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PERSPECTIVES
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Abstract
Thresholds and tipping points are frequently used concepts to address the risks of global change pressures and their mitiga-
tion. It is tempting to also consider them to understand biodiversity change and design measures to ensure biotic integrity. 
Here, we argue that thresholds and tipping points do not work well in the context of biodiversity change for conceptual, 
ethical, and empirical reasons. Defining a threshold for biodiversity change (a maximum tolerable degree of turnover or loss) 
neglects that ecosystem multifunctionality often relies on the complete entangled web of species interactions and invokes 
the ethical issue of declaring some biodiversity dispensable. Alternatively defining a threshold for pressures on biodiversity 
might seem more straightforward as it addresses the causes of biodiversity change. However, most biodiversity change appears 
to be gradual and accumulating over time rather than reflecting a disproportionate change when transgressing a pressure 
threshold. Moreover, biodiversity change is not in synchrony with environmental change, but massively delayed through 
inertia inflicted by population dynamics and demography. In consequence, formulating environmental management targets 
as preventing the transgression of thresholds is less useful in the context of biodiversity change, as such thresholds neither 
capture how biodiversity responds to anthropogenic pressures nor how it links to ecosystem functioning. Instead, addressing 
biodiversity change requires reflecting the spatiotemporal complexity of altered local community dynamics and temporal 
turnover in composition leading to shifts in distributional ranges and species interactions.
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Introduction

The transformation of biodiversity by anthropogenic pres-
sures is one of the most dramatic aspects of global change, 
both globally and locally. Globally, a significant proportion 
of extant biodiversity is threatened or endangered (IPBES 
2019) and extinction rates seem to be orders of magnitude 

higher than predicted from the fossil record (Barnosky et al. 
2011). At the local to regional scale, we mainly observe a 
massive reorganization of biodiversity, with range shifts 
across latitudes and altitudes (Poloczanska et al. 2013; Lenoir 
et al. 2020) leading to novel communities and a massive 
temporal turnover in composition (Hillebrand et al. 2018; 
Blowes et al. 2019). These shifts are responses to a changing 
climate as well as multiple direct pressures on biodiversity 
from overexploitation, fragmentation, and pollution (IPBES 
2019; Pörtner et al. 2021). Marine biodiversity tracks climate 
change especially well (Jonkers et al. 2019; Antão et al. 2020; 
Lenoir et al. 2020) and, at the same time, is more vulnerable 
to temperature change as species generally occur closer to 
their temperature optima (Pinsky et al. 2019).

This massive ongoing change in Earth’s biosphere and 
the prospect of increasing climate change pressures call for 
action and for straightforward concepts guiding such action. 
One of the most widely discussed and used concepts is the 
threshold concept—with the core idea to prevent tipping 
points by remaining in safe operating spaces. All of these 
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terms are elements of critical transition theory (Scheffer et al. 
2001). A tipping point is reached when minor changes in the 
driver (e.g., environmental change) leads to large changes in 
the state of the system (e.g., an ecosystem) (Scheffer et al. 
2001; Scheffer 2009). If such a critical transition leads to 
a new stable state or irreversible change, a regime shift has 
occurred (Scheffer and Carpenter 2003; Folke et al. 2004). In 
this context, a threshold is the amount of pressure or change 
at which the tipping of the system occurs or becomes una-
voidable (Scheffer et al. 2012; Berdugo et al. 2020). Conse-
quently, a suggested strategy for environmental management 
is to define safe operating spaces that prevent pressures from 
transgressing these thresholds (Rockström et al. 2009). While 
management targets can also be formulated in terms of pre-
ferred outcomes (“Living in harmony with nature”), many 
targets are defined to avoid transgressing critical thresholds. 
The interplay between thresholds and targets is especially 
pervasive in the climate change debate, in connection to tip-
ping points in the climate system at planetary scales (Lenton 
2011; Ritchie et al. 2021) or regionally with respect to ice-
sheet stability and ocean circulation (Lohmann and Ditlevsen 
2021; Rosier et al. 2021; Armstrong McKay et al. 2022).

It is therefore tempting to extend the use of critical tran-
sition theory to understand biodiversity change, where 
transgressing thresholds levels of pressures or of rates of 
biodiversity turnover lead to disproportionate consequences 
(Lever et al. 2014; Evans et al. 2017; Mouritsen et al. 2018; 
Kelly et al. 2020; Ma et al. 2021). Here, we argue that several 

ethical, conceptual, and empirical issues withstand such an 
extension. We start by acknowledging different options for 
defining biodiversity thresholds and discussing their valid-
ity from a conceptual viewpoint. We continue by consider-
ing inertia in biodiversity change and how it counteracts the 
detectability of thresholds or associated warning signals. We 
mainly draw from marine examples here, as marine systems 
already show high rates of biodiversity transition, but our 
concerns apply to all types of ecosystems. These concerns 
become directly relevant when presumed thresholds of bio-
diversity change are used to develop global and regional 
biodiversity targets.

Two approaches to defining thresholds

Abstractly, thresholds are defined on the X-axis of “drivers” 
and tipping behavior on the Y-axis of “response,” such that 
transgressing a critical pressure level (threshold) leads to 
disproportionately large changes (tipping) of the variable 
of interest. In a biodiversity context, two ways of defining 
driver and response emerged (Fig. 1). The first considers 
biodiversity loss as the driver and ecosystem processes or 
properties as the response, asking at what threshold of bio-
diversity change do we observe a tipping in ecosystem func-
tioning (Fig. 1a). The second addresses biodiversity change 
as the response to environmental drivers, aiming to define 
a threshold level of environmental pressure at which a dis-
proportional change in biodiversity occurs (Fig. 1b). These 

Fig. 1   Conceptual approaches to defining thresholds of biodiversity 
loss (a, b) or thresholds of pressures on biodiversity (c, d); a Func-
tionality of an ecosystem in relation to a proportional biodiversity 
loss, which may not exceed a certain threshold to maintain ecosystem 
integrity; b Considering this relationship across abiotic contexts and 
functions leads to estimates of much earlier loss of multifunctionality 

(dotted line);  c Biodiversity change in relation to pressure strength, 
with a threshold pressure leading to disproportional acceleration of 
compositional shifts; d Including more gradual change in biodiver-
sity (blue line) or delayed responses through demographic inertia (red 
dotted line) leads to misplaced thresholds or their absence
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two views are obviously closely interlinked, as the biodiver-
sity response in the latter case is the driver of the ecosys-
tem change in the former. But their differentiation is useful 
beyond subtle semantics, as it reflects two rather distinct 
fields of the ecological literature on biodiversity change.

The first field focuses on the loss of species and/or 
intraspecific diversity and the main question is whether the 
functionality of an ecosystem (i.e., any emergent process 
such as primary production or property such as carbon stor-
age) is impaired if a certain fraction of its biodiversity is 
lost. This view arose especially through the rise of the bio-
diversity-ecosystem functioning research over the last three 
decades (as reviewed by Cardinale et al. 2012; Jochum et al. 
2020). In this research field, a majority of studies shows 
a “rivet-redundancy” type of response where significant, 
observable declines in functionality only appear at substan-
tial biodiversity loss (Cardinale et al. 2011). In such cases, 
compensatory dynamics by the remaining species allow for 
maintaining functionality (Allan et al. 2011).

However, this redundancy most likely is an artifact of too 
simplistic approaches to functionality often focusing on a 
single process or property whereas ecosystems are multidi-
mensional entities, where different functions rely on the per-
formance of different species (Gamfeldt et al. 2008; Duffy 
2009). Therefore, immediate effects of biodiversity change 
on functioning emerge when more functional contexts are 
explored (Fig. 1b). Such new contexts arise if the same pro-
cess is analyzed under different environmental conditions in 
space (heterogeneous landscapes) or time (longer observa-
tion period) or when different processes and properties are 
considered (Isbell et al. 2011; Lefcheck et al. 2015; Meyer 
et al. 2018). In this more holistic view, minor losses in bio-
diversity already result in observable functional changes, 
such that no threshold of biodiversity loss can be detected 
below which the ecosystem’s multifunctionality remains 
intact (Meyer et al. 2018). Similar immediate and gradual 
impacts of biodiversity loss were reported in marine studies 
(Gamfeldt et al. 2008; Bracken and Williams 2013).

Even if functional redundancy hypothetically exists, a 
maximum threshold of biodiversity that can be lost does 
not inform target setting because it does not address what 
biodiversity is lost (e.g., which species, how many individu-
als of each species). However, the identity of the lost species 
is at least as important as the proportion of biodiversity lost 
when addressing functional consequences of biodiversity 
loss (Ieno et al. 2006; Bracken et al. 2008). Thus, targets 
based on a threshold amount or proportion of biodiversity 
lost are logically unconceivable as they either assume that 
all species are functionally equal and only a proportion of 
remaining species is important or that humans are actually 
able to steer species extinction towards “dispensable” spe-
cies and protect the important ones.

The latter creates an even larger ethical dilemma of decid-
ing which proportion of biodiversity is dispensable. In a 
medical triage situation, we have criteria—and methods to 
analyze these—that enable us to prioritize help for lives that 
can be potentially saved. “Ecological triage” misses both, 
criteria and analytical methods. The IPBES report on bio-
diversity values strongly makes the point that “people per-
ceive, experience, and interact with nature in many ways,” 
but decisions often are made on a very narrow subset of the 
values, often ignoring values that are bound to future gen-
erations or local valuing systems (IPBES 2022). In contrast 
to the situation of a medical emergency, decisions on biodi-
versity would have far-reaching consequences for how life 
on Earth deals with yet unknown environmental conditions.

The alternative is to focus on thresholds for biodiversity 
change by addressing the biotic responses to environmental 
drivers (Fig. 1c), which is the focus for the remainder of 
this article. Here, the quest is for identifying a level of pres-
sure (environmental change) at which biodiversity changes 
at disproportional rates, e.g., a level of aridity that causes a 
shift between different vegetation types (Staver et al. 2011; 
Berdugo et al. 2020) or a level of eutrophication at which a 
coral-dominated system transitions to an algae-dominated 
one (Knowlton 1992; Mumby et al. 2007). A potential man-
agement aim is then to prevent such tipping by keeping pres-
sures well below these thresholds.

The presence of such critical transitions seems to be 
undisputable, as many case studies show a rapid shift 
between biodiversity regimes, such as transitions between 
corals and macroalgae (Knowlton 1992), macrophytes, and 
phytoplankton (Carpenter 2005; Carr et al. 2010), or forests 
and savannah (Staver et al. 2011). A unifying aspect in most 
of these cases is their reliance on foundation species (sensu 
Dayton 1975) where the entire community composition is 
built upon the presence of a certain species or group of spe-
cies. Thus, if the pressure is too large for the foundation spe-
cies or group, then such a threshold transgression can lead 
to a massive change in biodiversity. But even in these con-
siderably well-understood cases, a lot of uncertainty arises 
around the positioning of thresholds as multiple stressors 
can lead to the decline of foundation species (Turschwell 
et al. 2021).

Moreover, environmental stressors may have chronic 
impacts, such that the extended duration of being exposed 
to a small pressure, instead of the transgression of a pres-
sure threshold, may lead to biodiversity responses of the 
foundation species. Taking seagrasses as an example, they 
respond differently to chronic nutrient enhancement than to 
pulses (Ruocco et al. 2018) and establish a stress memory 
(Nguyen et al. 2020), showing different responses depending 
on exposure history (Helber et al. 2021). Consequently, the 
placement of a threshold pressure on biodiversity might be 
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complex even if the compositional response is defined by a 
single species.

In communities that are less dependent on the presence 
of such foundation species (or groups), observing pressure 
thresholds leading to disproportional biodiversity change 
seems even more unlikely. Across marine, freshwater, and 
terrestrial ecosystems, time series analyses find a rather 
gradual turnover that accumulates over time than sudden 
compositional shifts (Dornelas et al. 2014; Hillebrand et al. 
2018; Rishworth et  al. 2020). Such gradual increase in 
compositional dissimilarity over time seems to be the main 
response to changing conditions as each incremental change 
in the driver shifts the balance between winners and losers 
and thus slowly transforms biodiversity. This individualistic 
response to environmental gradients is only violated if the 
pressure drives the system to an extreme end of the gradient, 
resulting in a complete transformation of the ecosystems 
such as replacing a mangrove forest by a shrimp farm.

To be useful in the context of management decisions 
and target setting, we also must be able to predict pressure 
thresholds before they are exceeded. Most thresholds how-
ever seem to be detected retrospectively from temporal or 
spatial observation. Combining simulations and a meta-anal-
ysis of meta-analyses, Hillebrand and Kunze (2020) tested 
whether experimental studies that encompass future condi-
tions allow identifying pressure thresholds for ecosystem 
functions beforehand. Few instances of transgression were 
observed, which might either reflect that thresholds in fact 
are rare or that environmental noise prevents the prediction 
of threshold pressure level even at the comparably simple 
level of univariate ecosystem process rates or properties. 
Thus, predicting thresholds for a multivariate biodiversity 
response seems even less likely, even though it is more 
important. Retrospective action on biodiversity change is 
hardly possible and a detected threshold in one system’s 
community configuration is unlikely to be transferable to 
different locations or times. Moreover, most of the pressure 
gradients considered in a threshold context are unidimen-
sional, although we know that biodiversity responses to 
cumulative impacts of multiple stressors can be very diver-
gent (Vinebrooke et al. 2004). All these caveats even set 
aside the most fundamental concern that even if a tipping 
of biodiversity composition was observed, it potentially did 
not happen at that threshold because of the inertia in biodi-
versity change.

Inertia and the absence of warning signals

Biodiversity change is the consequence of numeric and 
demographic responses leading to shifts in species’ abun-
dance, ranges, and phenology as well as interaction with 
other species. Therefore, “winners” of an environmental 
change do not emerge immediately, and “losers” do not 

disappear abruptly. Species might persist for a long period 
of time even if they are under pressure (“losers”), a phenom-
enon well known as extinction debt (Tilman et al. 1994). 
Conversely, immigration credit describes the delayed arrival 
of “winners,” especially if habitats are isolated or organisms 
are less able to disperse or move (Jackson and Sax 2010). 
Marine ecosystems and communities are thought to track 
climate change especially well (Lenoir et al. 2020) because 
they are highly connected, such that extinction debt may 
be more relevant than immigration credit. Consequently, 
marine systems show more rapid increases in local species 
richness than terrestrial ones (Blowes et al. 2019).

This inertia in biodiversity change has major conse-
quences for the threshold debate as it implies that species 
composition changes asynchronously to environmental 
change (Fig. 1d). Thus, the pressure at which a dispro-
portional shift in biodiversity is observed might not be 
the pressure at which it was generated. The fragmentation 
literature is an illustrating example as the pressure (habitat 
destruction) is negative for most of the species such that 
many “losers” exist. Still the changes in composition often 
only occur generations later (Vellend et al. 2006; Jackson 
and Sax 2010), such that it is difficult, if not impossible, 
to define the amount of fragmentation that committed the 
system to the observed biodiversity change.

In scenarios where the pressure generates both winners 
and losers, such as warming, it is even more complex to 
quantify threshold levels of pressure as the observed bio-
diversity response will be characterized by net imbalances 
between colonization and extinction (Kuczynski and Hille-
brand, unpublished manuscript). Consequently, synthesis 
work on shifting distributional ranges often finds a faster 
change in the leading edge than the trailing edge (Poloc-
zanska et al. 2013), which can be seen as a spatial reflec-
tion of a temporal extinction debt. Our analyses of modern, 
ecological time series potentially even underestimate the 
extent of delay as can be derived from paleoecological 
responses to abiotic changes. Strack et al. (2022) analyzed 
how communities of pelagic Foraminifera responded to 
increasing temperature after the last glacial maximum 
using time series data across the North Atlantic. They find 
consistent gradual changes in composition (without any 
tipping behavior), which, importantly, continued for sev-
eral thousands of years after the temperature had reached 
its pre-industrial equilibrium.

The disconnection of the rate and extent of biodiversity 
change from the rate and extent of environmental change 
makes observing thresholds in a biodiversity context diffi-
cult. If we do not know the magnitude of the delay in biodi-
versity response beforehand, it seems unproductive to try to 
define environmental targets based on thresholds that com-
mit natural systems to large compositional change, as this is 
prone to overestimate the extent of a safe operating space.
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Global and regional biodiversity targets

Despite the lack of empirical support and the unresolved 
ethical issues, thresholds of biodiversity change have been 
formulated in the context of planetary boundaries, initially 
as a safe operating space for biodiversity (Rockström et al. 
2009), later as biosphere integrity including functional and 
genetic diversity (Steffen et al. 2015). Avoidance of global 
thresholds is a logical target emerging from these plan-
etary boundaries, such as aiming to reduce global extinc-
tion rates to rates of speciation (Rounsevell et al. 2020). 
However, such global targets incur a scaling issue as global 
extinction is only the final step of accumulated local and 
regional extinctions. For a given habitat or region, it is 
the local or regional extinction that matters, as the spe-
cies’ role in ecosystem functioning depends on its local 
presence, which is not alleviated by rescuing the species 
somewhere else.

Regionalizing the biodiversity target formulations such 
as “no net loss of biodiversity” will not be more useful. 
Superficially, it seems valid to assume that as long as 
extinction is less than species gains, a potential critical 
threshold for biodiversity change is avoided. However, 
the extinction side of the equation is hampered by the 
above-described inertia, such that “winners” and “losers” 
show shifted temporal dynamics poising towards transient 
increases in diversity rather than losses. Additionally, the 
local gain of species depends on the availability of fur-
ther species in the regional species pool (Hodapp et al. 
2018), i.e., temporal compositional shifts are inseparably 
connected to changes in spatial biodiversity (Eriksson and 
Hillebrand 2019). Additionally, there are implementation 
issues as well, for example when offsets for biodiversity 
loss unintentionally risk further biodiversity declines 
(Maron 2017).

The alternative is to formulate targets that address a 
certain amount of biodiversity change. Doing so at local 
to regional scales reflects the scale at which local assem-
blages and regional species pools respond to such pressures 
(Suding and Hobbs 2009) but would require a case-by-case 
analysis of thresholds for all relevant pressures. As this 
will rarely be possible, data synthesis efforts were used 
to estimate at which level biodiversity disproportionately 
responds to pressures such as hypoxia (Vaquer-Sunyer and 
Duarte 2008), aridity (Berdugo et al. 2020), fragmentation 
(Andren 1999), or nitrogen fertilization (Bai et al. 2010). 
However, these studies often stress the high variability of 
the threshold estimates such that it seems highly uncertain 
to derive a target for one system by extrapolating local 
results from other regions without a proof that this gener-
alization is possible.

Norberg et al. (2022) conceptually addressed the ques-
tion whether basing a management decision on the assumed 

presence of a threshold does good or harm when the exist-
ence or position of this threshold is uncertain. Their simple 
model shows that the answer depends on (i) how “wrong” 
the threshold estimate is and (ii) how negative the effects 
of sub-thresholds pressures are on the management target. 
As long as we do not know the answer to either of these 
items, we must be aware that we should not set targets for 
pressures in the intellectual darkness of having limited 
knowledge on the magnitude and timing of the response 
of the entangled biodiversity web to these pressures. Pre-
cautionary principles would require setting targets at very 
low levels of pressure to prevent any threshold transgres-
sion, but this strategy often fails when negotiating the use 
and protection of natural resources and ecosystems. Taking 
deep sea mining as an example, a true precautionary princi-
ple would require stopping all mining pursuits for decades, 
as this is the time estimated for filling gaps in our current 
knowledge (Amon et al. 2022).

In summary, the threshold and tipping point narratives 
have little validity in the context of biodiversity change 
and the formulation of targets to mitigate this change. 
There is little empirical evidence for biodiversity show-
ing a tipping response to environmental drivers and our 
ability to predict such threshold pressure levels seems 
highly limited. Likewise, assuming a tolerable amount of 
biodiversity change is conceptually flawed and ethically 
disputable. Thus, formulating targets as if such thresh-
olds existed seems dangerous as they further suggest a 
“manageability” that in fact is not feasible. We further fear 
that suggesting actions based on a threshold that does not 
hold up to scrutiny in discussions of conflicting use and 
conservation undermines the biodiversity position in such 
target negotiations.

There is no easy alternative to propose, but that does 
not invalidate our argumentation. On the contrary, it might 
be even more important as the current lack of convincing 
alternatives increases the temptation to accept biodiver-
sity targets based on an uncertain tipping point narrative. 
However, we can propose a number of important steps 
that might inform the formulation of future operational 
biodiversity targets. First, we need to understand the scale 
sensitivity and inertia in biodiversity responses better that 
lead to the intertwined temporal changes in composition 
and spatial changes in species distribution. Second, we 
must upscale our current knowledge on critical transitions 
from simple, species-poor systems to communities with a 
multitude of species interactions (Kéfi et al. 2022). Biodi-
versity itself might be the reason why ecological systems 
are able to absorb environmental change without tipping 
into different states. Third, we need to accept that our 
ability to manage biodiversity is limited in the first place. 
Targets are often formulated as if biodiversity responses to 
further anthropogenic transformation were deterministic, 
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but even in the case of simple pulse disturbances, a recent 
meta-analysis showed that functional recovery was the 
norm when the pressure ended, but not to compositional 
recovery (Hillebrand and Kunze 2020). All three aspects 
together indicate that further actions potentially affecting 
biodiversity need to be discussed under the premise that 
their impact on biodiversity cannot be easily predicted or 
made undone.
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