicate colonizations exceeding extinctions and
negative values the opposite (Methods).

Across all time series, final NICE values were positive (fish: mean
NICE pserveq £ 5.d. = 0.17 £ 0.8; birds: mean NICE j.eveq £ 5.d. = 0.11 £ 0.7)
and significantly different from zero (Student’s ¢, = 83, Student’s

tyirgs = 103, all P < 0.001) for both taxonomic groups (Fig. 4). The imbal-
anceslightly decreased over time (LME overall slope of NICE ., cq OVEr
timefor fish =-1x1072,P<0.001; and birds = -4 x1072,P < 0.001; Fig. 4).
For simulated data, NICE values decreased over time at a slower rate
than observed for birds (estimategeq = —2 %1073, P=0.08) while even
being steady over time for fish (estimate,jeq = —3 X 107, P<0.001;
Supplementary Figs. 5 and 6). Decreases in NICE values suggest that
imbalances between C_,, and £, might disappear if environmental
changesstop. However, the difference between observed and simulated
trends in NICE suggests that extinctions are catching up with coloniza-
tions faster than predicted, which would ultimately further increase
the negative deviation from the neutral prediction.

Our analyses have major implications for our understanding of
biodiversity changes, but also for monitoring strategies, assessments
andthe formulation of conservation targets, including areinterpreta-
tion of the ‘neutral trend inrichness’ meta-analyses*'**", If most of the
temporal datain these analyses have some degree of autocorrelation
coupled withstrong dispersal limitation, the reported zero slope does
not necessarily imply constant levels of richness, but a deviation trajec-
tory. For fish, this suggests that either colonization does not happen
asfast asexpected under the extinction regime, or extinctionis faster
thanexpected at the level of colonization observed. This turns the main
outcome of these meta-analyses into amessage of potential biodiver-
sity decline, as the neutral prediction for changes is not necessarily a
zero slope, at least for time series that are characterized by ongoing
environmental change, such as climate change that changes composi-
tion by allowing colonization by ‘winners’ and extinction of ‘losers’.

We used freshwater fish as an empirical example, as they are among
the most threatened taxa® and are especially sensitive to their envi-
ronment, but also strongly constrained by the hydrological network,
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Fig. 4| Temporal trends in theimbalance between colonizations and
extinctions measured as the NICE metric over time for observed and
simulated freshwater fish and breeding birds. a-d, Temporal trends in the
imbalance between colonizations (C) and extinctions (F) measured as the NICE
metric over time for observed (a,c) and simulated (b,d) freshwater fish (a,b)

and breeding birds (c,d) time series. Background lines are the time series while
the dark lines are the output of the LME models (estimate + s.e.) from which
estimates and goodness-of-fit are indicated on each panel. Points indicate the
median value for each year while the associated bars represent the 25th and 75th
quantiles to better represent the distributions of NICE values over time.

making escaping unsuitable conditions difficult®’. We found simula-
tions suggest that thisincrease in species richness is not fast enough to
reflect long-term balanced extinction—-colonization dynamics. As fish
communities seem to experience sub-optimal, albeit suitable, condi-
tions, exclusion of species islikely to take time, especially if the environ-
ment changes marginally, resulting in conditions not too far from the
species optimum. The colonizers’ origin was beyond the scope of this
paper, but non-native species pose a critical threat to freshwater native
communities®®* that can eventually result in increased rates of extinc-
tion*. Thus, considering species’ origins will probably provide further
insights regarding diversity dynamics and the underlying drivers®.
On the other hand, based on our simulation for avian communities,
neutral speciesrichness trends were equal to zero, meaning that North
American bird communities are experiencing an actual increase in
species number. Birds being good long-distance dispersers, avian
community dynamics can be strongly impacted by rescue effects. Thus,
extinctions are probably evened out, although new colonizations,

for instance, by non-native species, are unlikely to fully compensate
for functional loss from the native extinctions®*. However, also based
on neutral predictions, we found that extinctions are catching up
with colonizations faster than expected. Thus, although for now bird
communities are experiencing an increase in species richness, these
temporal dynamics might be hindered by an increasing relative rate
in extinctions, ultimately resulting in this increase in species number
being only atransient state.

Asour simulations show that richness increases by colonization-
extinctionimbalance are transient, they do not contradict key dynamic
equilibrium theories such as the island biogeography theory? and the
unified neutral theory of biodiversity and biogeography'. However,
themoreautocorrelated the populationdynamics were, the more the
imbalance between colonizations and extinctions was critical. We are
not the first to report on such extended presence of non-equilibrium
richness®, but we place this idea into the context of biodiversity
response to continuing and unidirectional environmental change
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(forexample, urbanization, climate change). The transientimbalance is
likely to be shifted towards colonization and lead to richness gain. This
incomplete species sorting over time will be more extensive for more
long-lived organisms*® and more dispersal constrained taxa, which are
thuslikely to experience the mismatch between their ecological niche
and the environment for longer. However, extinctions will probably
eventually catch up with colonizations when environmental conditions
stop changing or when further colonizationisimpaired by the limited
size of the species pool™.

Delays in trends in species richness can emerge from biases and/
oractual biological processes (for example, phenotypic plasticity, use
of microrefugia), resulting in imbalance between colonizations and
extinctions. Although empirical data can be anywhere along the spec-
trum—from ecological mechanisms being the only source of bias (for
example, extinction debts) to purely methodological biases—the use
of neutral baselines toinfer temporal trends allows potential sources to
beruled outby having ecologically null predicted trends”. In particular,
here our neutral model allowed us to compare empirical data with null
predictions to draw the following conclusions: (1) fish communities
are experiencing a slower increase in diversity than expected; and (2)
avian communities are exhibiting anactual increase in species richness
with no apparent delays. Complementarily, NICE temporal dynamics
can offer usinsights regarding the ecological mechanisms underlying
delays in trends, namely the imbalance between colonizations and
extinctions. For instance, we showed here that although birds are not
experiencing delays in species richness changes, this might be a tran-
sient pattern, given the negative trends in NICE values over time. The
simultaneous use of neutral models and simple yet straightforward
metrics such as NICE canallow us to disentangle mechanismsimpact-
ing species richness trend estimation.

Providing methods to quantify anaccurate baseline to correct spe-
ciesrichnesstrends for theirinherent positive bias remains a challenge.
Classically, null models remove all temporal autocorrelationin species
temporal fluctuations in occurrences®. They are used to characterize
theimpact of long-term environmental changes (for example, climate
change) or regular disturbance regimes (for example, tide-related
disturbances, EINifio cycles) on communities and their diversity®°.
Although these null models provide a baseline in which environmental
forcing, dispersal and speciesinteraction effects are all simultaneously
removed?, in the context of compositional time series they delete akey
constraint to our understanding of biodiversity trends: the temporal
dependence of species abundances. Therefore, our simulations are
neutral as species do notinteract, but their dynamics are constrained
by changes in population growth rates. While the null model with no
temporal autocorrelation shows expected species richness trends
equal to zero, the temporal constraint on population dynamics leads
toanew baseline ofincreasing species richness, even when thereisno
environmental forcing. Additionally, the environmental trends are
often neither white noise nor random walks, but show some aspect
of autocorrelation as well*. The bias introduced to richness trends by
the difference between colonization and extinction timing cannot be
remedied with asingle correction factor, as the amount of bias will dif-
fer betweensites and organisms. More isolated sites will show less bias
towards immigration®, while longer-lived organisms will show more
extensive extinction debt as individual generations persist longer*®. We
propose here the analysis of the NICE metric as atool to—at least—esti-
mate the extent of this bias, which allows comparing the contribution
oftrends pre-imposed by continuous environmental changes with the
overall trends across empirical time series.

Methods

Empirical time series

To describe community dynamics over time, we used two highly
curated databases. First, the RivFishTIME database, which gathers
freshwater fish abundance time series'>. We focused our analysis on

3,036 European time series with at least 10 years sampled. The final
dataset comprised time series starting in 1951 and finishing in 2019
with 12 sampled years on average (s.d. = 6.6 years). Second, we used
the North American Breeding Bird Survey database” which represents
4,317 time series sampled at least 10 times, comprising time series
starting in 1966 and finishing in 2021 (29 sampled years on average
+12.5years).

NICE over time

Asinitial metrics, we estimated colonization and extinction events for
each species in each time series using OLE models®*?, using the OLE
function from the sExtinct package*’, allowing for amore conservative
quantification of colonization and extinction times. Although OLE
models do not account for abundance dynamics, the key advantage
of using them is not to rely only on the first and last sighting of a spe-
cies, but rather to infer how much longer the species is likely to have
persisted before and after the known occurrences. Any events (that s,
colonizations and extinctions) happening outside the sampled time
window of the focal community were disregarded. Thus, extinctions
can theoretically happen more often than colonizations if the latter
happen earlier than the beginning of the sampling time.

To compare the colonization versus extinction dynamics, we com-
puted the NICE for each sampled year. The NICE metric quantifies the
cumulative magnitude and direction of potential imbalance between
local colonizations and extinctions in a comparable way across time
series, and is calculated as follows:

Ccurn - Ecurn

NICE =

cum + ECLIITI

Positive valuesindicate faster colonizations than extinctions (that
is, delayed net loss), while negative values suggest slower coloniza-
tions than extinctions (that is, delayed net gain). Moreover, we esti-
mated trendsinlog-transformed species richness using linear models
and investigated the relationship between these trends and time
series length.

Simulated data
We used amodel based on the theory of island biogeography to gener-
ate artificial data akin to the studied datasets. This model tracks the
changeinspecies richness in asite over time as follows:

dss

— =c(Sp — Ss) — eS.
dr c(Sp s) — eSs

where Sgisthe number of speciesinasite atatime point¢, S, the number
of speciesinthe pool, and cand eare colonization and extinction rates,
respectively. The R package island” implements the dynamics of this
model, of which its equilibrium richness is known to be ésp and its

temporal autocorrelation hasbeenshownto be exp[-(c + €) At]**, where
Atis the time between two consecutive samplings (which defaults to 1
for simplicity in our case). The above model is easily solved for a single
species®, leading to aMarkov chain with two states for the species, which
canbeeither present (1) or absent (0), and known transition probabilities
between these states. Assuming thatall species are equivalentandinde-
pendent, we can obtain the temporal dynamics of a community, given
its initial richness, number of species in the pool, and colonization and
extinction rates. These rates have been based on the empirical data as
the number of colonizationevents over atime series divided by the length
of the time series. Thus, we simulated 9,999 time series of presence—
absence data using function PA_simulation from R package island, for a
species pool randomly drawn from the distribution of total number of
species observedforagiventimeseries, and time series length and initial
species richness sampled at random from the observed distribution of
these valuesinthe empirical databases. As anullmodel, we assumed that
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c=e, thatis, the probability of any species of being present was 0.5, and
avaryingdegree of temporal autocorrelation, which allowed usto exam-
ine the effect of transient dynamics on the model. The simulated data
presentedinthe maintextreferstoanautocorrelation based on observed
candeinthe empirical data. Moreover, we explored differentimbalances
between colonizations and extinctions. We focused only onthe balanced
rates inthe maintext, but results based on non-equal rates canbe found
inthe Supplementary Information.

Effect of time series length on species richness trends over
time

To assess the potential effect of time series length onlog-transformed
species richness trends, we used a GAMLSS', which offers a highly
flexible framework with regard to the response variable distribution
while allowing for fitting distribution parameters as a function of the
independent variable. Thus, both the mean and the variance of first the
species richness trends and second the NICE values can be modelled
asalinear function of time.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data used in this study were attained from publicly available data-
bases and the sources of all data and links to databases are provided at
the appropriate sectionin the manuscript. Processed data are available
on GitHub at https://github.com/Lucie-KCZ/NeutralDynamics.

Code availability
The code is available on GitHub at https://github.com/Lucie-KCZ/
NeutralDynamics.
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assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.
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Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.-UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.
Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and

whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChiP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChiP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.




Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.q. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
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subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] Used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based | | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.qg. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,




Graph analysis subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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