
Biogeosciences, 20, 3717–3735, 2023
https://doi.org/10.5194/bg-20-3717-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Alkalinity biases in CMIP6 Earth system models and implications
for simulated CO2 drawdown via artificial alkalinity enhancement
Claudia Hinrichs1,a, Peter Köhler1, Christoph Völker1, and Judith Hauck1

1Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
anow at: Federal Maritime and Hydrographic Agency (BSH), 20359 Hamburg, Germany

Correspondence: Claudia Hinrichs (claudia.hinrichs@bsh.de)

Received: 4 February 2023 – Discussion started: 9 February 2023
Revised: 7 July 2023 – Accepted: 29 July 2023 – Published: 15 September 2023

Abstract. The partitioning of CO2 between atmosphere and
ocean depends to a large degree not only on the amount
of dissolved inorganic carbon (DIC) but also on alkalinity
in the surface ocean. That is also why ocean alkalinity en-
hancement (OAE) is discussed as one potential approach in
the context of negative emission technologies. Although al-
kalinity is thus an important variable of the marine carbon-
ate system, little knowledge exists on how its representation
in models compares with measurements. We evaluated the
large-scale alkalinity distribution in 14 CMIP6 Earth sys-
tem models (ESMs) against the observational data set GLO-
DAPv2 and show that most models, as well as the multi-
model mean, underestimate alkalinity at the surface and in
the upper ocean and overestimate it in the deeper ocean. The
decomposition of the global mean alkalinity biases into con-
tributions from (i) physical processes (preformed alkalinity),
which include the physical redistribution of biased alkalin-
ity originating from the soft tissue and carbonates pumps;
(ii) remineralization; and (iii) carbonate formation and dis-
solution showed that the bias stemming from the physical
redistribution of alkalinity is dominant. However, below the
upper few hundred meters the bias from carbonate dissolu-
tion can gain similar importance to physical biases, while the
contribution from remineralization processes is negligible.
This highlights the critical need for better understanding and
quantification of processes driving calcium carbonate disso-
lution in microenvironments above the saturation horizons
and implementation of these processes into biogeochemical
models.

For the application of the models to assess the poten-
tial of OAE to increase ocean carbon uptake, a back-of-
the-envelope calculation was conducted with each model’s

global mean surface alkalinity, DIC, and partial pressure of
CO2 in seawater (pCO2) as input parameters. We evaluate
the following two metrics: (1) the initial pCO2 reduction at
the surface ocean after alkalinity addition and (2) the uptake
efficiency (ηCO2) after air–sea equilibration is reached. The
relative biases of alkalinity versus DIC at the surface affect
the Revelle factor and therefore the initial pCO2 reduction
after alkalinity addition. The global mean surface alkalinity
bias relative to GLODAPv2 in the different models ranges
from −85 mmol m−3 (−3.6 %) to +50 mmol m−3 (+2.1 %)
(mean: −25 mmol m−3 or −1.1 %). For DIC the relative
bias ranges from −55 mmol m−3 (−2.6 %) to 53 mmol m−3

(+2.5 %) (mean: −13 mmol m−3 or −0.6 %). All but two of
the CMIP6 models evaluated here overestimate the Revelle
factor at the surface by up to 3.4 % and thus overestimate
the initial pCO2 reduction after alkalinity addition by up to
13 %. The uptake efficiency, ηCO2, then takes into account
that a higher Revelle factor and a higher initial pCO2 reduc-
tion after alkalinity addition and equilibration mostly com-
pensate for each other, meaning that resulting DIC differ-
ences in the models are small (−0.1 % to 1.1 %). The over-
estimation of the initial pCO2 reduction has to be taken into
account when reporting on efficiencies of ocean alkalinity
enhancement experiments using CMIP6 models, especially
as long as the CO2 equilibrium is not reached.

1 Introduction

Since preindustrial times the ocean has taken up about a quar-
ter of the anthropogenic CO2 emitted into the atmosphere
(Friedlingstein et al., 2022). The exact amount of ocean CO2
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uptake is determined by the surface ocean carbonate system,
which can be largely described by the amount of dissolved
inorganic carbon (DIC) and total alkalinity (TA) in the sur-
face ocean (Zeebe and Wolf-Gladrow, 2001). Total alkalinity
is a measure of the excess of bases (proton acceptors) over
acids (proton donors) and plays a central role in determining
the partitioning of the DIC pool into its three chemical com-
ponents, aqueous CO2 and bicarbonate (HCO−3 ) and carbon-
ate (CO2−

3 ) ions. Aqueous CO2 is the only of the three marine
carbonate species that can exchange with the atmosphere.
Once in the ocean, most of the additional CO2 taken up is
converted into the two other carbonate species. By chang-
ing the chemical equilibria between the carbonate species,
the ocean carbon uptake leads to ocean acidification with a
decrease in pH. This change in the chemical equilibria also
reduces the seawater buffer capacity, i.e., the ability of sea-
water to resist a change in its carbonate chemistry. The Rev-
elle factor, as a measure of this buffer capacity, is the sensi-
tivity of relative pCO2 (partial pressure of CO2 in seawater)
change to relative changes in DIC and depends both on DIC
and TA. A low Revelle factor indicates a high buffering ca-
pacity and vice versa (Revelle and Suess, 1957; Middelburg
et al., 2020). The lower the Revelle factor, the more DIC oc-
curs as CO2−

3 and pCO2 levels in the ocean are lower. This
allows the ocean to take up more CO2, which in turn also
lowers atmospheric pCO2 (Egleston et al., 2010). Overall,
the buffer capacity implies that the resulting change in pH
and CO2 from the same process, e.g., carbonate dissolution,
differs depending on the background conditions in TA and
DIC (Middleburg et al., 2020). Any changes in pH and CO2
would be smaller in low-sensitivity or well-buffered seawater
with a high TA : DIC ratio (low Revelle factor). That is why it
is important that Earth system models (ESMs) simulate rea-
sonable initial states of TA and DIC when they are used to
quantify the potential CO2 uptake of the ocean.

In 2015, the “Paris Agreement” was adopted by 196 gov-
ernments at the Conference of the Parties 21 (COP21). Its
goal is to restrict human-induced global warming to well
below 2 ◦C, preferably to 1.5 ◦C, compared to preindustrial
levels. To accomplish this goal, the signing countries aim to
reach peak emissions as quickly as possible and to achieve
carbon neutrality by the mid-21st century. This goal is likely
not achievable through carbon emission reductions alone ac-
cording to socio-economic scenario simulations with inte-
grated assessment models (Rogelj et al., 2018). The IPCC
Special Report on Global Warming of 1.5 ◦C states that
all (most) projected pathways that limit warming to 1.5 ◦C
(2 ◦C) also require use of carbon dioxide removal (CDR)
or negative emission technologies (NETs) on the order of
100–1000 Gt CO2 over the 21st century (Rogelj et al., 2018).
Existing and potential CDR measures are afforestation and
reforestation, land restoration and soil carbon sequestration,
bioenergy with carbon capture and storage (BECCS), direct
air carbon capture and storage (DACCS), enhanced weather-

ing, and ocean alkalinization (Gattuso et al., 2018; de Con-
inck et al., 2018; National Academies of Sciences, Engineer-
ing, and Medicine, 2019, 2022). So far, much research has fo-
cused on land-based CDR measures, and it has become clear
that it would be extremely difficult to limit global warming
to the agreed level with land-based NETs alone (Fuss et al.,
2018; Lawrence et al., 2018; Smith et al., 2016).

Less is known about ocean-based NETs, although some
of them appear promising, especially with respect to the po-
tential scale of application (Gattuso et al., 2018; GESAMP,
2019). One promising pathway could be ocean alkalinity en-
hancement (OAE; Köhler et al., 2013; Renforth and Hen-
derson, 2017). This method is an accelerated version of the
natural process of silicate weathering, where alkaline miner-
als can be mined and crushed (e.g., olivine) or created (e.g.,
lime) and added to the surface ocean. Alternatively, alkaline
solutions from electrochemical weathering can be added. In
both scenarios, the alkalinity of the upper ocean is increased
and with it the carbon storage capacity of seawater, which
leads to an increased uptake of CO2 from the atmosphere.
Aside from lab experiments (Hartmann et al., 2023) and first
results from microcosm experiments (Ferderer et al., 2022),
these OAE applications are untested at larger scales, meaning
that simulations with state-of-the-art ESMs are essential for
assessing the efficiency and biogeochemical implications of
ocean alkalinization. Previous model experiments have pro-
vided first estimates of the efficiency for idealized experi-
ment setups (e.g., Ilyina et al., 2013; Köhler et al., 2013;
Keller et al., 2014; Hauck et al., 2016; González and Ily-
ina, 2016; Lenton et al., 2018; Burt et al., 2021). Although
these modeling studies have suggested that OAE may be a vi-
able method to help reduce atmospheric CO2, the results are
difficult to compare due to different experimental designs.
Another caveat is that previous estimates of OAE efficiency
and side effects were based on single-model experiments and
did not include a thorough assessment of simulated alkalinity
and model dependence of the results. Now, more and more
projects are underway or in planning that seek to apply more
realistic scenarios for OAE, e.g., in regional OAE applica-
tions (Butenschön et al., 2021; Wang et al., 2023) or coastal
applications (Feng et al., 2017; He and Tyka, 2023), which
is why a model evaluation is even more important. Further-
more, the development of standards for monitoring, report-
ing, and verification (MRV) methods for real-world OAE ap-
plications is currently underway and it is becoming clear that
numerical simulations are required to fulfill these MRV re-
quirements because of the complexity of the carbonate sys-
tem and the insufficient maturity of observational sensors
(Ho et al., 2023; Bach et al., 2023). Therefore, the contin-
uous development of suitable, carefully validated models is a
critical part of this effort (Ho et al., 2023).

There have been a number of studies that evaluate the
simulation of ocean biogeochemical parameters in state-of-
the-art ESMs that contributed to CMIP6, the sixth phase
of the Coupled Model Intercomparison Project (Eyring et
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al., 2016), but did not include the evaluation of alkalinity
(Séférian et al., 2020; Tagliabue et al., 2021; Kwiatkowski et
al., 2020) or if they did then only with one global score num-
ber (Terhaar et al., 2022; Fu et al., 2022). The recent study
by Planchat et al. (2023) assessed simulated alkalinity and
parameters related to the carbonate pump in CMIP6 mod-
els and their predecessor CMIP5 versions. They report an
improvement in the representation of alkalinity and the car-
bonate pump in CMIP6 versus CMIP5. While some models
did increase in complexity, they find that potential effects of
future ocean changes (e.g., ocean acidification) are not well
constrained in many models.

Here, we present further analyses of biases in alkalinity
and DIC in CMIP6 models. We show how those biases can
be attributed to the ocean’s physical, soft-tissue, or carbonate
counter pump following Koeve et al. (2014). Furthermore,
we provide an estimate of each model’s carbonate system
sensitivity to OAE depending on their alkalinity and DIC bias
in historical simulations.

2 Methods

2.1 CMIP6 models and observational data products

Our evaluation includes 14 ESMs with ocean biogeochem-
istry modules from 10 modeling centers that contributed
to CMIP6 and that provided most of the following vari-
ables: “dissic” (DIC [mol m−3]), “no3” (nitrate concen-
tration [mol m−3]), “o2” (dissolved oxygen concentration
[mol m−3]), “ph” (seawater pH on total scale), “po4” (phos-
phate concentration [mol m−3]), “so” (salinity (S) [g kg−1]),
“talk” (TA [mol m−3]), and “thetao” (potential temperature
[◦C]), see Table 1.

For the 14 CMIP6 ESMs, monthly data from one ensemble
member (see Table 1) of the historical simulation were down-
loaded from the CMIP6 archive (https://esgf-data.dkrz.de,
last access: 8 March 2022), post-processed, and regridded
with bilinear remapping onto a common 1◦× 1◦ grid using
Climate Data Operators (CDO, Schulzweida, 2022). TA is
often normalized (TAn) with salinity to exclude the freshwa-
ter effect in the alkalinity assessment (Millero et al., 1998;
Fry et al., 2015). Salinity normalization of alkalinity was
achieved by using a reference salinity of 35 g kg−1. Grid
points with a salinity smaller than 10 were masked to avoid
very high TAn values, e.g., from the Baltic Sea:

TAn =
TA
S
× 35, (1)

with S being the grid point salinity. The present-day (1995–
2014) model climatologies from the historical simulations
are evaluated against gridded observational products: (i) TA,
DIC, and pH from the GLODAPv2.2016b Mapped Clima-
tology (in the following GLODAP, Lauvset et al., 2016);
(ii) oxygen and nutrients from the World Ocean Atlas 2018

data set (WOA, Garcia et al., 2019) and GLODAP (not
shown); and (iii) salinity and temperature from the Polar
science center Hydrographic Climatology (PHC3.0, Steele
et al., 2001) and WOA (not shown). For the evaluation of
global mean vertical profiles, the model data are interpolated
onto the same 33 vertical levels used in the GLODAP clima-
tology. For the purpose of model assessment, the GLODAP
TA and DIC data are converted from units of µmol kg−1 to
mmol m−3 using the potential density computed from GLO-
DAP salinity and temperature data.

2.2 Analysis of the vertical distribution of total
alkalinity – the TA∗ method

In order to better understand the vertical distribution of mod-
eled alkalinity compared to the observed one, we follow the
“TA∗ method” as described by Koeve et al. (2014). This
method aims to separate the effects of biogeochemical pro-
cesses and ocean circulation on the distribution of TA. To
achieve this, TA is separated into three components: pre-
formed TA (TA0), TA decrease from remineralization of or-
ganic matter (TAr), and TA increase due to calcium carbonate
(CaCO3) formation and dissolution (TA∗):

TA= TA0
+TA∗− TAr

[mmolm−3
]. (2)

Preformed TA represents the TA of a water parcel when it
was last in contact with the atmosphere. This preformed TA
is derived by applying multi-linear regression of upper-ocean
(here the top 100 m) salinity, potential temperature, and PO
onto upper ocean TA values for each model. PO is a con-
servative water-mass tracer analog to NO in Broecker (1974)
where

PO= O2+ r−O2 :PO4 ·PO4, (3)

with r−O2 :PO4 = 170 (Koeve et al., 2014). The obtained re-
gression coefficients are then applied to salinity, potential
temperature, and PO everywhere in the interior ocean to
compute the model’s TA0 at any location. This preformed
alkalinity also includes the physical redistribution of alkalin-
ity biases stemming originally from soft tissue and carbonate
pumps and the upwelling of water masses with biased alka-
linity.

The TAr term describes the reduction in TA stemming
from the remineralization of organic matter. This term can
be described as a function of the simulated apparent oxygen
utilization (AOU, Garcia and Levitus, 2006):

TAr
= rAlk :NO3 · rNO3 : −O2 ·AOU, (4)

with rAlk :NO3 = 1.26, rNO3 : −O2 = 1/10.625 (Koeve et al.,
2014), and AOU as the difference between oxygen saturation
computed following Weiss (1970) and oxygen concentration
O2.

Lastly, the contribution from carbonate formation and dis-
solution, TA∗, is computed as the residual after rearranging
Eq. (2).
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Table 1. Overview of CMIP6 models considered in this study listing the climate model name and description paper, the model ocean
component, the model biogeochemistry component, horizontal grid resolution, number of vertical levels, the ensemble member considered,
and the data reference

CMIP6 ESM Ocean model Ocean
biochem.
model

Ocean horizontal
resolution (long× lat)

Ocean
vertical
levels

Member
(data set reference)

ACCESS-ESM-1.5
(Ziehn et al., 2020)

MOM5 WOMBAT 360× 300
(tripolar, ∼ 1◦)

50 r11i1p1f1
(Ziehn et al., 2019)

CanESM5
(Swart et al., 2019b)

NEMO3.4 CMOC 361× 290
(tripolar, ∼ 1◦)

45 r11i1p1f1
(Swart et al., 2019a)

CESM2
(Danabasoglu et al., 2020)

POP2 MARBL 320× 384 (∼ 1◦) 60 r11i1p1f1
(Danabasoglu, 2019a)

CESM2-WACCM
(Danabasoglu et al., 2020)

POP2 MARBL 320× 384 (∼ 1◦) 60 r11i1p1f1
(Danabasoglu, 2019b)

CNRM-ESM2-1
(Séférian et al., 2019)

NEMO3.6 PISCESv2-gas 362× 294
(tripolar, ∼ 1◦)

75 r11i1p1f2
(Seferian, 2018)

GFDL-CM4
(Held et al., 2019;
Dunne et al., 2020a)

MOM6 GFDL-
BLINGv2

1440× 1080
(tripolar, ∼ 0.25◦)

75 r11i1p1f1
(Guo et al., 2018)

GFDL-ESM4
(Dunne et al., 2020b)

MOM6 GFDL-
COBALTv2

720× 576
(tripolar, ∼ 0.5◦)

75 r11i1p1f1
(Krasting et al., 2018)

IPSL-CM6A-LR
(Boucher et al., 2020)

NEMO-OPA PISCESv2 362× 332
(tripolar, ∼ 1◦)

75 r11i1p1f1
(Boucher et al., 2018)

MPI-ESM1-2-HR
(Müller et al., 2018;
Mauritsen et al., 2019)

MPIOM1.63 HAMOCC6 802× 404 (∼ 0.4◦) 40 r11i1p1f1
(Jungclaus et al., 2019)

MPI-ESM1-2-LR
(Mauritsen et al., 2019)

MPIOM1.63 HAMOCC6 256× 220 (∼ 1.5◦) 40 r11i1p1f1
(Wieners et al., 2019)

MRI-ESM2-0
(Yukimoto et al., 2019a)

MRI.COM4.4 MRI.COM4.4 360× 364
(tripolar, ∼ 1◦)

61 r1i2p1f1
(Yukimoto et al., 2019b)

NorESM2-LM
(Tjiputra et al., 2020)

MICOM iHAMOCC 360× 384 (∼ 1◦) 70 r2i1p1f1
(Seland et al., 2019)

NorESM2-MM
(Tjiputra et al., 2020)

MICOM iHAMOCC 360× 384 (∼ 1◦) 70 r2i1p1f1
(Bentsen et al., 2019)

UKESM1-0-LL
(Sellar et al., 2019)

NEMO-
HadGEM3-
GO6.0
(eORCA1)

MEDUSA2 360× 330
(tripolar,∼ 1◦)

75 r1i1p1f2
(Tang et al., 2019)

We applied the TA∗ method to 10 of 14 CMIP6
ESMs (CNRM-ESM2-1, GFDL-CM4, GFDL-ESM4, IPSL-
CM6A-LR, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-
ESM2-0, NorESM2-LM, NorESM2-MM, and UKESM1-0-
LL), which had the necessary output fields (“talk”, “so”,
“thetao”, “o2”, and “po4”).

2.3 Theoretical model sensitivity to alkalinity
enhancement

Systematic biases in TA and DIC have implications for a
model’s theoretical carbonate system sensitivity to added
alkalinity during OAE. Thus, differences in ocean carbon
uptake and pH increase may occur. In order to evalu-
ate the range of this carbonate system sensitivity we con-
ducted back-of-the-envelope-calculations for all ESMs and
the GLODAP data set using the MATLAB toolbox CO2SYS
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(Lewis and Wallace, 1998; van Heuven et al., 2011). This
toolbox, from any combination of two out of five variables
(DIC, TA, pH, pCO2, fCO2), computes the values of the
missing variables and derived quantities. Here, we use the
time and area-weighted mean surface TA and DIC (Fig. 1)
converted from mmol m−3 to µmol kg−1 with a density of
1026 kg m−3; see Table S1 in the Supplement for input val-
ues. Additionally, we use the following values for the com-
putation of the models’ carbonate systems: salinity of 34.0,
potential temperature of 15 ◦C, silicic acid of 2 µmol kg−1,
and phosphate of 1 µmol kg−1. Gas exchange with the at-
mosphere is not considered in any of our theoretical calcu-
lations. First, we evaluate the CO2SYS output fields Rev-
elle factor, pH, and pCO2 for the CMIP6 ESMs against the
values for the GLODAP data. In a second step, we assess
the initial changes in surface pCO2 and pH after an addi-
tion of 100 µmol kg−1 TA (corresponds to 102.6 mmol m−3

TA) while keeping DIC constant. In a third step, we evalu-
ate the CO2 uptake efficiency (ηCO2) (Renforth and Hender-
son, 2017; Tyka et al., 2022) and the pH difference at con-
stant pCO2, which simulates completed air–sea CO2 equili-
bration. Note that the latter calculation has an ocean-centric
perspective as it assumes constant atmospheric CO2, which
contradicts the motivation for OAE to reduce atmospheric
CO2, and thus it will only be valid for small-scale appli-
cations. The uptake efficiency metric has been previously
applied in ocean model simulations with constant and non-
interactive atmospheric CO2 (Tyka et al., 2022; He and Tyka,
2023). We follow this approach here in our idealized calcula-
tions while acknowledging that atmospheric CO2 would drop
in emission-driven simulations (magnitude dependent on the
amount of alkalinity added; González et al., 2018; Lenton et
al., 2018; Köhler, 2020), as in the real world, through feed-
backs with the atmosphere and the land biosphere (Oschlies,
2009). The assumption of constant atmospheric CO2 (and
thus constant surface ocean pCO2) was shown to overes-
timate oceanic CO2 uptake by 2 % on an annual timescale
but by 25 % on a decadal timescale and further increasing on
longer timescales (Oschlies, 2009).

The uptake efficiency, ηCO2, is the ratio of moles of CO2
absorbed to moles of added alkalinity and can also be ex-
pressed as the ratio of the partial pressure sensitivities of
pCO2 with respect to TA and to DIC (Tyka et al., 2022; He
and Tyka, 2023):

ηCO2 =
1DIC
1TA

= −

∂pCO2
∂TA
∂pCO2
∂DIC

. (5)

For the uptake efficiency at constant pCO2, the
1DIC was also computed using CO2SYS, here with
TA+ 100 µmol kg−1 and the initial pCO2 as input parame-
ters.

3 Results

3.1 Analysis of CMIP6 alkalinity and DIC

The comparison of the models’ simulated TA at the ocean
surface to the GLODAP climatology shows that – on a global
scale – most models underestimate surface TA and DIC,
except for four models, CanESM5, GFDL-CM4, GFDL-
ESM4, and MRI-ESM2-0, which simulate too much TA
and DIC at the surface (Figs. 1, 2). The multi-model mean
(MMM) is only slightly negatively biased (Figs. 1, 2). Global
mean surface TA and DIC biases are strongly correlated
(R = 0.99, Fig. 1). Near-surface TA is strongly correlated
with salinity, and upper-ocean salinity is governed by fresh-
water fluxes, e.g., precipitation and evaporation (Millero et
al., 1998), and river flows (Cai et al., 2010). Overall, the com-
parison of salinity-normalized TAn to GLODAP data shows
bias patterns very similar to those of TA for all models. Most
notably, some regional peculiarities that stem from salinity
biases rather than biogeochemical processes are smoothed
out (e.g., North Atlantic bias in NorESM; see Fig. S1 in the
Supplement).

The vertical profiles of globally averaged TA and normal-
ized TAn (Fig. 3) show the aforementioned distribution of
the CMIP6 models’ surface biases as well, with most of the
models showing less surface TA than GLODAP. The models
mostly reproduce the features of the observed TA depth pro-
file: the surface minimum, the subsurface maximum of TA,
another minimum at around 500 m depth and the increase
in TA with deeper depth (Fig. 3a). Two models of the same
family (MPI-ESM1-2-LR and MPI-ESM1-2-HR) have less
TA than the GLODAP product over the whole water column,
and two models (GFDL-CM4 and GFDL-ESM4) have higher
TA overall. This indicates that their global inventory of TA is
too low (too high) compared to GLODAP. The explanation
for the systematic low bias in the MPI model seems to be
that too much TA was lost to the sediments during the model
spin up (Koeve et al., 2014; Planchat et al., 2023). The high
TA bias in the GFDL ESMs was apparently introduced in the
post-processing step during the unit conversion from gravi-
metric (µmol kg−1) to volumetric data (mmol m−3, common
SI unit). The unit conversion is usually based on a chosen
density value, which is not prescribed in modeling proto-
cols. While most models chose a value between 1024 and
1028 kg m−3, the modeling group at GFDL apparently con-
verted the units using a value of 1035 kg m−3 (Planchat et al.,
2023). The profiles of the other models show either too little
TA at the surface and too much at depth or vice versa, indi-
cating that their TA inventory is closer to the observed one
but that the TA distribution in the water column differs from
the observations. Salinity normalization generally does not
change the bias patterns (Fig. 3b). The salinity normalization
does affect the shape of the profiles in the upper ocean. The
surface minima and the subsurface maxima seen in TA disap-
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Figure 1. Global mean surface DIC [mmol m−3] versus TA [mmol m−3] of the 14 CMIP6 ESMs, the multi-model mean (MMM), and
GLODAP including its error estimate.

pear. Those features are essentially related to the upper-ocean
salinity distribution.

The near-surface TA maximum seen in the global profile
is also evident in the Atlantic, Pacific, and Indian oceans
(Fig. 4). The high TA is related to the salinity maxima of
subtropical underwater in the respective basins (Talley, 2002)
and all models replicate this pattern. In the Atlantic Ocean, a
TA minimum can be observed in the GLODAP data at around
800 m depth, which represents Antarctic Intermediate Water
in the South Atlantic (low salinity) (Takahashi et al., 1981).
This minimum is not well reproduced by the ESMs, refer-
ring to circulation biases. The relatively low TA in the deep
Atlantic Ocean (compared to the Pacific and Indian oceans)
between 1500 and 3500 m depth and the small gradient with
depth are linked to North Atlantic Deep Water (NADW).
Most models reproduce this pattern, while the CNRM, IPSL,
and UK ESMs simulate a strong increase in TA below about
2000 m depth (Fig. 4b). Those three ESMs have a NEMO
ocean model in common. The profile shapes in the Southern
Ocean and Arctic Ocean are generally reproduced in terms of
the TA gradients with depth, although the biases in absolute
amount of TA present are visible here as well.

The surface DIC patterns compared to GLODAP show
very similar patterns to those for TA in both gen-
eral direction and local distribution (Fig. 5). The global
mean surface biases in TA compared to GLODAP range
from −85 mmol m−3 (−3.6 %) to +50 mmol m−3 (+2.1 %),
where the MMM bias is −25 mmol m−3 (−1.1 %), and
for the global mean surface DIC the biases range from
−55 mmol m−3 (−2.6 %) to 53 mmol m−3 (+2.5 %), with
the MMM bias being −13 mmol m−3 (−0.6 %). TA biases

likely lead DIC biases, as DIC can adjust through gas ex-
change of CO2 to maintain a surface chemical equilibrium
with the atmospheric CO2 concentration. Models with higher
TA have higher DIC values and vice versa. We next investi-
gate the origin of the models’ alkalinity biases.

3.2 Decomposition of the vertical alkalinity biases

The goal of the TA∗ method (Koeve et al., 2014) is to sep-
arate the TA bias into contributions from (1) an inadequate
representation of ocean physics or forcings (e.g., circulation,
freshwater flow, evaporation, and precipitation), (2) the pa-
rameterization of calcium carbonate (CaCO3) formation and
dissolution, and (3) the parameterization of organic matter
remineralization processes. The first part, preformed alkalin-
ity, includes the advection and upwelling of already biased
water masses.

The decomposition of the TA biases (Fig. 6a) shows that
in the upper 1 km most of the models’ alkalinity biases are
due to their preformed TA (Fig. 6b). Per definition, mod-
els with a negative surface TA bias have a negative bias in
preformed TA. Below about 1000 m depth, TA0 stays con-
stant with depth. TA biases from the representation of or-
ganic matter remineralization processes are on the order of 5
to 10 mmol m−3 and play only a negligible role in absolute
terms (Fig. 6c). The bias in TA from calcium carbonate disso-
lution in the interior ocean (Fig. 6d) can in absolute terms be
comparable to or even larger than the bias in preformed TA.
The MRI model and the GFDL models have a small negative
bias in TA∗ on the order of ∼ 10–20 mmol m−3 that is rel-
atively constant with depth. The MPI and NorESM models
have a slight positive TA∗ bias on about the same order of
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Figure 2. Surface distribution of TA in GLODAP (top left), its error estimate (top center), and the CMIP6 multi-model-mean (MMM) bias
(top right), as well as the respective biases of the ESMs.
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Figure 3. Vertical profiles of global mean TA (a) and TAn (b) of the CMIP6 ESMs, the multi-model-mean (MMM), and GLODAP (black)
with error estimate (grey shading).

Figure 4. Global mean TA profiles for the major ocean basins. Color assignment is the same as in Fig. 3.
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Figure 5. Surface distribution of DIC in GLODAP (top left), its error estimate (top center), and the CMIP6 multi-model mean (MMM) bias
(top right), as well as the respective biases of the ESMs.
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magnitude that is also relatively constant with depth, while
the UKESM, the CNRM-ESM, and the IPSL-ESM exhibit
TA∗ biases that increase with depth. The CNRM model has
the largest TA∗ bias, with about 100 mmol m−3 at 4000 m
depth. CNRM-ESM2-1 and IPSL-CM6A-LR both contain
the same ocean model (NEMO) and the same biogeochem-
ical model (PISCESv2). Dissolution in PISCESv2 is treated
explicitly and is dependent on the calcite saturation state, and
the sinking speed for particulate inorganic carbon (PIC) is
depth-dependent, while for other models the sinking speed
is constant. In two of the models (of Fig. 6d), MRI-ESM2-0
and UKESM1-0-LL, CaCO3 is dissolved without a sediment,
while the other models do have explicit sediment treatments
where CaCO3 is buried or dissolved, depending on either the
calcite saturation state or a set rate (Planchat et al., 2023).
A direct link of the treatment of CaCO3 at the bottom to the
bias at depths is not obvious in this case.

3.3 Impact of biases on OAE efficiency

Biases in simulated surface TA and DIC have implications
for the individual models’ efficiency of OAE. By causing bi-
ases in the Revelle factor, they also result in biases in initial
surface ocean pCO2 reduction after alkalinity addition, and
final pCO2 values after equilibration with the atmosphere
might differ. In order to evaluate the range of this sensitiv-
ity, a back-of-the-envelope calculation was conducted using
the ESMs’ surface TA, DIC, pCO2, and an alkalinity addi-
tion of 100 µmol kg−1 to calculate the full carbonate system
before and immediately after alkalinity enhancement and af-
ter assumed air–sea equilibration (see Sect. 2.3). The results
from this calculation (Fig. 7b, d, e, f, g, h, i), together with
the initial, unperturbed TA and TA–DIC ratios (Fig. 7a, c),
are assessed for the ESMs and the MMM against the respec-
tive values for GLODAP.

The global mean Revelle factor from the CO2SYS com-
putation for the GLODAP data set (10.19) is the third low-
est in our compilation, and thus almost all ESMs have a
higher Revelle factor than the GLODAP data, ranging from
10.18 to 10.54 (Fig. 7b). The Revelle factor is anti-correlated
to the average TA–DIC ratio (R =−0.99, Fig. 7c). In ad-
dition, the order of surface pH (R =−0.96, Fig. 7g) and
pCO2 (R = 0.97, Fig. 7d) values corresponds largely to each
model’s rank in Revelle factor (and thus also with the TA–
DIC ratio). Models with a higher Revelle factor than GLO-
DAP have a lower buffer capacity, which leads to already
higher pCO2 values (290 to 314 µatm) and lower pH (8.12 to
8.17) than in GLODAP (pCO2: 292 µatm; pH: 8.16). Those
models also show a greater initial reduction in surface ocean
pCO2 for the hypothetical addition of 100 µmol kg−1 of TA
(R =−0.99, Fig. 7e) than GLODAP (−92 µatm), ranging
from a 91 µatm to a 104 µatm decrease in pCO2. Models with
a higher Revelle factor also have a higher uptake efficiency,
ηCO2 (R = 0.98, Fig. 7f). The initial change in pH after al-
kalinity addition (Fig. 7h) is about an order of magnitude

larger than the change in pH after complete air–sea equili-
bration at constant atmospheric CO2 (Fig. 7i). The respec-
tive changes in pH (non-equilibrated and equilibrated at con-
stant atm CO2) have a higher correlation to TA (R =−0.92,
R =−0.99) than to the Revelle factor (R = 0.83, R = 0.63).

In relative terms, we find that the ESMs’ TA biases range
from−3.6 % to+2.1 % with a mean of−1.1 % and that their
DIC biases range from −2.6 % to +2.5 % with a mean value
of −0.6 % (Fig. 1). Furthermore, the ESMs estimates of the
initial pCO2 decrease after a hypothetical TA enhancement
by 100 µmol kg−1 range from −1.0 % up to 13.0 % (mean
5.1 %) relative to GLODAP (Table S2). The controlling fac-
tor for this bias in initial pCO2 reduction is in most cases the
Revelle factor rather than the TA bias alone because the TA
bias is always accompanied by a (partly) compensating DIC
bias.

This simplified OAE example shows that for 12 out of 14
ESMs an increase of 100 µmol kg−1 in TA would lead to a
higher initial decrease in pCO2 than observational data from
GLODAP suggest. A higher sensitivity to TA changes due
to a higher Revelle factor has also been shown in Hauck et
al. (2016) during a decadal-scale OAE simulation. We addi-
tionally calculated the effect of the additions of 200, 500, and
1000 µmol kg−1 of TA. The degree of pCO2 overestimation
decreases with the amount of TA added, but for a theoreti-
cal addition of 1000 µmol kg−1 of TA the maximum initial
pCO2 reduction overestimate with respect to GLODAP is
still 8 % (Table S2). We conclude that almost all ESMs might
overestimate the initial pCO2 difference in simulated OAE
experiments. On the other hand, the CO2 uptake efficiency
computed with constant pCO2 (equilibrated DIC) only dif-
fers by −0.1 % to 1.1 % (mean: 0.4 %) from the GLODAP
value, and the ESMs may thus represent equilibrium CO2
uptake rather robustly.

The initial increase in pH after alkalinity addition is rela-
tively large (Fig. 7h,> 0.1 pH units, i.e., on the same order of
magnitude as the pH decrease since industrialization). How-
ever, after equilibration with the atmosphere (at presumed
constant atmospheric CO2), the lasting pH change is small
(about 0.016, Fig. 7i). These pH changes are in line with pre-
vious quantifications (independent of the amount of alkalin-
ity added; e.g., Köhler et al., 2013; Hartmann et al., 2013;
Hauck et al., 2016), and their small magnitude is the direct re-
sult of the additional carbon uptake from the atmosphere. In
emission-driven simulations, where atmospheric CO2 is sub-
stantially reduced through large applications of alkaliniza-
tion, pH increases more substantially (e.g., by< 0.1 for an at-
mospheric CO2 reduction of< 100 ppm, Lenton et al., 2018;
by> 0.3 for an atmospheric CO2 reduction of> 1000 ppm in
a multi-millennial simulation, Köhler, 2020). These findings
call into question the commonly made statement that ocean
alkalinization is unique as it “simultaneously mitigates atmo-
spheric concentrations of CO2 and ocean acidification” (Burt
et al., 2021; Ilyina et al., 2013; National Academy of Sci-
ence, 2021). While ocean alkalinity enhancement allows for
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Figure 6. Globally averaged depth profiles of biases in (a) TA, (b) preformed TA (TA0), (c) TA from remineralization (TAr), and (d) from
calcium carbonate formation and dissolution (TA∗) in 10 CMIP6 models compared to the GLODAP climatology.

additional CO2 uptake at a pH level that does not drop any
further, a restoration or rise in pH is only possible if (a) the
water mass is not in contact with the atmosphere (perhaps
for deep-ocean applications) or (b) ocean alkalinization is
efficient in reducing atmospheric CO2, which is the driver
of ocean acidification. The latter case, however, applies to all
land- and ocean-based CDR methods that are efficient in re-
ducing atmospheric CO2, and thus ocean alkalinity enhance-
ment is not unique in this regard.

4 Discussion and conclusions

We evaluated CMIP6 models regarding their large-scale bi-
ases in TA and DIC compared to the gridded data set GLO-
DAP. A total of 10 out of 14 ESMs underestimate surface
TA (MMM: −25 mmol m−3; i.e., −1.1 %) and DIC (MMM:
−13 mmol m−3; i.e., −0.6 %) with respect to observations.
The range of the bias in TA is −85 mmol m−3 (−3.6 %)
to 50 mmol m−3 (+2.1 %), and in DIC it is −55 mmol m−3

(−2.6 %) to 53 mmol m−3 (+2.5 %). This is a reversal from
the TA and DIC representation in CMIP5, where most mod-
els and the MMM overestimated these variables, and the
absolute and relative errors were at least twice as large as
in CMIP6 (Planchat et al., 2023). The direction of the bias
and the relative biases of TA and DIC have a direct impact
on the Revelle factor and the initial pCO2 reduction in the
surface ocean after alkalinity addition (and thus affect CO2
uptake) and should be known when assessing model exper-
iments simulating OAE or other NETs that directly affect
the ocean’s carbonate chemistry. Terhaar et al. (2022) also
found that CMIP6 models overestimate the Revelle factor
and propose that CMIP6 models underestimate the anthro-
pogenic ocean carbon sink from 1994 to 2007 by 9 %, of
which around 3 % can be explained by the overestimation of
the Revelle factor, while the remaining 6 % are related to the
models’ underestimation of the formation of mode and inter-
mediate water in the Southern Ocean (Terhaar et al., 2021).
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Figure 7. Carbonate system parameters were computed for all CMIP6 ESMs, the MMM (grey line), and the GLODAP data (black line) with
the CO2SYS toolbox. The results are sorted by Revelle factor in ascending order for all panels. Shown are the TA (a), the Revelle factor (b),
the TA–DIC ratio (c), initial pCO2 (d), the difference in pCO2 after a 100 µmol kg−1 addition of TA (e), the uptake efficiency ηCO2 (f), the
initial pH (g), the difference in pH for constant DIC (h), and the difference in pH for constant pCO2 (i). Light blue indicates the unperturbed
mean state in the ESMs and GLODAP, dark blue indicates the initial state after OAE, and green indicates the state after OAE and subsequent
air–sea equilibration.

It is helpful to understand the contributions of the physical
and biological pumps (soft tissue and calcium carbonate, re-
spectively) to these TA biases in ESMs. The value of decom-
posing the carbon pump has already been recognized in pre-
vious studies (e.g., Sarmiento and Gruber, 2006; Kwon et al.,
2009); however, there is not a common standard to achieve
this decomposition. Here, we separated the global mean
vertical TA bias into contributions from preformed alkalin-
ity (TA0, physical pump), remineralization (TAr, soft tissue
pump), and alkalinity from calcification and carbonate disso-
lution (TA∗, CaCO3 pump) following Koeve et al. (2014).

This decomposition method aims to compute the physical
contribution to the alkalinity distribution explicitly, similar
to the method used in Oka (2020) and contrary to those of
Sarmiento and Gruber (2006) and Planchat et al. (2023). An
advantage of this method is that the preformed alkalinity is
computed for each grid point and is therefore resolved spa-
tially. In their presentation of the method, Koeve et al. (2014)
note that the computation of TA∗ according to Eqs. (2) to (4)
reproduces tracer-based simulated TA∗ robustly in most of
the global ocean but that higher uncertainties occur in the
Atlantic and in the 500 to a 1000 m layer in the Pacific and
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Indian oceans. Here, we only focused on the TA∗ results for
the global mean ocean. A caveat that was mentioned by Ko-
eve et al. (2014) is that AOU is known to overestimate true
oxygen utilization by 20 %–25 %. Hence, our TAr computed
from AOU probably also overestimates by this percentage.
However, TAr is rather small, and here we focus on the im-
plication of the TA∗ biases in ESMs and potential remedies
for these biases.

The result from our TA∗ analysis is that the global distri-
bution of TA in ESMs is largely determined by preformed
TA (especially in the upper ocean), which is set by ocean
model physics (advection, overturning, mixing, etc.); how-
ever, this performed TA is not purely physical but also con-
tains the physical redistribution of already biased TA. In the
sub-surface and deep ocean, biases in TA are also driven by
the CaCO3 cycle, while contributions from remineralization
are negligible. Although Planchat et al. (2023) do not assess
alkalinity biases due to the physical carbon pump, they also
point to a larger contribution of the carbonate pump relative
to the soft tissue pump (remineralization) to the (normal-
ized) TA biases. The model processes involving the physi-
cal distribution of TA are tuned to achieve the best overall
model performance, and it could be tested whether a tuning
to improve TA would support this goal. The findings regard-
ing the contribution to the TA biases from the CaCO3 cycle
simulation suggest that improving the parameterizations of
biogeochemical processes that are sources and sinks of TA,
e.g., calcification, remineralization of sinking detritus, chem-
ical dissolution of calcium carbonate, biological CaCO3 for-
mation, and dissolution, would be beneficial. Since the bias
in TA from remineralization is small in all models, param-
eterizations that affect the calcium carbonate cycle are the
most practical lever to improve the TA distribution for most
models. This in turn needs a much-improved process under-
standing of CaCO3 dissolution in microenvironments such as
aggregates, zooplankton, and fish guts above the calcite and
aragonite saturation horizons (Sulpis et al., 2021; Jansen and
Wolf-Gladrow, 2001; Salter et al., 2017) from field and labo-
ratory studies in order to mechanistically represent these pro-
cesses and how they might be altered in a high-CO2 ocean.
In the absence of this mechanistic understanding, some sug-
gestions to reduce TA biases are listed below.

Possibilities for model tuning include the following sug-
gestions.

– If TA is low at the surface, decreasing the calcification
(rate) within realistic limits or increasing near-surface
dissolution could be beneficial (Gangstø et al., 2008;
Gehlen et al., 2007).

– If the calcite dissolution is prescribed to increase with
depth (Yamanaka and Tajika, 1996), this process could
be tuned to better match the observed vertical distribu-
tions of calcite or TA.

Possible improvements in model parameterizations include
the following suggestions.

– If calcite dissolution is formulated as (mostly) satura-
tion dependent and is therefore (close to) zero above
the calcite saturation horizon, a term should be im-
plemented that encompasses dissolution processes that
have been observed to occur above said horizon, e.g.,
calcite dissolution in microenvironments like marine
snow and zooplankton guts (Sulpis et al., 2021). It was
shown that the acidic environment in guts of starving
copepods can dissolve up to 38 % of the calcite taken up
by grazing (White et al., 2018). For non-starving cope-
pods this value was somewhat lower (Pond et al., 1995;
Jansen and Wolf-Gladrow, 2001).

– In addition to those processes, it is known that arago-
nite and high-magnesium calcite have a shallower sat-
uration horizon than calcite and contribute to upper-
ocean calcium carbonate dissolution (Sabine et al.,
2002; Gangstø et al., 2008; Barrett et al., 2014; Battaglia
et al., 2016). Almost all models only simulate calcite
explicitly (Planchat et al., 2023), which is a deficit
since Buitenhuis et al. (2019) proposed that aragonite-
producing pteropods might contribute at least 33 % to
export of CaCO3 at 100 m and up to 89 % to the pelagic
calcification. Although exact numbers might be subject
to reevaluation when more data become available, a car-
bon cycle formulation expanded to also simulate arago-
nite (formation and dissolution) may be beneficial for a
more realistic alkalinity distribution.

– The representation of CaCO3 treatment at the bot-
tom sediment interface (dissolution, sedimentation, sed-
iment weathering) is important for the total alkalinity
budget and also for upper-ocean alkalinity, especially in
more shallow regions where alkalinity-enriched waters
(through dissolution) can recirculate to the upper ocean
more quickly (Gehlen et al., 2007).

The back-of-the-envelope calculations of the ESMs’ carbon-
ate system states revealed that all but two of the models have
a higher global mean Revelle factor than calculated from
GLODAP, correlated with a higher TA–DIC ratio than sug-
gested by observations (see also Terhaar et al., 2022). For
a hypothetical addition of 100 µmol kg−1 TA this bias leads
to an overestimation of the initial pCO2 reduction by up to
13 % (affecting CO2 uptake from the atmosphere). The ad-
dition of just 100 µmol kg−1 TA is actually at the very low
end of the spectrum used in past and current OAE experi-
ments in models and in mesocosms (Hartmann et al., 2023;
Ferderer et al., 2022). This calculation is a simplified exer-
cise since gas exchange between ocean and atmosphere is
not accounted for and neither are the potential precipitation
or sinking of calcium carbonate (Hartmann et al., 2023). The
CO2 uptake efficiency factor, ηCO2, relates changes in sur-
face DIC to alkalinity input. We computed this metric here
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with constant pCO2 after alkalinity addition, which suggests
complete equilibration and neglects any reduction in atmo-
spheric CO2 due to OAE. Studies suggest that the timescale
and efficiency of the equilibration can differ immensely de-
pending on the ocean region. He and Tyka (2023) found that
after 1 year ηCO2 varied between 0.2 and 0.85 and that after
10 years most locations showed an uptake fraction of 0.65–
0.80. Jones et al. (2014) quantified the mean global air–sea
equilibration timescale for CO2 at 4.4 months (range of 0.5
to 24 months regionally). Bach et al. (2023) suggest a prag-
matic timescale of 10 years for a 95 % DIC equilibration af-
ter OAE measures. It is within this range of suggested equi-
libration timescales that the differences in simulated pCO2
change between ESMs are important.

The results of our idealized calculation also highlight the
need to monitor at least two carbonate system variables to
characterize the full carbonate system after alkalinity ad-
dition in a potential real-world application. Knowing the
amount of alkalinity added and then monitoring pCO2 with
an autonomous sensor will not be sufficient to character-
ize the full carbonate system and the level of equilibrium
reached, particularly as alkalinity and carbon will be sub-
ject to transport through mixing and advection. Autonomous
sensors with high accuracy are currently only available
for pCO2, whereas alkalinity sensors are not commercially
available (see review in Ho et al., 2023) and pH sensors
do not have high enough accuracy (Wimart-Rousseau et al.,
2023). This poses a challenge for monitoring, reporting, and
verification (MRV) that may be tackled through (i) measur-
ing discrete water samples until technical advances make au-
tonomous measurements of two carbonate system variables
possible or (ii) using models of high fidelity. In order to fully
capture the effect of OAE on atmospheric CO2 concentration
and the model spread related to biases stemming from cir-
culation and biogeochemical assumptions, model OAE ex-
periments need to be performed in a suite of fully coupled
emission-driven ESMs with a precise protocol and with real-
istic representation of the carbonate pump, including CaCO3
dissolution above the carbonate saturation horizon, which is
not even sufficiently understood in the real world (Sulpis et
al., 2021).
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Supplementary figures and tables 

 

Figure S1: Surface distribution of salinity-normalized TA in GLODAP (top left) and the CMIP6 multi-model-mean (MMM) bias 

(top right) as well as the individual model’s biases. 10 
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Figure S2: Globally averaged depth profiles of TA, preformed TA (TA0), TA from remineralization (TAr) and from calcium 

carbonate formation and dissolution (TA*) in 10 CMIP6 models compared to the GLODAP climatology. 
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Table S1: Input values for the CO2SYS calculation of globally averaged TA, DIC and pCO2, where the CMIP6 TA and DIC output 15 
was converted from units of mmol m-3 to µmol kg-1 using a seawater density of 1026 kg/m^3. 

Modelname Mean surface 

TA  

[mmol m-3] 

Mean surface 

DIC  

[mmol m-3] 

Mean surface 

TA [µmol kg-1] 

Mean surface 

DIC  

[µmol kg-1] 

Mean surface 

pCO2  

[µatm] 

ACCESS-ESM1-5 2330 2050 2271 1998 291 

CanESM5 2367 2093 2307 2040 309 

CESM2-WACCM 2322 2047 2263 1995 296 

CESM2 2318 2043 2259 1991 295 

CNRM-ESM2-1 2311 2042 2252 1990 302 

GFDL-CM4 2403 2121 2342 2067 306 

GFDL-ESM4 2384 2100 2324 2047 298 

IPSL-CM6A-LR 2296 2031 2238 1980 304 

MPI-ESM1-2-HR 2278 2019 2220 1968 309 

MPI-ESM1-2-LR 2270 2015 2212 1964 314 

MRI-ESM2-0 2392 2103 2331 2050 293 

NorESM2-LM 2305 2033 2247 1981 296 

NorESM2-MM 2308 2039 2250 1987 301 

UKESM1-0-LL 2323 2054 2264 2002 305 

GLODAP 2354 2071 2294 2019 292 

 

Table S2: pCO2 differences in % with respect to GLODAP after an artificial TA increase of 100, 200, 500 or 1.000 µmol kg-1 for 

each model as computed with CO2SYS. This computation does NOT account for ocean-air exchange of CO2 or for chemical 

reaction upon alkalinity addition. The minimum and the maximum difference values for each case are marked in bold. 20 

TA increase (µmol kg-1) 100 200 500 1000 

Modelname pCO2 difference compared to GLODAP in % 

ACCESS-ESM1-5           0.16           0.00          -0.24          -0.41 

CanESM5           6.90           6.54           6.00           5.71 

CESM2-WACCM           2.83           2.44           1.86           1.50 

CESM2           2.53           2.14           1.54           1.17 

CNRM-ESM2-1           6.06           5.38           4.36           3.75 

GFDL-CM4           4.22           4.26           4.34           4.44 

GFDL-ESM4           1.54           1.63           1.77           1.89 

IPSL-CM6A-LR           7.70           6.81           5.47           4.66 

MPI-ESM1-2-HR          10.63           9.39           7.55           6.45 

MPI-ESM1-2-LR          12.98          11.51           9.33           8.04 

MRI-ESM2-0          -1.02          -0.73          -0.28           0.03 

NorESM2-LM           3.55           3.01           2.18           1.67 

NorESM2-MM           5.83           5.15           4.12           3.50 

UKESM1-0-LL           6.99           6.33           5.33           4.75 

     

 


