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In the twenty-first century, ongoing rapid
urbanization highlights the need to gain deeper
insights into the social structure of cities. While work
on this challenge can profit from abundant data
sources, the complexity of this data itself proves to
be a challenge. In this paper, we use diffusion maps,
a manifold learning method, to discover hidden
manifolds in the UK 2011 census dataset. The census
key statistics and quick statistics report 1450 different
statistical features for each census output area. Here,
we focus primarily on the city of Bristol and the
surrounding countryside, comprising 3490 of these
output areas. Our analysis finds the main variables
that span the census responses, highlighting that
university student density and poverty are the most
important explanatory variables of variation in census
responses.

1. Introduction
In 2014, 54% of the world’s population inhabited
cities [1]. The United Nations project this fraction to rise
to 80% by 2050, amounting to an urban population of
more than 6.5 billion [1]. To visualize the increase in
urban area, we can say that it is equivalent to building
a city for 1 million people every week [2].

City life offers many opportunities, such as better
chances of employment, a much wider range of cultural
activities and a greater diversity of people. However, it
also has some disadvantages, such as greater problems
with crime, congestion, lower air quality and higher
living expenses. Many studies suggest a healthy social
fabric plays a key role in emphasizing the positives of
urban living [3]. Studies also show that social cohesion
can be affected by design decisions, such as street layout
and traffic restrictions [4,5].

To analyse a city one can distinguish between the
hard properties that are precisely defined and centrally
regulated (e.g. physical infrastructure, traffic planning
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and zoning) and soft properties that arise from social interactions of the inhabitants (e.g. social
cohesion, the spirit and vibe of a city). The soft properties play an important role in general
well-being [6], disaster response [7] and the economy’s ability to attract and retain qualified staff
[8,9]. Thus optimizing the hard properties that can be directly regulated to achieve an optimal
development of the soft properties is a valuable target.

Mathematical and computational models can help to understand how soft properties arise
from the substrate of hard properties. They can thus help to elucidate the functioning of a city and
aid decision makers [10]. Historically, models that include a very large number of variables have
been used to predict the effects of perturbations to the system, for example, changes to transport
infrastructure [10,11]. These predictions can be very accurate, but rely on fitting for a large
number of parameters. By contrast, models of urban economics use simple rules to model a small
number of variables and reproduce particular qualitative characteristics common to many cities.
For example, the emergence of multiple centres of economic activity separated by residential
areas [12–15]. In these models, spatial heterogeneity emerges from the individual decisions of the
occupants. However, the full diversity observed in real cities is not replicated and the predictions
that extend from these models are usually not applicable for informing specific interventions or
policies [16].

It has recently been suggested that a new type of model of cities is both possible and desirable
[16]. By taking a physics-inspired approach it may be possible to develop dynamic models that
consider a small set of carefully selected aspects and then formulate qualitative or quantitative
predictions based on the analysis of a small number of variables. This approach is particularly
tempting as results do not emerge from a black box, but are gained through understanding
the dynamics of processes. While no such model will be able to represent a city with its many
subsystems in its entirety, a combination of different models could paint a comprehensive picture.
The hope is thus that lightweight models that can be analysed and understood in detail will
eventually form the building blocks of a much coveted ‘science of cities’ [17].

A central challenge on the route to modelling the emergence of soft city properties is to
identify a set of variables that capture these properties. The modeller is faced with a myriad of
possibilities in which cultural and economic aspects of the city can be quantified. Clearly, many
of the variables that can be measured, such as household income, household size, employment
status etc. have strong interdependencies. The challenge is, therefore, to pick an, ideally small,
number of variables that represent the state of an area without creating unnecessary redundancy.

Selecting a specific set of variables can introduce bias to a model. If we pick specific variables
that we believe to play some role in a given phenomenon, we ultimately come up with a
model explaining the phenomenon in terms of these variables, potentially missing deeper causal
connections. It is, therefore, desirable to pick the variables of a model in an objective way. Ideally,
we select variables according to their explanatory power, such that each variable that is added
to the model maximally increases our power to describe differences in the city. This yields a
model that can describe as much of the variation in the city with the given number of variables.
Moreover, it is reasonable to assume that by focusing on the most explanatory variables we also
identify the most important causal factors.

An example is the analysis of the UK census general statistics, which provide a spatially
resolved map of 1450 variables across the UK. To cluster the area into larger geographical
groupings the UK’s Office of National Statistics found it necessary to reduce the variables that are
considered down to 60 [18]. The selected set reflects an expert’s opinion on the most important
determinants of socio-economic structure. However, this approach is undesirable as it disregards
most of the available data, constitutes an additional source of bias and consequently reduces the
quality of the results. There is thus a strong need for a principled mathematical approach to the
construction of the socio-economic variables, that avoids introducing additional bias and takes all
the available data into account.

In this paper, we address the challenge of constructing the leading explanatory variables from
spatially resolved social data. Starting with the UK 2011 census dataset, we consider the city of
Bristol and its surroundings including several smaller settlements. The data are analysed using
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the diffusion map method [19,20]. This method uses the physical intuition and mathematical
results on diffusion processes to identify explanatory variables. We emphasize that, by contrast
to related approaches such as previous work on spectral clustering results [21], we do not
consider a diffusion process in physical space, but data space. We demonstrate that this can
be used to gain an understanding of the spatial organization of the city and also identifies a
set of variables that can be used in the future models of British cities. We analyse the first
two of these variables in detail and show that they capture the distribution of the university
student population and poverty as leading factors that shape the variation in the census
response.

2. The 2011 Census data
In the UK, censuses of the complete population began in 1801, and have occurred every 10 years
since (with the exception of 1941) [22]. While early censuses involved simple head counts, the
most recent UK census, conducted on 27 March 2011, collected a wide range of demographic
and economic data about households and their residents, including their ethnicity, type of home
ownership and employment details.

The results of the census are published in a mildly aggregated form where responses
from approximately 100 households are combined into so-called output areas (OAs). OAs are
constructed after the data have been collected. They are drawn such that there is a minimum
number of 60 households in each OA, the OAs are spatially contiguous, and the homogeneity of
responses in an OA is maximized. In space, the OAs form a complete tesselation of the UK’s
land surface, which means that areas without residential population, including public parks,
industrial estates etc. are grouped with adjacent residential areas to form OAs. In effect, these
rules mean that OAs in cities can be very small comprising only a single building or part of a
building, whereas OAs in the countryside can be up to three orders of magnitude larger.

The census results for England and Wales is a dataset containing census responses for 175 434
OAs. Here, we consider particularly the data for Bristol and the surrounding countryside, that
is the area of the local authorities of Bristol, North Somerset, Bath and North East Somerset
and South Gloucestershire. This combined area of Bristol and the surrounding local authorities
comprises 3490 output areas, covering 1331 km2.

3. Diffusion maps find hidden manifolds in data
The variables of census data span a 1450-dimensional space. We can visualize every OA as a
point in this space. If the data were two dimensional, we could simply plot the points in the plane
to reveal how the points are distributed in the underlying space. For example, we might find
that points cluster around a one-dimensional curve (figure 1). In that case, a more natural way
of describing the position of an OA is to specify how far along the one-dimensional curve it is
located. In high-dimensional data, such underlying structures also typically exist [19,20]. They
may be points, curves or volumes, which (mathematically speaking) we can summarize under
the term manifolds.

A simple method sometimes used to approximate manifolds in a dataset is principal
component analysis (PCA) [23]: Given the original data space, we identify the directions along
which the greatest variation in the data occurs. Thus we find a set of variables that quantify the
location of a point in the directions of highest variation. Although widely used, PCA has some
notable drawbacks. Most prominently, it can only find linear structures in the data, e.g. straight
lines, flat planes etc. Hence, PCA would not produce the desired results in the example from
figure 1.

A less widely known, but perhaps more important limitation of PCA and several related
methods is that they rely on a global metric: The distances between all pairs of data points enter
the calculation, even if a given pair of data points is very far apart. This is problematic because
the Euclidian metric, which is often assumed, is typically only appropriate locally. For illustration
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Figure 1. Illustrative sketch in two dimensions.While the data space is two dimensional the data points (circles) cluster around
a one-dimensionalmanifold.While the Euclidian distance between pointsmay be a goodway to quantify close points it fails on
larger scales. For example, point A seems to be closer to B than to C in terms of Euclidian distance, but quantifying distance in
terms of distance along the manifold (which is likely the actual distance A would have to travel to ‘become like B’) reveals that
A is closer to C than to B.

consider figure 1. According to Euclidian distance A–B is shorter than the distance A–C. However,
if the points in the figure represented different OAs, the totality of the data suggests that if A
would develop in time to approach a state close to B it must pass close to C in the process. Thus
in a more natural metric the distance A–B is longer than the distance A–C. Such uncertainties
constitute a source of noise in the analysis. The effect of this noise gets more severe with increasing
dimensionality of the data [18] obscuring the salient information; a phenomenon is known as the
curse of dimensionality.

To address the issues above, Coifman et al. [19,20] proposed the diffusion map, which we
revisit in the remainder of this section. The diffusion map is a manifold learning method that
does not use information from distant pairs. We start by computing the distances between
all pairs of nodes, but then discard distance measurements that are too large to be trusted,
according to some properly chosen rule. The result of the procedure above can be visualized
as a network where nodes are data points and weighed links indicate the proximity of data
points that are mutually close. Several approaches are available for exploring the network using
a geometric embedding [24,25]. Diffusion maps discover its manifolds using a harmonic analysis.
For this purpose, one computes the eigenvalues and eigenvectors of a Laplacian matrix describing
the network. This matrix also governs the dynamics of random walks on the network, hence
the name diffusion map. As a result of this procedure, one obtains the Laplacian eigenvectors
and eigenvalues. The eigenvectors corresponding to the smallest positive eigenvalues encode
directions of large variation: Each vector has the dimensionality of a dataset, for example, in
our set of 3490 OAs, each eigenvector has 3490 entries, i.e. one for each output area. Thus an
eigenvector assigns a new variable to each OA. As shown in [19,20], these variables indicate the
location of an OA along the manifolds present in the data.

In summary, the analysis used in this paper consists of the following steps, which we now
describe in more detail:

(i) Standardize the data
(ii) Compute Euclidean distances between data points

(iii) Construct a similarity matrix
(iv) Threshold the similarity matrix
(v) Define a Laplacian matrix

(vi) Use the spectral properties of the Laplacian to map data points into low-dimensional
space spanning the manifolds.
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We begin with the data in a M × N matrix A, where M = 3490 is the number of OAs and N = 1450
is the number of census variables for each point.

First, we standardize all the columns of A, so that each variable has a mean of zero and a
standard deviation of 1. This is to ensure each variable is considered on the same scale in the
dataset. We obtain the standardized data matrix Â, the components of which are

Âmn = Amn − μn

σn
, (3.1)

where

μn =
∑

m Amn

M
(3.2)

and

σn =
√∑

m(Amn − μn)2

M
(3.3)

are, respectively, the mean and standard deviation of the nth column of A.
Second, each row of Â contains the coordinates of an OA in a N-dimensional space. We then

define a M × M distance matrix D, such that

Dij =
√∑

n
(Âin − Âjn)2 (3.4)

is the Euclidean distance between OAs i and j in the data space.
Third, we convert the distances between data points to similarity scores. We define the

similarity Cij between two data points i, j as

Cij = k(Dij), (3.5)

where k is a properly chosen kernel, here k(d) = 1/d. The diagonal elements Cii are set to zero. The
resulting similarity scores Cij form a M × M matrix C, in which high values now indicate close
similarity between the respective OAs.

Fourth, we threshold the data by setting most of the small entries of the similarity matrix C
to zero. As it is hard to define an absolute threshold of similarity, we use a heuristic procedure
in which an entry Cij is kept if it is among the top-10 highest similarity scores for either OA i or
OA j. Otherwise, it is discarded and set to zero. This ensures that each node in the network has at
least 10 links, while removing a large number of weak, low-similarity links, avoiding the curse of
dimensionality, described above. An additional benefit is that we are left with a sparse network
that is numerically more efficient to process.

Fifth, we construct the normalized Laplacian matrix, an M × M matrix defined by

Lij =

⎧⎪⎨
⎪⎩

1 for i = j,

− cij∑
n cnj

otherwise.
(3.6)

This matrix governs the dynamics of a discrete-time diffusion process of the network and is
closely related to the Laplacian matrix that describes, for instance, the response of a network
of masses and rods to a mechanical perturbation.

Sixth, we explore the structure of the dataset by computing the eigenvalues and eigenvectors
of L. Laplacian matrices are positive semi-definite matrices and thus the eigenvalues are either
positive or zero. The number of zero eigenvalues is identical to the number of components in
the network of data points. Thus there is always at least one zero eigenvalue. The corresponding
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eigenvector does not carry information and can be disregarded. If more than one zero eigenvalue
exists the network has become disconnected in the thresholding step. In this case, it is best to
repeat the analysis with less aggressive thresholding. In the investigation presented here, this
was not the case.

Of particular interest are the positive eigenvalues that are closest to zero as their corresponding
eigenvectors span the main directions of the manifolds in the data. In the following, we focus
particularly on the two eigenvectors with the smallest non-zero eigenvalues.

4. Results
We start by considering the smallest positive, and hence most important, Laplacian eigenvector.
As this vector assigns an entry to each of the OAs, we can visualize the eigenvector as a spatial
map where the results are colour-coded from the most positive to the most negative entry
(figure 2a).

We first note that this eigenvector is localized in certain OAs: There are a few areas (blues) where
the eigenvector has a strong positive entries, while elsewhere (reds) it is close to zero. Moreover,
the OAs where the eigenvector has a strong positive entries occur mainly in six large but relatively
sharply delineated patches, with the largest patch containing greater than 100 OAs.

The existence of large contiguous patches is the first mild indication that the diffusion map
picks up salient features of the dataset. Because no information on the spatial location of patches
or neighbourhood relationships between them is used, random or strongly noisy results would
lead to a random sprinkling of red and blue.

One limitation of the method is that it is not intuitive how the eigenvector emerges from the
original census variables. This limits our ability to attribute a meaning to the signal picked up
by the eigenvector. However, a human-intuitive meaning is discoverable if we take additional
information into account.

The six main patches that we identified show a very distinct pattern. Three of the six patches
coincide with university campuses, which are the University of West of England’s main campus
at Frenchay, the University of Bath and Bath Spa University. One additional patch corresponds
to Aztec West, a large technology park that maintains close links to regional universities. The
remaining two patches are the city centre area of Bristol, which is also home to the University of
Bristol, and the city centre of Bath where some departments of the University of Bath are located
and which has a high residential student population.

We conclude that the first eigenvector found by the diffusion map is localized on areas
that have a large residential population of university students. We corroborated this finding by
examining in detail some OAs which correspond to moderate eigenvector entries (light blue)
while not being directly part of one of the bigger clusters. All of these were also found to contain
university-related infrastructure, such as outlying halls of residence of the University of Bristol
and the University of West of England’s smaller Glenside campus. Moreover, all of the univerity’s
halls of residence fall within blue areas. We also verified that the centre of the nearby city of
Weston-super-Mare, which does not have a local university does not receive any significant entry
in the first eigenvector (not shown).

So far we have presented evidence for the hypothesis that the most important variable
extracted by the diffusion map is the density of university students. A notable drawback was that
this was not possible using automatic methods to arrive at this human-intuitive interpretation.
Visual inspection of maps and local knowledge was required to find that the eigenvector
identified universities. However, having local knowledge in one city (Bristol) we can now use
the information about the manifold in the data to try to locate the student population in a
different city.

As an example, we consider the city of Edinburgh, Scotland. The Scottish census is largely
similar to the census in England an Wales, but some questions are presented differently and subtle
differences also exist in the data management and aggregation. We confirmed that if we rerun the
diffusion map analysis, we obtain a result that is very similar to the results as for Bristol. However,
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(a) (b)

Figure 2. Diffusion eigenvectors locate the student population in Bristol and Edinburgh. (a) The smallest positive eigenvector
of the diffusion map is plotted on a map of Bristol using a colour scale from red (most negative entries) via white to blue
(most positive entries). High values of the eigenvector occur in areas with a dense student population including University of
Bristol and Bristol city centre (1), Bath Spa University (2), Bath city centre (3), University of Bath (4), University of Bristol Halls of
Residence (5), University ofWest of England FrenchayCampus (6), University ofWest of EnglandGlenside Campus (7), AztecWest
technology park (8). (b) Map of Edinburgh coloured in the corresponding colour of themost similar output area in Bristol. Again
blue areas coincide with the dense student population, including Heriott-Watt University (1), University of Edinburgh (2, points
at central halls of residence but university buildings are spread through a wider area nearby consistent with the eigenvector),
Queen Margaret University (3), Ministry of Defence University Officers Corps site (4) and to a lesser extent Fettes College (5).
Lighter colours in Edinburgh suggest the student population is less concentrated than it is in Bristol.

here we want to make the point that the results from Bristol can actually be used to understand
the structure of Edinburgh. For this purpose, we selected 231 variables by the criteria that their
identifying names in the England and Wales, and Scotland census could be easily matched. We
then assign to each OA in Edinburgh a value that is identical to the eigenvector entry of the OA in
Bristol to which it is most similar. Similarity is quantified by Euclidian distance in terms of the 231
selected variables, such that not every Bristol OA must have a match in Edinburgh and multiple
Edinburgh OAs can be assigned the value from a single Bristol OA.

Plotting the result on the map of Edinburgh (figure 2b) again reveals some localized areas
of very high entries (blue). Based on the results from Bristol (not using local information from
Edinburgh, apart from the census) our hypothesis is that these must be the areas with the densest
student population. We can now use local information to confirm this hypothesis. The OAs in
Edimburgh that receive the highest entries are on the campuses of Heriot–Watt University, the
University of Edinburgh, and Queen Margaret University. Other areas that receive significant
entries are on lively streets close to the University of Edinburgh, featuring a mix of residential
and university buildings; a ministry of defence site on which a university officers training corps
is located and an associated barracks area.

We also see some signal from the university eigenvector at Fettes College, a large private
boarding school. This serves as a reminder that the diffusion map does not pick out any
characteristic that is directly reflected in the census but a complex nonlinear combination of
different statistics, including age bracket, occupational status, household size and many more.
We were not able to confirm if large populations of boarding school students get consistently
picked up by the eigenvector as other similar schools in the area are located in heavily university
dominated OAs.

We now turn to the eigenvector corresponding to the second smallest positive eigenvalue.
Plotting this eigenvector reveals localization on a complex pattern of areas (figure 3a).
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(b)(a)

(c) (d)

Figure 3. The second diffusion eigenvector is an indicator of poverty. (a) Colour-coding the second smallest positive diffusion
eigenvector in Bristol highlights areas (blue) that coincide locations of social housing estates (yellow dots). Dots are based on a
report that covered only the Bristol unitary authority area (grey border), hence social housing estates in the rightmost part of
the map are picked up by the eigenvector but not marked with a dot. (b) OAs in London coloured with the colour of the most
similar Bristol area reveal an intricate pattern of rich and poor. (c) Rerunning the Bristol analysis without information on the
number of households renting from council reveals an eigenvector that is virtually unchanged. (d) By contrast, plotting only the
proportion of people living in social housing reveals a rougher picture, that shows a similar overall pattern with some notable
differences. Detailed analysis of the discrepancies in areas such KnowleWest (centre of bottom third of themap) shows that the
eigenvector is an indicator of economic deprivation that largely but not always coincides with council housing.

Based on local knowledge, we noted that the distribution of high-eigenvector-entry areas
correlates with the location of major council estates. In the UK council estates are, often purpose
built, social housing projects that provide affordable accommodation citizens that are not able
to afford housing at the market rate. In Bristol, council estates take a wide variety of forms
ranging from clusters of 1970s high-rise buildings to small semi-detached houses, originally built
for United States airmen in the 1940s.

To confirm the hypothesis that the second eigenvector (and hence the second most important
explanatory variable) in the Bristol census data is broadly related to poverty, we compared the
pattern from the diffusion map with a list of major estates from a council report [26]. While this
report covers only the Bristol unitary authority area and thus a smaller area than the eigenvector
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the correspondence between identified estates and the areas identified by the diffusion map is
very good.

Because council housing is widely recognized to be a major factor in the social fabric of
British cities this information is captured directly by the census, hence the number of households
‘renting from council’ (RFC) is one of the 1450 columns in the dataset. On the one hand, this
allows us to explore in greater detail if the second eigenvector is an indicator of poverty. On the
other hand, it raises the question if the diffusion map in this case only picks out information
that is straightforwardly provided in one column of the data matrix. To answer these questions,
we reran the diffusion map analysis on the Bristol data after removing the RFC information
from the dataset (figure 3c). In a separate plot, we show also the proportion of RFC households
directly from the census data (figure 3d). Comparing the original second eigenvector (figure 3a)
and the modified eigenvector without RFC (figure 3c) reveals that the eigenvectors remain
almost unchanged. Thus the result from the diffusion map is not strongly dependent on the
RFC column being present. Nevertheless, comparing the eigenvectors with the proportion RFC
(figure 3d) shows a strong resemblance between the eigenvectors and households RFC. Some
notable differences exist, of which we would like to discuss one in some more detail as we judge
it to be the most instructive.

In the Knowle West area of Bristol, the data show that only a moderate proportion of
households are RFC. However, Knowle West is one of the areas that is most strongly highlighted
by the diffusion map. The area was a modestly prosperous working-class neighbourhood until the
closure of a local factory in 1990 led to the loss 5000 jobs immediately, and an estimated further
20 000 through cascading effects [27]. In the early 2000s, the area was widely recognized as an
example of economic deprivation. It received extensive coverage in national news and provides
the backdrop for the novel Shawnie [28], highlighting the link between deprivation and anti-social
behaviour. At the time of the census, some properties in the area had been sold to the council to
provide social housing, while many other families remained in privately owned accommodation,
but suffered from widespread unemployment. Only considering the housing status thus
misses the intense economic deprivation existing in this area that is detected by the diffusion
eigenvector.

We conclude that the second diffusion eigenvector is an indicator of poverty, in the sense that
the eigenvector detects a direction that spans a major dimension of the census manifold in data
space for which poverty provides the right intuition. We emphasize that this dimension, identified
by the algorithm, is a complex nonlinear combination of many different statistics reflecting much
more of the census than just housing status or income level.

To test the accuracy of predictions, we explored a small area comprising the Southville and
Bedminster neighbourhoods of Bristol in greater detail. This area was chosen as it is very diverse
and has experienced a rapid improvement in the years following the 2011 census. The area
is also relatively close to the university which allowed us to explore it on foot and talk with
residents about the history of individual buildings. We were thereby able to identify major
council operated residential buildings (figure 4). Comparing the locations of these buildings to
the diffusion eigenvector shows very good agreement. We verified that most of the highlighted
areas outside the residential buildings is explained by green space and non-residential buildings
which are grouped into the same OAs as council housing. Thus for large residential buildings, the
eigenvector identifies poverty almost to a building-level accuracy.

Finally, we also used the results from Bristol to predict the pattern of poverty in central London.
Similarly to the Edinburgh example above we coloured the OAs in the areas using the eigenvector
entry using the most similar OA in the Bristol data. Because English census data were available
in this case we defined similarity using the Euclidian distance in the full 1450 dimensional data
space. The observed pattern meets the general expectations about the distribution of wealth in
the British capital, such as the affluent neighbourhoods in Mayfair and Belgravia, with more
poorer areas south of the river Thames. Interesting smaller details include, for example, the
strong differences between the rich financial district at Canary Wharf and adjacent economically
deprived areas on the Isle of Dogs. Another contrast, also picked up by the diffusion map, is
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Figure 4. Zooming into smaller areas reveals that for larger residential buildings the eigenvector offers almost building-level
accuracy. Areas highlighted by the eigenvector (blue) coincide well with large social housing complexes (yellow outlines). Also,
a hospital and a social home for the elderly (green outlines, top and bottom, respectively) are highlighted by the eigenvector

the difference between more deprived areas of the Golden Lane Estate and the Barbican, a rare
example that is commonly described as a middle-class council estate [29].

5. Discussions and conclusion
In this paper, we used diffusion maps to find the social variables that explain the main variation
in the census responses in the city of Bristol and the surrounding countryside. This demonstrates
that diffusion maps can be used to discover major social dimensions of the urban fabric in freely
available data.

Recently, other notable methods have been presented that are alternatives to the harmonic
analysis used to produce the low-dimension, geometric representations of network structure in
diffusion maps [25,30]. Some of these advances are already being applied to analyse cities [31].
We expect that these methods could be applied to census data to find the results of similar quality.

Our results show that the density of university students and economic deprivation are the
two most important explanatory variables spanning the manifold of census responses in a typical
British city. These variables emerge as complex nonlinear combinations of many different statistics
captured by the census.

We also showed that the information on the manifolds learned from the Bristol data can be
used to detect features such as university infrastructure and economically deprived areas in other
cities, suggesting that the social variation observed in Bristol is sufficient to extract variables that
are also informative for other British cities.

The diffusion map is a particularly attractive method for these types of analysis because it
offers high-quality results and is based on a strong physical intuition that leaves almost no free
parameters. In our analysis, the only parameter that could be varied is the number of links per
node that are retained in the thresholding. For this parameter, clear constraints exist, because we
want to reduce the number of links without disconnecting the network of datapoints. Within these
constraints we found the predictions of the diffusion map to be reasonably robust. The diffusion
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map thus constitutes a method that allows analysis of census datasets without introducing any
biases except those inherent in the selection of census questions.

In the analysis of social data, it is a persistent problem that human intuition is needed to
interpret and verify results. A critic can thus argue that an intuitive result is not new, and an
unintuitive one not true. While the method proposed here does not entirely solve this problem,
some progress has been made: Our results show that independent of human interpretation,
there are coherent structures in the census that act as major explanatory variables. While human
intuition is still necessary to attach the labels ‘students’ and ‘deprivation’ to these structures, the
results show that the structures have a reality which is independent of these labels, and are not
just a product of interpretation.

Because we establish the reality of a structure in the census, attaching a specific label to this
structure then amounts to formulating a testable hypothesis.

Another advantage of the diffusion map is that it not only identifies but also ranks the
discovered variables. Although one might have expected deprivation to feature prominently in
this analysis (we did not), it is perhaps a surprise that we find that students to have an even
greater explanatory power. We caution, however, that this may be due to the census containing
many questions that would be answered similarly by students. In contrast to the students and
deprivation, exam ethnic origin, for example, did not stand out as among the major eigenvectors.

In this paper, we have focused almost entirely on the two leading eigenvectors identified by
the diffusion map. Variables are identified by eigenvectors of the diffusion map because they
induce coherent responses to census questions. Subsequently, we are convinced that many more
eigenvectors provide salient information. However, the large amount of work required to produce
and verify a hypothesis on the source of coherent responses for each eigenvector, means that their
analysis exceeds the scope of the present paper.

We conclude that there is a large untapped potential for diffusion map analysis of census data.
Even within the Bristol dataset there many more eigenvectors remain to be explored. But the
diffusion map methodology can easily scale to much bigger datasets, such as the entirety of the
England and Wales census dataset. In addition, similar rich and finely resolved census datasets
are freely available for many nations.
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