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Microbial communities are major drivers of global elemental cycles in the oceans due to their

high abundance and enormous taxonomic and functional diversity. Recent studies assessed

microbial taxonomic and functional biogeography in global oceans but microbial functional

biogeography remains poorly studied. Here we show that in the near-surface Atlantic and

Southern Ocean between 62°S and 47°N microbial communities exhibit distinct taxonomic

and functional adaptations to regional environmental conditions. Richness and diversity

showed maxima around 40° latitude and intermediate temperatures, especially in functional

genes (KEGG-orthologues, KOs) and gene profiles. A cluster analysis yielded three clusters of

KOs but five clusters of genes differing in the abundance of genes involved in nutrient and

energy acquisition. Gene profiles showed much higher distance-decay rates than KO and

taxonomic profiles. Biotic factors were identified as highly influential in explaining the

observed patterns in the functional profiles, whereas temperature and biogeographic province

mainly explained the observed taxonomic patterns. Our results thus indicate fine-tuned

genetic adaptions of microbial communities to regional biotic and environmental conditions in

the Atlantic and Southern Ocean.
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On the basis of hydrography, nutrients, plankton, and
boundary conditions, regions in ocean basins with similar
properties have been classified into biogeographic pro-

vinces. This concept proved valuable in understanding environ-
mental and biotic constraints on the distribution of many marine
pelagic eukaryotic taxa1,2. As prokaryotes are major drivers of
global elemental cycles in the oceans due to their high abundance
and enormous taxonomic and functional diversity3, attempts
have been made to adopt this concept to microbial communities
on global or ocean basin scales4,5. In fact, recent studies revealed
global biogeographic taxonomic patterns of pelagic microbial
communities6–9 whereas reports on regional microbial biogeo-
graphy of an ocean basin are still very scarce10–12. The diversity of
functional prokaryotic features greatly exceeds the taxonomic
diversity due to horizontal gene transfer (HGT) and rapid evo-
lutionary adaptation13–15. Therefore, it is important to consider
functional traits in microbial oceanographic studies. However, as
functional classification, for example, KEGG-orthologues (KOs)
are defined by their metabolic function, catalyzing a specific
reaction and do not reflect the more specific properties of a given
gene orthologue regarding its kinetic features and/or temperature
range and optima. These more refined modulations of enzyme
functions varying under different environmental conditions are
important features of the fitness of the respective organism15–17.
To distinguish between prokaryotic populations in large-scale
environmental gradients, sequence variants of the same KO
within one taxon may give detailed insight in adaption to dif-
ferent environmental and biotic conditions.

For a comprehensive understanding of biogeographic and
latitudinal diversity patterns of microbial communities and their
significance in the biogeochemical cycling of elements and matter,
it is essential to include their functional traits. Temperature and
other environmental variables have been shown to be important
predictors for functional profiles and patterns of oceanic micro-
bial communities7,18. The temperature was also identified as the
main predictor of taxonomic diversity of microbial communities
in latitudinal gradients. However, different relationships have
been reported, ranging from highest diversity at intermediate
temperatures around 15 °C7,19,20 to maxima between 25 and
30 °C8,21. Although metagenomic studies shed light on different
facets of functional traits of the open ocean microbiome including
the adaptation to temperature7,9, distinct biogeographic patterns
of relevant functional genes are yet poorly studied and have not
been assessed systematically in an ocean basin including the
major biogeographic provinces. Refined analyses of functional
biogeographic patterns on an ocean basin scale are critically
important to better understand constraints and drivers of the
functional biogeography of oceanic microbial communities and
the niche occupation of their members.

In order to address these questions, we investigated the taxo-
nomic and functional diversity of microbial communities in the
near-surface Atlantic Ocean, including a section in the Southern
Ocean, along a 13,000 km transect between 62°S and 47°N.
Functional traits of the Atlantic Ocean microbiome (AOM) were
assessed by metagenomics analyses on the basis of KO and non-
redundant gene profiles, thus enabling an assessment of the
general metabolic functions as well as their gene variants to
examine biogeographic and ecotype adaptations. The results
showed pronounced biogeographic patterns, specified in distinct
biogeographic clusters of taxonomic, KO, and gene profiles.
Random forest models indicated that biotic variables contributed
most to the biogeographic structuring of KO and gene
profiles whereas temperature and province explained most of
structuring the taxonomic profiles. Further, the temperature was
identified as important in the turnover of gene variants along
the transect.

Results and discussion
Basic features of the AOM. Twenty-two stations spanning nine
biogeographic provinces and a temperature range from 1 to 28 °C
were visited (Fig. 1a, b and Supplementary Table 1). Samples were
collected at 20 m depth and the 0.2–3.0 µm-fraction was subjected
to paired-end shotgun Illumina sequencing resulting in a total of
206 Gb with a sample mean of 8.9 ± 5.3 Gb (Supplementary
Table S2). After assembly (total assembly length > 17.52 Gb),
12.18 Million gene sequences were predicted, and from these
sequences, we reconstructed the AOM reference gene catalog
(AOM-RGC) containing 7.75 Million non-redundant protein-
coding sequences (“genes” hereafter) of which 55.2% were tax-
onomically classified (Fig. 1c). Genes from 18,923 genomes
(“taxa” hereafter), across all domains of life, were identified by
searching gene sequences against reference genomes available
from NCBI and ProGenomes. The taxonomy of each gene is thus
represented by the taxonomy of the closest matching genome. It
is important to note that our approach of taxonomic gene iden-
tification by using reference genomes tends to overestimate the
total number of taxa by assigning genes to different but closely
related genomes or incomplete taxonomic annotation in reference
genomes (e.g., metagenome-assembled or single amplified gen-
omes). The largest proportion of classified genes (45.7%) affiliated
to Bacteria whereas minor proportions to Archaea, viruses, and
picoeukaryotes (together 9.5%; Fig. 1c). Thirty-eight percent of
genes were functionally annotated by homology to a KO. In
addition, 0.43% of genes were assigned to a CAZyme family
(Fig. 1c). In total, 49.8% of high-quality reads were mapped to
genes with known functionality. Fifty-nine percent of the AOM-
RGC overlapped with the Tara Ocean Microbial RGC.v29 at 95%
sequence identity; 12.7% of novel genes were functionally classi-
fied by similarity to a KO and 28.3% of novel genes remained
functionally unclassified (Fig. 1d). Novel genes were pre-
dominantly detected outside the tropical Atlantic (SATL and
WTRA) (Supplementary Table 2). This large fraction of novel
gene sequences underline that despite recent efforts, we are still
far from a comprehensive assessment and understanding of
genomic features of epipelagic oceanic microbial communities
and their participation in biogeochemical processes, especially in
temperate and polar biomes. To estimate gene abundance of any
given sample, high-quality paired Illumina reads were mapped
onto the AOM-RGC, resulting in a mean yield of 76.7 ± 5.0%
mapped reads. Accumulation curve analyses indicated that the
AOM-RGC encompassed almost the entire richness regarding
taxonomic and functional (KO) features and the great majority of
genes (Supplementary Fig. S1). For the comparative analysis of
the taxonomic, KO, and gene profiles, we only used genes that
were taxonomically and functionally (KO or CAZyme) classified
(41.1 ± 5.3% of all mapped reads) to keep the dataset consistent
for analyses.

Taxonomic and functional biogeography. The nine biogeo-
graphic provinces22 were characterized by distinct differences in
temperature, salinity, annual mean concentrations of nitrate and
phosphate, transparency, and chlorophyll a (Supplementary
Table 1 and Supplementary Figs. 2 and 3). Bacterial biomass
production did not show such biogeographic patterns (Supple-
mentary Table S1 and Supplementary Fig. 3), presumably because
it reflects the heterotrophic bulk activity of the entire prokaryotic
communities which is more related to local substrate availabilities
and spatio-temporal growth dynamics as a consequence of phy-
toplankton blooms and less to general biogeographic features23.
In general, lineages of the major phylogenetic groups such as
Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Fla-
vobacteria, Actinobacteria, Archaea, and picoeukaryotes exhibited
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different distribution patterns in the various provinces (Supple-
mentary Fig. 4) and were mostly in line with previous reports on
a global or comparable ocean basin scale6,7,9,11,20.

Richness and diversity of the taxonomic, KO, and gene profiles
showed systematic variation with latitude and ambient temperature
(Fig. 2a–f). With the exception of KO richness, all profiles showed a
bimodal latitudinal distribution with maxima around 40–50°S and
30–40°N and minima in the tropical region between 0 and 20°S and
in higher latitudes beyond 50°S and 40°N. These patterns correspond
with diversity and richness maxima at approximately 15–20 °C. In
contrast to the KO and gene profiles, taxonomic diversity did not
exhibit a well-defined peak but remained relatively constant above
10 °C. The richness and diversity patterns of the KO and gene
profiles suggest that intermediate temperatures and seasonally
fluctuating environmental and biotic conditions24,25 may promote
functional (micro) diversification of prokaryotic communities that
are more reflected in community function than in taxonomic
composition. Such conditions have been shown to favor HGT and
diversification14,17,26,27 and prevent microbes from eliminating genes,
which may be discarded under more stable conditions leading to

more streamlined genomes28. Regions in the Atlantic Ocean with
intermediate temperatures typically exhibit these pronounced
seasonal hydrographic and/or biotic fluctuations22,24,25 thus sustain-
ing a greater functional diversity when compared to the permanently
cold or stratified warm regions such as the Southern Ocean or
oceanic subtropical gyres. Correlation analysis of richness and
diversity (see methods section) and read count showed no correlation
in the taxonomic and gene profiles (Pearson correlation, 0.22 and
0.27, p > 0.05) but were significantly correlated to KO richness (0.78,
p ≤ 0.01).

The taxonomic, KO, and gene profiles of the AOM were
structured into distinct clusters, mostly in line with their respective
biogeographic provinces or regions with similar hydrographic
conditions (Fig. 2g–i, Supplementary Fig. 3). We determined optimal
numbers of clusters by using their silhouette coefficient. All clusters
showed significant differences (Kruskal–Wallis test, p ≤ 0.01) of
within-group distances to samples outside their respective cluster
(Supplementary Fig. 5).

To identify environmental factors potentially driving the
changes within each community profile, we fit random forest
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Fig. 1 Stations in the Atlantic and the Southern Ocean visited during cruises ANTXXVIII/4 and -/5 with RV Polarstern for assessing the Atlantic
Ocean Microbiome (AOM) and basic AOM features. a Longhurstian provinces22 of stations: Antarctic polar (APLR), Antarctic (ANTA), Subantarctic
water ring (SANT), Southwest Atlantic Shelves (FKLD), South Atlantic gyre (SATL), Western tropical Atlantic (WTRA), North Atlantic gyre (NATR), North
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with annual mean concentrations of chlorophyll a at the surface (https://oceandata.sci.gsfc.nasa.gov). b Water temperature at 20m sampling depth.
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28128-8 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:456 | https://doi.org/10.1038/s41467-022-28128-8 | www.nature.com/naturecommunications 3

https://oceandata.sci.gsfc.nasa.gov
www.nature.com/naturecommunications
www.nature.com/naturecommunications


models based on hydrographic and biogeochemical properties of
stations. The models explained 61% of the variance in the
taxonomic profile and 36.5% and 35.8% of the variance in the KO
and gene profiles, respectively. Taxonomic cluster (tC) I of the
taxonomic profile encompasses stations from the Antarctic to
subtropical regions whereas stations from tCII are located in the
subtropics and tropics between 40°S and 34°N (Fig. 2g). Ambient
temperature, annual mean nitrate concentration, and province
affiliation were the most influential factors explaining the
separation of the two clusters at approximately 18 °C and nitrate
concentrations of 4 and 0.8 µM in the South and North Atlantic,
respectively (Fig. 2j). This illustrates the compositional difference
between the subtropical gyres and temperate and (sub)antarctic
regions and the strong impact of temperature on the composition
of the near-surface AOM, while biogeochemical and nutrient
properties affected the cluster separation only to a lesser degree.

The KO profile showed separation into three distinct clusters
(Fig. 2h). Functional cluster (fC) I comprise exclusively Antarctic
and subantarctic stations (APLR, ANTA, and SANT) while fCII
comprised stations from the northern, (NADR and NAST),
central (NATR, WTRA), and austral temperate regions (FKLD)
as well as station 193 (APLR) which is distinct from the other
stations in the Southern Ocean due to limited mixing of water
masses in the Bransfield-Straight with the Southern Ocean29.
Functional cluster III encompasses all SATL stations as well as the
southernmost NAST station. In contrast to the taxonomic profile,
POC and chlorophyll-a concentration and not temperature or
province was the most influential environmental factors separat-
ing the three functional clusters (Fig. 2k). The gene profile
showed the highest differentiation into five clusters containing
mostly adjacent stations from only a few oceanic provinces
(Fig. 2i): Gene cluster (gC) I and gCII encompass stations of the
Southern Ocean and south temperate Atlantic, gCIII stations of
the temperate North Atlantic (NADR and NAST) and gCIV and

gCV stations of the (sub)tropical North Atlantic (NATR and
NAST), WTRA and SATL. Similar to the KO profile, POC and
chlorophyll-a were the most influential factors explaining the
observed clustering of the profile (Fig. 2l). Overall variance
explained was lower in gene and KO random forest models
compared to the taxonomy. Temperature, as well as inorganic
nutrients, contributed only little (<10%) to node purity in
observed functional and gene clusters, while biotic features, i.e.,
biogeochemical and nutrient variables related to phytoplankton
biomass (chlorophyll a, POC) and thus primary production,
showed highest effects on cluster separation. These results suggest
that community function is less determined directly by hydro-
graphic properties but rather by complex interactions within the
microbial communities, primary producers, and available nutri-
ents. Our findings further imply that holistic ecological features,
including the long-term environmental and biotic state as well as
seasonal variability, can potentially better explain the large-scale
structuring of oceanic microbial communities than single
environmental variables. Although not entirely unexpected, our
results emphasize the complex nature of niche segregation,
community assembly, and functional profiles on a regional scale.

To explore functional differences between clusters of the KO
profile, we performed a DESeq2 differential abundance analysis of
KOs. Overall, we observed enrichment of 27.6% KOs and 27.4%
CAZymes between fCI and fCII, 15.7% KOs, and 25.9%
CAZymes between fCI and fCIII, and 14.7% KOs and 10.7%
CAZymes between fCII and fCIII (Supplementary Fig. 6). For a
more refined analysis, we focused on metabolic pathways and
transport systems that are likely to be affected by the availability
of inorganic nutrients and organic substrate (Fig. 3, Supplemen-
tary Data 1). Comparing fCI and fCII, the latter was enriched in
genes encoding oligosaccharide, lipid, and amino acid transport,
as well as in genes encoding nitrate uptake and reduction,
denitrification, nitrogen fixation, and photosystems I and II
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(Fig. 3a). Similar enrichments of genetic features were also
discernible when comparing fCI and fCIII but in addition, this
comparison showed enrichment in fCI in genes encoding
nitrification. The enrichments in fCII and fCIII of KOs encoding
nitrate uptake and photosystems are likely reflecting the increased
abundance of Cyanobacteria. Whereas fCII and fCIII exhibited
only little differences in genes encoding substrate transport
systems, fCII was enriched in genes encoding nitrification. Genes
encoding synthesis of vitamins B1 and B12 were rather similarly
distributed among the clusters.

CAZymes are likely to reflect biogeographic patterns of
carbohydrate supply30. Therefore we assessed the biogeography
of genes encoding the different families of these enzymes. Genes
encoding glycosyltransferases (GT) and glycosylhydrolases (GH)
largely dominated the CAZyme families (Fig. 4). Genes encoding
GT, GH, and carbohydrate esterases (CE) were widely shared
among many taxa whereas the carbohydrate-binding module
(CBM), polysaccharide lyases (PL), and auxiliary activities (AA)
were restricted to only a few lineages. Major players in
carbohydrate metabolism were only a few lineages of Alphapro-
teobacteria, Gammaproteobacteria, and Flavobacteriaceae (Sup-
plementary Fig. S7). In addition, Cyanobacteria were important
players in carbohydrate metabolism, presumably reflecting the
close link of carbohydrate metabolism to photosynthesis. To
assess the biogeographic patterns of genes encoding the

degradation of carbohydrates, a major carbon source and
prominent component of marine dissolved organic matter31, we
analyzed the distribution of genes encoding CAZymes in the
three clusters of the functional profile. Our analysis shows
pronounced enrichments of genes encoding various CAZyme
families among functional clusters of the AOM (Fig. 3b),
suggesting pronounced differences in available substrates among
the biogeographic provinces. Especially fCI showed a substan-
tially lower abundance of the CAZyme families CBM, CE, GT,
and GT and enrichment of PLs. Differences between fCII and
fCIII were mostly restricted to the CE and GT families. CAZymes
with auxiliary activities were distributed evenly among the three
clusters.

As carbohydrate turnover is an important biogeochemical
process in all oceanic regions with greatly varying temperatures
we further tested the relationship of the genes encoding CAZymes
to temperature. Thirty-one percent of these genes across all
CAZyme families exhibited significant correlations to tempera-
ture but those of GH and GT were most prominent (Fig. 4a).
CAZyme genes were affiliated to three distinct clusters with
different relationships to temperature (Fig. 4b, Supplementary
Fig. 7). CAZyme-Cluster I exhibited an optimum at low
temperatures, cluster II at intermediate temperatures around
15 °C, and cluster III at high temperatures. A taxonomical
breakdown of CAZyme abundance shows that carbohydrates are
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metabolized very differently and by different phylogenetic
lineages in the various biogeographic regions, from the nutrient-
and diatom-rich temperate and subpolar regions to the nutrient-
depleted and Cyanobacteria-dominated tropics (Supplementary
Fig. 8). In addition to previously known carbohydrates utilizing
Flavobacteriaceae and certain lineages of Gammaproteobacteria,
our analysis identified Pelagibacterales, Rhodobacteraceae, and
Sphingomonadaceae as important players in carbohydrate
utilization. Such a detailed analysis provides refined insight into
biogeographic patterns of marine microbial communities meta-
bolizing carbohydrates, a major carbon, and energy source in the
oceans.

These analyses of genes encoding KOs and CAZymes of the
Southern and Atlantic Ocean provide detailed insights into
regional differences in gene abundances, especially those involved
in resource acquisition, despite an overall high functional
redundancy of the KO profiles.

Distance decay relationships and temperature-limitation of
gene variants. Distance–decay relationships have been used to
determine boundary conditions of species dispersal or selection
across large environmental gradients7,20. These relationships can
also be used to assess taxonomic and functional turnover along
such gradients. As enzyme function and stability are likely to be
affected by temperature17, we applied this approach to investigate
community structure and function over geographic distance and
the complete temperature range along the transect. Our results
show that gene profiles exhibit a dissimilarity of >50% already at
distances of <500 km and at temperature differences of 2–4 °C
whereas taxonomic and KO features remained much more
similar (Fig. 5). At greater temperature differences and geo-
graphic distance, the dissimilarity of gene profiles increased much

more than taxonomic and KO features and reached dissimilarities
of >80% at distances of 2500 km and temperature difference of
7 °C. At distances of >5000 km and temperature differences of
>15 °C dissimilarities reached 90%. In contrast, taxonomic dis-
similarity remained <60% even at the largest temperature dif-
ference and <50% at the greatest distances and KO dissimilarities
were always <20%, implying high KO redundancy, as reported
previously7. This analysis shows a high turnover or modification
of the gene profiles within the prokaryotic communities and a
relatively stable overall community function in the Southern and
Atlantic Ocean. Although a given KO can be ubiquitously present
in the ocean, genes in closely related organisms may differ,
probably to adapt to regional environmental conditions17. This
eventually leads to sub-species functional variation and, over
time, promotes the growth of specific regional populations car-
rying more efficient gene variants. Recent findings of high gene
variant turnover of microbial communities over time at one
location in the Mediterranean Sea16 and in the global oceans9 are
in line with this notion. Diversification and adaptation of
microbes to new ecological niches operate via mutation, HGT,
dispersal, and invasion and are affected by population
size16,17,26,32. This may lead to gaining completely new functional
traits by HGT but also to modifying functional traits by mutation
such as altered temperature and concentration ranges, substrate
affinities, and optima of nutrient uptake systems as well as other
metabolic properties33–35.

To gain further information on the effect of temperature on
gene turnover we examined the abundance of gene variants of
single KOs originating from single taxa, i.e., genome-level
annotation (see methods section), and their relationship to
temperature. These gene variants showed distinct maxima and
minima along the transect which often coincided with boundaries
between adjacent biogeographic provinces and especially between
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Fig. 4 Temperature-dependent distribution of CAZyme families in the AOM. a CAZyme families (AA auxiliary activities, CBM carbohydrate-binding
modules, CE carbohydrate esterases, GH glycoside hydrolases, GT glycoside transferases, PL polysaccharide lyases) with normalized abundance profiles
with a significant (p≤ 0.05) relationship to temperature, determined by unimodal regression models. b Relationships between temperature and CAZyme-
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p < 0.001; Cluster 3 (n= 23): r2= 0.47, p < 0.001.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28128-8

6 NATURE COMMUNICATIONS |          (2022) 13:456 | https://doi.org/10.1038/s41467-022-28128-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


subpolar, temperate, and equatorial regions. Some of these
variations occurred in regions with similar hydrographic proper-
ties in both hemispheres (Supplementary Fig. 9). The mean
temperature range of abundant taxa and their gene variants
(≥15% of maximal taxon/variant abundance) varied substantially
among taxa and the mean temperature range was 8.6 ± 3.5 °C
(Fig. 6a, Supplementary Data 2 and Supplementary Fig. 10).
Several species occurred at higher or lower ambient temperatures
with a rather limited temperature range such as Prochlorococcus,
Synechococcus, SAR92, and Planktomarina temperata. Others and
in particular members of the Pelagibacteraceae exhibited a large
temperature range, reflecting their occurrence over large areas of
the transect. Taxa of this family, e.g., Cand. Pelagibacter, HIMB5,
harbored KOs with gene variants ranging from 1.5 to 26.3 °C. In
contrast, KOs of other taxa exhibited gene variants with a much
lower temperature range (<12 °C), such as the Gammaproteo-
bacteria TMED* and Cellvibrionales bacterium TMED122,
Synechococcus and Prochlorococcus (Supplementary Data 2).
Cyanobacteria and Archaea generally exhibited relatively small
temperature ranges, indicating a faster variant turnover and
temperature adaptation. With few exceptions, ranges of gene
variants were substantially lower than the overall temperature
range of the respective taxon but increased with a higher overall
taxon temperature range (Fig. 6a). This temperature adaption
may partially explain the observed richness and diversity maxima
in intermediate temperatures in the AOM gene profile. A larger
number of variants can potentially coexist at these conditions

without detrimental loss of enzyme function, whereas enzymes
adapted to very cold or warm temperatures can pose a substantial
competitive disadvantage at both ends of the temperature
gradient.

Based on this global analysis of the differential taxon gene
turnover with temperature, we hypothesize that distinct KOs vary
in their temperature adaptation and exhibit different temperature
ranges. To identify such adaptations of KOs to temperature, we
assessed the overall temperature ranges and abundances of gene
variants of all KOs included in the functional AOM profile using
KEGG BRITE classifications. The results show that different KOs
vary in their temperature ranges and means (Fig. 6b). Although
these differences are not statistically significant, some trends are
worth exploring: Genes of pathways/functions directly involved
in resource acquisition such as membrane transport, peptidases,
replication, and repair exhibited the smallest temperature range
while genes encoding energy metabolism, translation, energy- and
carbohydrate metabolism exhibited larger temperature ranges.
These data suggest a differential evolutionary pressure on
functions towards temperature adaptation in broad functional
categories. Distinct distribution patterns of gene variants over
varying temperature ranges reflect different well-adapted popula-
tions of very closely related organisms. Biogeographic and
seasonal dynamics of population microdiversity have been
reported for prokaryotes as well as microeukaryotes as a reaction
to different hydrographic conditions and environmental
change36–38. These reports, however, looked at differently
distributed KOs and ribotypes whereas our findings focused on
functional genes enabling prokaryotic populations to occupy even
more specific niches. Although our analysis was constrained to
abundant taxa and orthologues, it is reasonable to assume that
ecotypes with different variants of other genes can be found for
taxa of most phylogenetic groups. Our results are consistent with
the theoretical framework on niche occupation and sub-species
diversification provided by Larkin et al.17 and show the
establishment of microbial communities consisting of taxa with
presumably environmentally well-adapted ecotypes with similar
metabolic traits, reflected by gene variants.

Genomic analyses have shown that closely related bacterial
species harbor a large functional diversity with a relatively small
core-genome and a much greater pan-genome, such as E. coli and
Shigella spp.39 or Prochlorococcus36,40. Considering microbial
communities with an increasing number of taxa this discrepancy
between taxonomy and functional traits would expand accord-
ingly. Therefore, it may not appear surprising that we found a
much higher dissimilarity with distance and temperature
differences of the gene profiles relative to the taxonomic profiles
and the distinct latitudinal patterns of gene variants. The great
functional redundancy based on KOs may also appear to be
expected considering that basic ecological processes like the
fixation of CO2 by phytoplankton primary production and
decomposition of organic matter and cycling of elements by
heterotrophic prokaryotic communities follow rather similar
ecological principles in pelagic marine ecosystems irrespective
of temperature and nutrient constraints. For a more refined
understanding of the concerted and fine-tuned functioning of
microbial communities and the adaptation to the given biotic and
environmental conditions, it is most important to demonstrate
these adaptive functional features on the level of gene variants
and gene profiles, going beyond highly resolved taxonomic
marker gene features38,41. The continuous exposure to the
varying environmental and biotic conditions leads to well-
functioning microbial communities and the continuous adapta-
tion of their members, which in turn shape the observed
latitudinal and temperature-related patterns of gene profiles.
These functional features manifest on the sub-species and ecotype
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level and are not accounted for by analyzing KOs or taxonomic
profiles alone. To expand our approach, it would be desirable to
have a database that sufficiently resolves strain-level variation of
KO variants.

The global oceans are subject to changing climatic conditions,
which also affect the residing microbial communities and their
continuous adaptation to ambient environmental conditions. Our
analysis showed distinct richness and diversity maxima in
taxonomic and functional community profiles at mid-latitudes
and intermediate temperatures between 15 and 20 °C. Despite far-
reaching functional redundancy in the AOM, we were able to
identify differences among clusters of functional profiles in
subpolar, temperate/subtropical, and tropical regions of the
Southern and Atlantic Ocean. Although the temperature was
identified as the most important predictor for the biogeography of
community composition, community functions, and their
biogeographic patterns were mainly explained by biotic variables
related to primary production and the availability of organic
matter and possibly other interactions. Differences between
functional clusters were most pronounced in substrate transport
systems as well as energy metabolism. A refined analysis of gene
variants of a variety of metabolic pathways showed high turnover
and relatively small temperature ranges of single genes, indicating
a fine-tuned niche adaptation and occupation of members of the
AOM. The functional adaption of prokaryotic communities to
environmental and biotic conditions is evident on the level of
gene variants and this genetic microdiversity impacts large-scale
biogeographic microbial patterns and biogeochemical processes
of the Atlantic and the Southern Ocean and presumably in other
oceans and ecosystems as well.

Methods
Twenty-two stations between 62°S and 47°N were visited during cruises ANT
XXVIII/4, 13 March–9 April 2012, and ANT XXVIII/5, 10 April–15 May 2012,
with RV Polarstern. For exact locations of the stations see table S1. Samples were
collected at 20 m depth with 12 liter-Niskin bottles mounted on a Sea-Bird Elec-
tronics SBE 32 Carousel Water Sampler equipped with a temperature, salinity,
depth probe (SBE 911 plus probe), a chlorophyll fluorometer (Wet Labs ECO—
AFL/FL), and transmissometer (Wet Labs C-Star). For the analysis of particulate
organic carbon (POC), total particulate N (TPN) and Chlorophyll a (Chl a) ana-
lyses, 1–4 l of seawater were filtered through Whatman GF/F filters and stored at
−20 °C until analysis on board (Chl a) or in the home lab (POC, TPN). POC and
TPN were analyzed as described previously42, Chl a concentrations after extraction
with 90% acetone for 2 h at −20 °C in the dark using a Turner fluorometer43,44

calibrated with a standard chlorophyll solution (Sigma, St. Louis, MO). Bacterial
biomass production was measured by the incorporation of 14C-leucine as described
previously45. For metagenomics analysis, the water of several bottles was pooled in
an ethanol-rinsed polyethylene barrel to a total volume of 40 l. Within 60 min after
collection, the sample was prefiltered through a 10-µm nylon net and a filter
sandwich consisting of a glass fiber filter (47 mm diameter, Whatman GF/D;
Whatman, Maidstone, UK) and 3.0-µm polycarbonate filter (47 mm diameter,
Nuclepore; Whatman). Picoplankton was harvested on a filter sandwich consisting
of a glass fiber filter (47 mm diameter, Whatman GF/F; Whatman) and 0.2-µm
polycarbonate filter (47 mm diameter, Nuclepore; Whatman). All filters were
immediately frozen in liquid N and stored at −80 °C until further processing.
Environmental DNA was extracted from the filter sandwich and subsequently
purified employing the peqGOLD gel extraction kit (Peqlab, Erlangen, Germany)
as described previously46,47. Illumina shotgun libraries were prepared using the
Nextera DNA Sample Preparation kit as recommended by the manufacturer
(Illumina, San Diego, USA). To assess the quality and size of the libraries, samples
were run on an Agilent Bioanalyzer 2100 using an Agilent High Sensitivity DNA
kit as recommended by the manufacturer (Agilent Technologies, Waldbronn,
Germany). Concentrations of the libraries were determined using the Qubit®
dsDNA HS Assay Kit as recommended by the manufacturer (Life Technologies
GmbH, Darmstadt, Germany). Sequencing was performed by using the HiSeq2500
instrument (Illumina Inc., San Diego, USA) using the HiSeq Rapid PE Cluster Kit
v2 for cluster generation and the HiSeq Raid SBS Kit (500 cycles) for sequencing in
the paired-end mode and running 2 × 250 cycles.
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Metagenomic assembly and gene prediction. Illumina reads were quality
checked and low-quality regions, as well as adaptor sequences, were trimmed using
Trimmomatic 0.3648 (ADAPTER:2:30:10 SLIDINGWINDOW:4:25 MINLEN:100).
The high-quality (HQ) reads were assembled using metaSPAdes 3.11.149,50. Con-
tigs smaller than 210 bp and average coverage <2 were discarded. Gene-coding
sequences of the assembled contigs were predicted using Prodigal 2.6.2 in meta-
mode51. Genes shorter than 210 bp and longer than 4500 bp were discarded to
account for prokaryotic and eukaryotic gene length. This resulted in 12.05 Million
unique gene sequences. To generate a gene catalog, gene sequences were clustered
at 95% identity using USEARCH 10.0.2452 (-cluster_fast–id 0.95). The resulting
7.75 Million cluster centroids were used as representative nr gene sequences.
Sequencing and assembly statistics are summarized in Table S2.

Taxonomic and functional annotation of gene-clusters. Nonredundant gene
sequences were taxonomically classified using Kaiju 1.653 (-greedy mode with 5
allowed substitutions and e-value 10e−5) with the Refseq nr (May 2018) and
ProGenomes54 database including prokaryotic, eukaryotic, and viral sequences.
AOM sequence taxonomy represents the closest matching genome. Gene functions
were assigned to AOM sequences using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) online annotation tool GhostKOALA55 (https://www.kegg.jp/
ghostkoala/) using the prokaryotic, eukaryotic and viral KEGG gene database
(release 86) and default settings. In addition, AOM sequences were translated to
amino acid sequence subsequently searched against the CAZy database (version:
2018-07-31) using DIAMOND56 0.9.30.131 blastx (-more-sensitive mode, cutoff
e-value 10e-10 and ≥70% identity) to identify CAZymes57. To check for redun-
dancy with genes of the Tara Ocean data set, sequences of the AOM-GC were
searched against the Tara-Ocean OM-RGC.v29 using BLASTN (cutoff e-value 10e
−10 and ≥95% sequence identity).

Read abundance and normalization. To acquire gene abundance data, HQ Illu-
mina reads longer than 75 bp were mapped to the AOM sequences using bowtie258

2.3.5 (-very-sensitive-local mode). Only the highest-scoring alignments were kept.
SAMtools59 version 1.9–58-gbd1a409 was used to convert the SAM alignment file
to read abundance tables. Reads that did not map to any AOM sequence were
discarded. To account for different sequencing depth and gene length, counts from
each station were normalized by dividing read counts by gene length in kb to
obtain reads per kilobase (RPK). Subsequently, scaling factors were calculated for
each sample by dividing the sum of RPKs by one Million. The scaling factors were
used to normalize the RPK values of each sample to counts per million (CPM)60.

Determination of marine biogeographic provinces. Marine biogeographic pro-
vinces were determined by performing a cluster analysis (Euclidean distance, wards
minimal variance criterion) stations according to their geographic position, tem-
perature, salinity, and Chl a concentration as well as the descriptions in Sunagawa
et al.22. Note that the position and extent of oceanic provinces underlie seasonal
variation61.

Annual mean nitrate and phosphate concentrations. Annual mean nitrate and
phosphate concentrations at 20 m depth of each station were extracted from the 1°
World Ocean Atlas 2018, provided by the National Oceanic and Atmospheric
Administration (https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/).

Statistical analysis. All statistical evaluations were performed in R (version 3.6.0;
https://www.r-project.org/) using the additional packages vegan62 (v2.5–6), ape63

(v5.3), factoexrta64 (v1.0.7), randomForest65 (v4.6–14), DESeq266 (v1.30.1) and
rtk67 (v0.2.5.8).

Richness and diversity. To account for varying sequencing depth and unclassified
genes, only taxonomically and functionally classified genes were used for the
analysis of richness and Shannon diversity. Gene count tables were rarefied to 2
Million reads 99 times (Fig. S1) and subsequently, mean richness and Shannon
entropy were calculated for nr gene-, KO, and taxonomic profiles (see above).

Bray–Curtis distance of taxonomic/functional community profile and differ-
ential abundance analysis. For the calculation of Bray–Curtis-dissimilarities
between samples functional and taxonomically classified nr sequences of unrarefied
abundance data were used. Taxonomic and functional datasets were summarized
by using taxonomic classification on species/genome level and KOs, respectively.
Samples were clustered using the Ward.D2 clustering algorithm. An optimal
number of clusters was determined using the Silhouette-coefficient and validated
by testing in-cluster vs. outgroup Bray–Curtis dissimilarities using non-parametric
Kruskal–Wallis tests. Random Forest models (ntree= 500) using temperature,
salinity, province as well as Chl a, POC, mean annual nitrate, and phosphate
concentration (Supplementary Table 1) were fitted to identify the most influential
environmental factors that can explain the observed clusters. Missing values in Chl
a (n= 1), POC concentration (n= 2), annual mean nitrate (n= 4), and phosphate
(n= 2) concentration were linearly interpolated (Supplementary Table 1).
Resulting dissimilarities, geographic distance as well as the temperature difference

between stations were used in linear models to determine the influence of tem-
perature and geographic distance on taxonomic and functional community com-
position. Differential abundances of KOs and CAZymes between clusters of the KO
profile (see above) were determined using DESeq2.

Temperature range of gene variants. The difference between minimal and
maximal ambient temperatures with ≥15% of maximal gene variant abundance per
taxon (Genome level classification, see above) was defined as temperature range.
Only KOs with ≥10 variants per taxon were considered in this analysis.

Distribution of CAZymes. Abundance data from genes classified as CAZymes
were normalized to values between 0 and 1. Unimodal regression model fitting was
used to determine a relationship between temperature and family abundance,
Benjamini and Hochberg68 adjusted p-values ≤ 0.05 were considered significant.
Euclidean distances of CAZy family abundance profiles significantly related to
temperature were calculated and subsequently clustered using complete-linkage
clustering. The same modeling approach was used to determine the relationship of
clusters to temperature.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequence data generated in this study have been deposited in the European Nucleotide
Archive69 (ENA) under the INSDC accession number PRJEB34453 using the data
brokerage service of the German Federation for Biological Data70 (GFBio), in compliance
with the Minimal Information about any (X) Sequence (MIxS) standard71.
Environmental data from the cruise are available in the supplement and on PANGEA
under the accession number PANGAEA.906247. The Atlantic Ocean Reference Gene
Catalog (AOM-RGC), assembled contigs, and predicted genes are available at https://
service.icbm.uni-oldenburg.de/data/AOM_data/.

Code availability
The assembly pipeline, as well as scripts used for dataset generation and analysis, are
available at https://github.com/LeonDlugosch/Atlantic-Ocean-Metagenomes.
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