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It has been postulated that the brain operates in a self-organized critical state that brings multiple
benefits, such as optimal sensitivity to input. Thus far, self-organized criticality has typically been
depicted as a one-dimensional process, where one parameter is tuned to a critical value. However,
the number of adjustable parameters in the brain is vast, and hence critical states can be expected
to occupy a high-dimensional manifold inside a high-dimensional parameter space. Here, we show
that adaptation rules inspired by homeostatic plasticity drive a neuro-inspired network to drift on
a critical manifold, where the system is poised between inactivity and persistent activity. During
the drift, global network parameters continue to change while the system remains at criticality.

Introduction.—The critical brain hypothesis postulates
that biological brains operate in a self-organized critical
state [1–5]. While there was initially little evidence to
support this hypothesis, subsequent advances in neuro-
science have made it possible to observe the characteristic
power laws and avalanche dynamics associated with crit-
ical transitions, first in cell cultures [6–8] and then in live
animals and humans [9–13]. Although still controversial
[14], the critical brain hypothesis is rapidly gaining sup-
port in mainstream neuroscience, fuelled by the growing
amount of experimental evidence.
This experimental evidence is complemented by a body

of theory that elucidates the mechanisms that allow
networks of neurons to self-organize to a critical state.
Synapses that connect neurons to each other constantly
self-tune their conductance through a variety of pro-
cesses, collectively known as synaptic plasticity. Building
on the early ideas of Bornholdt and Rohlf [15], it has been
shown with simulations that commonly observed types of
synaptic plasticity, such as homeostatic and spike-time
dependent plasticity, are capable of self-organizing neu-
ronal models to a critical state [16–19].
One facet of self-organized criticality that has received

surprisingly little attention concerns the dimensionality
of the parameter space in which the self-organization oc-
curs. In the vast majority of studies, self-organized criti-
cality is depicted as a one-dimensional process, where one
parameter is tuned to a critical point. However, in real-
world systems such as the brain, there are several and
possibly very many parameters that are controlled dy-
namically. In such a high-dimensional parameter space,
the states of the system that correspond to criticality can
be expected to form a larger critical manifold.
It has been conjectured that the same mechanisms that

drive the system to criticality will cause a drift along the
critical manifold after criticality is reached [20]. While re-
maining critical, the system can thus continue to explore
the parameter space and potentially encounter further
instabilities along the way. This opens up the possibility
of new phenomena such as high-codimension criticality
with multiple order parameters and persistent paramet-

ric dynamics in the critical state. Understanding such
phenomena may shed light on how the brain can oper-
ate in different dynamical states both sequentially and
simultaneously.
In this paper, we use a simple adaptive neuro-inspired

network model to show that a self-organizing system can
drift on a critical manifold. This model has previously
been shown to self-organize to the critical state between
neuronal inactivity and persistent activity, called the on-
set of activity [17]. Here, we show that the system reaches
the critical state long before the global network parame-
ters, such as the average connectivity, reach their stable
values. We carefully analyze network dynamics after the
critical state has been reached, revealing the conjectured
drift on the critical manifold where the ongoing plastic-
ity continues to reshape the network structure while the
system remains critical. These results provide direct evi-
dence of the critical drift and establish an easily tractable
example system where subsequent phenomena can be an-
alyzed.
The model.—We investigate criticality in the model of

Droste et al. [17] that combines stochastic neuro-inspired
dynamics with adaptive network evolution. As the start-
ing point for the adaptation, we consider directed random
(Erdős-Rényi, ER) networks of N excitable nodes and M
directed links with a mean degree of 〈k〉 = M/N . Each
node can take three discrete states: firing (F ), refractory
(R), or inactive (I). Nodes in the firing state activate
their inactive neighbors stochastically at rate β and then
enter a refractory period at rate δ before transitioning
back to state I at rate γ. The network topology evolves
on a timescale slower than the node dynamics, following
rules inspired by homeostatic plasticity that strives to
keep the mean firing rate of each neuron constant over
the long term (see e.g. [21]). We use a discrete update
rule where firing nodes lose incoming links at rate l, while
new links are created between random nodes at rate g.
During the network evolution, we allow inactive nodes to
fire spontaneously at rate η to counteract activity dying
out due to finite-size effects. The network dynamics and
topology are evolved using the Gillespie algorithm [22].
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FIG. 1. The onset of activity in static ER networks of different sizes N . (a) The average fraction of firing nodes 〈[F ]〉 (average
taken over time) before tmax = 5000, with 5% of the nodes initialized as firing. The inset shows the time series of the fraction
of firing nodes for networks of size N = 105 with different mean degrees. (b-c) The maximum size and duration of finite
avalanches (lasting less than tmax) in 1000 successive runs. Both quantities display a sharp peak at a critical value 〈k〉∗N, static,
which moves closer to the theoretical estimate as N increases. All results are averaged over 30 network realizations for each
mean degree. In these and subsequent figures, we set β = 0.7, δ = 0.95 and γ = 0.4.

The implementation is available in GitHub [23].

Criticality in static ER networks.—Let us first charac-
terize the transition from inactivity to persistent activity
when the adaptation rules are switched off and no spon-
taneous activity is allowed. This transition separates the
phase where any initialized activity dies out exponen-
tially from the phase where exciting a random node leads
to sustained activity. The average activity 〈[F ]〉 acts as
the order parameter of the transition (see Fig. 1a). In
static ER networks, the mean degree 〈k〉 is the control
parameter determining the overall excitability. As the fir-
ing dynamics is similar to the SIS model, the transition is
expected to belong to the directed percolation universal-
ity class [24]. In this universality class, two correlation
lengths, ξ‖ and ξ⊥, diverge at the transition, with the
former corresponding to the temporal dimension and the
latter to the spatial (network) dimension.

To verify that the system undergoes a continuous phase
transition at a critical value 〈k〉∗static, we initialize several
successive cascades of activity in ER networks with dif-
ferent mean degrees 〈k〉. These avalanches are initialized
by activating one random node at a time. We then record
the duration and size of the resulting avalanche, where
the size indicates the number of firing events (note that
one node can fire several times). We set a maximum time
limit tmax so that avalanches that die out before this limit
are considered finite. Their maximum size and duration
are then expected to sharply peak at the critical value
〈k〉∗static as a result of the diverging correlation lengths.

We observe that, as expected, the system shows the
hallmarks of a continuous phase transition at a critical
value 〈k〉∗N, static, with the transition becoming sharper
as N increases. At this threshold, the average activ-
ity becomes non-zero and the maximum size and dura-
tion of finite avalanches diverge (Fig. 1). In line with
this, the probability distributions of finite avalanche size
and duration appear exponential when 〈k〉 lies clearly
under or above the critical threshold, while close to the

critical value the distributions look like power laws with
exponents matching the theoretical predictions for criti-
cal SIS-like systems derived in [25] (see SI V [26]). The
critical mean degree 〈k〉∗N, static depends on the transi-
tion rates β, δ and γ, and its value for infinite systems
can be approximated with Eq. 7 from [17]. For the pa-

rameters used here, Eq. 7 yields 〈k̂〉∗static = 2.21, which
lies slightly below the experimentally extrapolated value
〈k〉∗N→∞, static (see SI I [26]).
Evidence for drift on the critical manifold.—Next, we

switch on the plasticity rules and observe how the sim-
ulated networks evolve in time, using ER networks of
different mean degrees in the vicinity of the critical value

〈k̂〉∗static = 2.21 as the initial condition. We follow the
evolution of the networks’ key characteristics: leading
eigenvalue λ1 of the adjacency matrix, mean degree 〈k〉,
mean excess degree 〈q〉, and the Pearson correlation co-
efficient ρ of the nodes’ in- and out-degrees (Fig. 2, a-d).
We start by analyzing the time evolution of the lead-

ing eigenvalue λ1. This eigenvalue reflects the overall
excitability of the network, and the onset of activity is
known to occur at a critical value λ∗

1 in locally tree-like
networks. This has been shown previously assuming that
the states of neighboring nodes are independent (see e.g.
[27]); here, we derive a more accurate estimate for λ∗

1 by
relaxing this assumption. Using the so-called pair ap-
proximation (see SI VII [26]), we obtain

λ̂∗
1 =

δ

β
+

δ + γ/2

δ + γ
, (1)

which is identical to 〈k̂〉∗static derived for static ER net-
works in Ref. [17]. Note that in general, for static ER
networks, 〈k〉 and λ1 are approximately equal. If the net-
work structure is less random, 〈k〉 becomes a poorer ap-
proximation for the excitability. The leading eigenvalue,
however, remains a more reliable indicator of excitability,
unless the network has significant degree correlations [28]
or is highly structured [29].
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FIG. 2. Critical drift in evolved networks with different initial mean degrees. (a-d) Time evolution of the leading eigenvalue λ1,
mean degree 〈k〉, mean excess degree 〈q〉 and Pearson correlation coefficient ρ of the nodes’ in- and out-degrees. The simulation
is initialized with 5% of the nodes in the firing state. The parameter values are N = 105, l = 10−3, g = 10−6 and η = 1/(100N).
For analysis on their effect on the drift, see SI II and III [26]. The yellow dashed line in (a) shows 〈k〉∗

N=105, static (determined

in SI I [26]). (e) We freeze the networks at different time points shown in panel (b). These are chosen so that for each network,
point A lies before the start of the drift while points B-D correspond to the drift phase. For each time point, the dashed
vertical line marks the mean degree in the evolved network at that point, while the curve in the same color shows results for
the networks obtained by manipulating the mean degree. The top row shows average activity 〈[F ]〉 before tmax = 5000 with
5% of the nodes initialized as firing. The other two rows show the maximum size and duration of finite avalanches in 1000
successive runs. Results are averaged over 30 network realizations for all networks obtained by manipulating 〈k〉. We observe
that during the initial phase (point A), the mean degree lies clearly under or above the onset of activity, while during the drift
phase (points B-D), the networks reside at the onset of activity. As the network evolves, the onset of activity happens at higher
values of 〈k〉, which confirms the existence of the manifold. Note that the divergence peaks of avalanche sizes and durations
are not exactly at the point where 〈[F ]〉 becomes non-zero (top row); however, these three measures converge to the critical
value (or slightly above it due to finite values of g and l) as N is increased (see SI IV [26]).

We observe that as the network evolves, the leading
eigenvalue λ1 reaches a stable value after a short transient
(Fig. 2a). This value lies close to 〈k〉∗N=105, static

and

moves closer to the theoretical estimate λ̂∗
1 = 〈k̂〉∗static as

N increases (see SI I [26]), indicating that the system
resides at criticality.

To illustrate the drift on the critical manifold, we next
analyze the evolution of the mean degree 〈k〉. We see that
〈k〉 first changes rapidly, but once λ1 stabilizes, the aver-
age rate of change in 〈k〉 decreases considerably (Fig. 2b).
Subsequently, the mean degree increases gradually and
unevenly and finally settles to fluctuate around a con-
stant value that is clearly above 〈k〉∗N, static. We inter-
pret these qualitatively different stages as an initial phase
where the dynamics approaches criticality, followed by a
drift phase, where the system slides along the critical
manifold. During the drift, λ1 stays constant while 〈k〉

as well as the mean excess degree and the correlation
coefficient ρ (Fig. 2c-d) keep changing.
We note that the observation of the final value of 〈k〉

differing from λ1 is not novel per se; this has already been
established for a SIRS-like system evolved with short-
term homeostatic plasticity in [30]. Our novel result is
the observation of the phase where the system is already
critical before the network parameters have reached sta-
ble values. It is also crucial to note that while λ1 stays
constant on the manifold in locally tree-like networks,
its value can change during the critical drift in networks
with loops (see SI VIII [26]).
To confirm that the system remains critical during the

drift, we directly assess the distance to criticality at dif-
ferent points in time during the network evolution. For
this purpose, we initially evolve the network topology for
time t. After this, we switch the plasticity rules off and
create several replicas of the system in which we add or
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remove a small number of links at random. We then ana-
lyze the effect of this perturbation of the number of links
on the network dynamics by examining the divergence
of the size and duration of the largest finite avalanches
(Fig. 2e). During the initial phase, a large perturbation
is needed to bring the system to criticality (dashed lines
marked with A in Fig. 2e). During the drift phase, how-
ever, the evolved networks reside at the divergence peak
at the onset of activity (dashed lines marked with B-D).

Furthermore, we observe that the onset of activity oc-
curs at higher values of the mean degree as the network
evolves (see SI VI [26] for further illustration). In other
words, 〈k〉∗ drifts towards higher values as the network
evolves. At the same time, the network remains at crit-
icality, as also seen in the PDFs of the sizes and dura-
tions of finite avalanches that remain unchanged during
the drift and agree well with the theoretical predictions
for critical SIS-like systems derived in [25] (SI V [26]).

To understand why the mean degree 〈k〉 increases dur-
ing the drift, we turn to analyze the characteristics of
the links that the plasticity mechanism removes. As the
mechanism removes links from firing nodes, links that
often forward activation are likely to be erased. Intu-
itively, removing such links tends to reduce the overall
excitability more than adding random links increases it
on average. Consequently, more links need to be added
than removed to keep the excitability at a constant level.
This imbalance leads to 〈k〉 increasing until the most ac-
tive links have been removed and the average effect of a
random addition and a targeted removal even out.

This intuition can be expressed in more formal terms
using the leading eigenvalue λ1 and the corresponding left
principal eigenvector. In SIS-like models [24], a node’s
eigenvector centrality (given by the left principal eigen-
vector) correlates with its probability of being in the fir-
ing state, and this relation is particularly strong if the
system is close to criticality (see SI IX [26]). Conse-
quently, the plasticity mechanism tends to reduce the
in-degrees of nodes with high centrality. As these links
contribute to the magnitude of λ1 more than a randomly
chosen link on average, the removals needs to be com-
pensated by adding links to the network to keep λ1 close
to the critical value. As time passes, the effects of link
addition and removal gradually even out (see SI X [26]).
Consequently, 〈k〉 increases more and more slowly and
eventually levels off. This drift can be observed for a
wide range of values of β, δ, and γ, as long as the critical
value of λ1 is low enough (see SI XI [26]).

The leading eigenvalue depends on many topological
characteristics, such as the mean excess degree 〈q〉 and
the cyclic patterns in the network. In directed networks,
〈q〉 is defined as the average out-degree of nodes reached
by following a link, 〈q〉 = 1

|{sij}|

∑

{sij}
kout,j , where {sij}

denotes the set of all links and kout,j denotes the out-
degree of node j. It is relevant in the context of activity
spreading as it equals the expected number of new nodes
that an arriving avalanche can excite. In the considered
sparse ER networks, 〈q〉 increases only slightly during

the drift (Fig. 2c), which indicates that the plasticity
mechanism controls excitation mainly through restrict-
ing its growth. This is because firing nodes are likely
to have predecessors with higher-than-average in-degrees,
and hence the plasticity mechanism effectively reduces
the out-degrees of nodes with many incoming links. This
trend is reflected in the decreasing Pearson correlation
coefficient ρ of nodes’ in- and out-degrees (Fig. 2d) and
aligns with the results in [30], where a negative corre-
lation between incoming and outgoing synaptic weights
was found to explain the deviation of the self-organized
stable value of the branching ratio (equivalent to 〈k〉 in
our model) from the mean-field prediction.

While the mean excess degree increases only slightly
during the drift, it increases nonetheless. This implies
that, similarly to 〈k〉, its critical value depends on other
network parameters, such as the number and configura-
tion of cycles. Consequently, the magnitude of the in-
crease depends largely on the original network topology.

In this study, we have shown that rules resembling
homeostatic plasticity drive simple neuro-inspired net-
works to drift along a critical manifold. During this drift,
the network stays at the onset of activity while global
network parameters continue to change. Our findings
underscore that criticality should not be understood as a
one-dimensional point but rather as a high-dimensional
manifold embedded in a vast parameter space, as hypoth-
esized in [17]. As a consequence, residing at the onset of
activity does not set strict constraints to any specific net-
work parameter, as the change in one parameter can be
compensated by adjusting some other variable accord-
ingly. This flexibility allows for considerable variation in
network topology while at criticality. We emphasize that
the core message of our work lies in establishing that a
self-organizing system can drift along or close to a crit-
ical manifold; whether the system is exactly critical or
slightly sub- [31, 32] or supercritical [33] likely depends
on the self-organizing mechanism in question. While the
model studied in this work is inspired by neuronal net-
works, it is very far from being biologically realistic; in-
vestigating more detailed and realistic models is best left
for future work that builds on the foundations established
here.

In the sparse random networks considered in this
study, the values of the tracked parameters eventually
stabilized. In real systems, however, external stimuli
and a number of different driving processes continue to
perturb the system. Introducing additional driving pro-
cesses – such as another type of plasticity rule [34] – could
cause the network to continue to drift along the manifold
or possibly even induce periodic parameter dynamics. If
the changes in network configuration entail changes in the
dynamical behavior, the system can explore different dy-
namical regimes while remaining critical at all times. An
interesting question concerns whether critical manifolds
associated with different phase transitions intersect. For
example, can a system drift to the onset of synchrony
while still remaining at the onset of activity? Explor-
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ing the structure, dynamical regimes, and intersections
of these critical manifolds is an exciting avenue for fu-
ture research.
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I. Critical values of 〈k〉 and λ1

Fig 1(a) shows the empirical estimates for the critical mean degree 〈k〉∗N, static in static ER

networks as a function of 1/N . The critical values are determined by first finding the mean
degree for which the size/duration of finite avalanches in 1000 successive runs is maximal,
then repeating this procedure for 30 network realizations and taking the average of the
found values. We fit a quadratic polynomial to the points to find the intersection with the
y-axis. This intersection lies around 〈k〉∗N→∞, static = 2.27, slightly above the theoretical

estimate 〈k̂〉∗static = 2.21.

In the evolved ER networks of size N = 105, the leading eigenvalue λ1 self-organizes to
a value close to 〈k〉∗

N=105, static
during the drift phase, and this value moves closer to the

theoretical estimate λ̂∗
1 = 〈k̂〉∗static as the network size increases [Fig. 1(b)].
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FIG. 1. (a) Critical value 〈k〉∗N, static in static ER networks as a function of 1/N calculated
using avalanche sizes (circles) and durations (triangles). The markers overlay the 95% confidence

intervals. The dashed line marks the theoretical estimate 〈k̂〉∗static = 2.21. (b) The mean value of
λ1,N in evolved networks during the drift phase as a function of 1/N . The initial degree is 3 and
µ is set to 1/(100N). The extrapolated value λ∗

1,N→∞
lies close to the value 〈k〉∗N→∞, static.

II. Effect of network size on the drift

We verify that the increase in the mean degree 〈k〉 during the drift phase does not arise
from some finite size effect. To this end, we first calculate the average value of λ1 after it
has clearly stabilized, and subsequently define the drift to start when λ1 first crosses this
value. Next, we subtract the value of 〈k〉 at the start of the drift from the subsequent values
of 〈k〉 during the drift. After this normalization, it becomes evident that increasing N has
very little effect on the drift for networks larger than N = 50000 [Fig. 2].

http://arxiv.org/abs/2206.10315v3
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FIG. 2. Increase in 〈k〉 during the drift phase. Initial mean degree is 1 and the spontaneous firing
rate equals 1

100N
.

III. Parameter considerations

A. Spontaneous firing rate η

As discussed in Droste, Do, and Gross (2013), the spontaneous firing rate η plays a role in
how close to the critical threshold λ∗

1,N the network self-organizes to; when η is increased, the
stabilized value of λ1,N decreases. This happens because spontaneous activity contributes to
the overall level of activity, which the self-organization process strives to keep at a constant
level. However, as demonstrated in Droste, Do, and Gross (2013), the effect of the exact
value of η on the distance to criticality becomes negligible for small enough η and large
enough networks. We observe that for a network of size N = 105, the value of η has little
effect also on the drift of 〈k〉 when η < 10−4 [Fig. 3(a)].

In networks of finite size, the value of η affects how smoothly the mean degree changes.
If η is low, intervals between subsequent bursts of activity lengthen, and the network is
likely to cross well into the supercritical regime before a new avalanche takes place and
the link removal mechanism is activated. Consequently, the fluctuations between sub- and
supercritical states become more pronounced. However, this effect subsides as the network
size increases.

B. Network evolution parameters

In general, self-organized criticality is possible only if the system’s dynamics can be
separated into two parts; the dynamics that becomes critical, and the controlling dynamics
that steers the former to criticality. Dynamically speaking, this division is justified only if
a timescale separation exists between the two. Consequently, the firing dynamics need to
have a faster timescale than the network evolution, i.e. β, δ, γ ≫ l, g. In addition, the rate l
at which nodes lose links needs to be clearly higher than the rate g at which they gain links.
As we are interested in the magnitude of g compared to l, we define g = ǫl, where ǫ is a
scaling parameter. This second time-scale separation stems from the fact that the plasticity
rules act locally instead of controlling the average activity in a more centralized manner.
Since firing nodes characterize only the active phase but inactive nodes are common in
both the quiescent and the active phase, local excitability has to be increased gradually for
inactive nodes and decreased quickly for active nodes. As shown in Droste, Do, and Gross
(2013), the network self-organizes to criticality in the limit l → 0, ǫ → 0.

The exact values of l and ǫ have little effect on the magnitude of increase in 〈k〉 during
the drift phase [see Fig. 3(b),(c)]. Both parameters control the timescale of the drift; if
one of the parameters is decreased by an order of magnitude, the duration of the drift
correspondingly increases by an order of magnitude.
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FIG. 3. Time evolution of 〈k〉 and λ1 normalized by the stabilized value of λ1 in a network
of size N = 105 for different parameter values of η, l and ǫ. The default parameter values are
η = 10−7, l = 0.001 and ǫ = 0.001. As the parameters l and ǫ control the timescale of the drift,
we have additionally scaled the time series in figures (b) and (c) to correspond to the pace of the
drift for the default values. The scaling is done by multiplying the x-axis by the factor by which
the parameter value is larger than 0.001.
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IV. Scaling of signatures of criticality

In Figure 2(e) in the main text, we observed that the divergence peaks of avalanche sizes
and durations did not always align with the point where the average activity 〈[F ]〉 abruptly
increased. Here, we show that this discrepancy is a finite-size effect, and that the different
ways of measuring criticality converge as the network size increases.

To show this, we repeat the procedure of Fig. 2(e) in the main text for networks of
different sizes. We then determine the critical degree 〈k〉∗N in three different ways; either
based on where the curve for maximum size or duration of finite avalanches reaches its
maximal value, or by looking at where the average activity 〈[F ]〉 changes the most between
two consecutive mean degrees. We observe that these different ways to determine 〈k〉∗N
converge as the network size N increases [Fig. 4].

Looking at Fig. 4, we observe that asN increases, the mean degree of the evolved networks
seems to converge to a value slightly above 〈k〉∗N . In fact, this is to be expected; as discussed
in the previous section, the network self-organizes to criticality in the limit l, ǫ → 0. Hence,
the evolved mean degree is expected to lie slightly above the critical value for finite values
of l and ǫ.

Droste, Do, and Gross (2013) derive a theoretical estimate for this deviation for specific
values of l and ǫ under the assumption that the network is an ER network (see Eq. (11g) of
their paper). In Fig. 4, the dashed line marks this theoretical deviation from the theoretical
critical value 〈k〉∗ = 2.21. We observe that the mean degree of the simulated networks
would seem to deviate from the critical value less than suggested by Eq. (11g). This may
be affected by the evolved networks violating the assumption of the network being an ER
network. In addition, since the theoretical deviation depends on 〈k〉∗N for l, ǫ 6= 0, the true
distance to criticality may vary slightly as 〈k〉∗N increases during the drift. Finally, the mean
degree is expected to converge to the theoretical value from below only as the spontaneous
activity goes to zero.
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FIG. 4. Distance to criticality at different times during the network evolution as a function of
inverse network size 1/N . Distance to criticality is measured based on the average activity (red
circles), maximum size (blue triangles) and duration (green diamonds) of finite avalanches. The
initial mean degree is 2 and the spontaneous firing rate is set to 1/(100N). For each N and each
timepoint, we first determine the estimates of 〈k〉∗N for one time series by averaging over 10 rounds
of degree manipulations. The figures display the average and the 95% confidence intervals over 30
time series. Note that the resolution of the y-axis is 0.01 before any averaging.
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V. PDFs of avalanche sizes and durations

Figure 5 shows the PDFs of the sizes and durations of finite avalanches in static net-
works with different mean degrees. When the mean degree equals the experimentally ex-
trapolated value 〈k〉∗static,N→∞ = 2.27, the distributions resemble power law distributions
with exponents matching the theoretical predictions for critical SIS-like systems derived
in Larremore et al. (2012). When the mean degree lies clearly below or above the critical
value, the distributions’ tails decay markedly faster.
We observe that the tail of avalanche sizes is in general heavier than that of avalanche du-

rations, which aligns with the results of Bak, Tang, and Wiesenfeld (1987) and Larremore et al.
(2012). The beginning of the distribution of avalanche durations (right-hand column in
Fig. 5) is furthermore affected by the exponential distribution of the times that nodes spend
in the firing state.
To further verify that our self-organizing system resides at criticality during the drift

phase, we plot the PDFs of avalanche sizes and durations at different points during the
drift [Fig. 6]d. We observe that these distributions resemble power law distributions with
exponents matching the theoretical predictions at criticality. Most of the distributions have
a small bump in their tail, which might indicate that the systems are slightly supercritical.
This result would align with the theoretical prediction derived in Droste, Do, and Gross
(2013) already discussed in sections III and IV, namely that our model is strictly critical
in the limit l, ǫ → ∞ and deviates slightly to the supercritical regime for finite parameter
values. When the network size increases, this bump moves further towards the tail [see Fig.
7].



6

100

10 3

10 6

10 9

10 12

P
�
�
��
��
�
�

= 3/2

k =2�	
 =��
� =���� =���

100

10 2

10 4

10 6

10 8
�
�
�
��
�
�
�
��
 
!
"

= 2

# =$%&' =()*+ =,-./ =013

100

10 3

10 5

10 9

10 12

7
9
:
;<
=>
?
@

= 3/2

A =BCDEF =GHIJK =LMNOQ =RSTU

100

10 2

10 V

10 W

10 X
Y
Z
[
\]
^
_
`
ab
c
d
e

= 2

f =ghijl =mnopq =rstuv =wxyz

100 102 10{ 10| 10}

size

100

10 3

10 ~

10 9

10 12

�
�
�
��
��
�
�

= 3/2

� =���� =���� =���� =���

100 101 102 103 10� 105

������� 

100

10 2

10 ¡

10 ¢

10 £
¤
¥
¦
§¨
©
ª
«
¬­
®
¯
°

= 2

± =²³´µ =¶·¸¹ =º»¼½ =¾¿À

N

50000

100000

500000

1000000

FIG. 5. PDFs of the sizes and durations of finite avalanches in static random networks with
different mean degrees and varying network sizes. The mean degrees of the top and bottom rows
are chosen to be below and above criticality, respectively, while the middle row corresponds to the
experimentally extrapolated critical value 〈k〉∗static,N→∞

= 2.27. The number of runs for each mean
degree is originally 10000, but only avalanches lasting less than tmax = 50000 are considered. The
green dashed lines mark the slopes derived for critical SIS-like systems in Larremore et al. (2012).
The x-axis in the right-hand column starts at 0.95, which is the expected value of the time a node
spends in the firing state before transitioning to refractory.
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FIG. 7. PDFs of evolved networks at time t = 3900000 for different network sizes. The networks
have been evolved with spontaneous firing rate equal to 1/(100N).

VI. Illustration of the critical drift

Figure 8 illustrates that the value of the critical mean degree 〈k〉∗
N=105

increases during
the drift phase. In addition, we observe that during the initial phase, the mean degree of
the evolved network lies below 〈k〉∗

N=105
while during the drift phase, the system resides at

the onset of activity.
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FIG. 8. The mean degree 〈k〉 (black circles) and the critical 〈k〉∗
N=105 (red crosses) in a network

evolved with the plasticity rules. The initial degree is 1 and the parameters are set to N = 105, l =
10−3, g = 10−6 and η = 1

100N
. The values of 〈k〉∗

N=105 are obtained by first manipulating 〈k〉 of
the evolved network as in Fig. 2(e) in the main text and then finding 〈k〉∗N=105 based on avalanche
durations as in Fig. 1 of SM.
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VII. Leading eigenvalue as an indicator of criticality

The leading eigenvalue is known to reflect the critical threshold in epidemic models such
as SIS and SIRS (identical to our static IFRI model) on undirected networks. However,
previous proofs for the SIRS/IFRI model have mostly relied on the assumption that the
states of two neighboring nodes are independent. This assumption leads to a threshold
condition λ1 = δ/β (see e.g. Prakash et al. (2012)), which does not accurately predict the
critical threshold in our model.

To improve the accuracy, we no longer assume that the probability of a link connecting
a node in state X to a node in state Y is simply given by the product of the states’
probabilities. Instead, we derive evolution equations for the probability of node i being in
state X and node j being in state Y , which we denote by [XiYj ]. Often, these probabilities
depend on the probabilities of two-link structures, say, the probability of having a FI-link
followed by a II-link or two F -nodes pointing to the same I-node. To avoid rendering
the system overly complex, we approximate these probabilities using the link and node
probabilities. For example, given a path k → j → i, the probability of the first link being
an FI-link and the second link being an II-link would be given by [FkIj ][IjIi]/Ij , where Ij
denotes the probability of node j being in state I. This type of approximation – called the
pair approximation – is used in Mata and Ferreira (2013) to study the critical threshold for
λ1 in the undirected SIS model, and in Droste, Do, and Gross (2013) to derive a critical
value for the mean degree in the SIRS/IFRI model when the exact network structure is
not known. Here, we assume that the adjacency matrix A is known and derive a critical
threshold for the leading eigenvalue.

With the pair approximation, we obtain the following differential equations:

Ḟi = −δFi + β

N
∑

j=1

Aji[FjIi] (1)

Ṙi = δFi − γRi (2)

˙[FjIi] = Aji

(

β
[IjIi]

Ij

N
∑

k=1

Akj [FkIj ] + γ[FjRi]− β
[FjIi]

Ii

N
∑

k 6=j

Aki[FkIi]− (β + δ)[FjIi]
)

(3)

˙[IjIi] = Aji

(

γ[IjRi] + γ[RjIi]− β
[IjIi]

Ii

N
∑

k 6=j

Aki[FkIi]− β
[IjIi]

Ij

N
∑

k=1

Akj [FkIj ]
)

(4)

˙[FjRi] = Aji

(

δ[FjFi] + β
[IjRi]

Ij

N
∑

k=1

Akj [FkIj ]− (γ + δ)[FjRi]
)

(5)

˙[IjRi] = Aji

(

γ[RjRi] + δ[IjFi]− γ[IjRi]− β
[IjRi]

Ij

N
∑

k=1

Akj [FkIj ]
)

(6)

˙[RjIi] = Aji

(

δ[FjIi] + γ[RjRi]− β
[RjIi]

Ii

N
∑

k 6=j

Aki[FkIi]− γ[RjIi]
)

(7)

˙[FjFi] = Aji

(

β
[IjFi]

Ij

N
∑

k=1

Akj [FkIj ] + β
[FjIi]

Ii

N
∑

k 6=j

Aki[FkIi] + β[FjIi]− 2δ[FjFi]
)

(8)

˙[RjRi] = Aji

(

δ[FjRi] + δ[RjFi]− 2γ[RjRi]
)

(9)

˙[RjFi] = Aji

(

β
[RjIi]

Ii

N
∑

k 6=j

Aki[FkIi] + δ[FjFi]− (γ + δ)[RjFi]
)

, (10)
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where we use the conservation laws

Ii = 1− Fi −Ri (11)

[IjFi] = 1− [FjFi]− [FjIi]− [FjRi]− [IjIi]− [IjRi]− [RjFi]− [RjIi]− [RjRi]. (12)

The onset of activity occurs when the so-called trivial fixed point (Ii = [IjIi] = 1 for
all i, j) becomes unstable. From dynamical systems theory we know that the fixed point
loses stability when the leading eigenvalue of the associated Jacobian matrix crosses from
negative to positive, i.e. λ1(J) = 0. The Jacobian associated with equations 1-10 can be
interpreted as a block matrix of size (2N + 8N2)× (2N + 8N2) consisting of four blocks of
size N × N , 16 blocks of size N × N2, 16 blocks of of size N2 × N and 64 blocks of size
N2×N2. At the trivial steady state, all blocks except forX, Y and Z are diagonal matrices.
The diagonal matrices corresponding to variables F −R are identity matrices multiplied by
the constant given below. The other diagonal matrices are given by diag(vec(A)) multiplied
by the constant given below:

J =

F R FF FI FR II IR RF RI RR
F −δ X

R δ −γ
FF −2δ β
FI Y γ
FR δ −γ − δ
II Z γ γ
IR −δ −δ −δ −δ −δ − γ −δ −δ −δ + γ
RF δ −γ − δ
RI δ −γ γ
RR δ δ −2γ

(13)

To find the stability condition, it suffices to examine a smaller part of the Jacobian. To
see this, we divide the Jacobian into four blocks, whereB1 corresponds to variables F−[FR]
and B3 to [II]− [RR]. The eigenvalue equation is then given by

[

B1 0
B2 B3

] [

e1

e2

]

= λ(J)

[

e1

e2

]

, (14)

where the eigenvector e has been split into two parts e1 and e2. The multiplication results
in equations

B1e1 = λ(J)e1 (15)

B2e1 +B3e2 = λ(J)e2. (16)

The first equation shows that λ(J) must be an eigenvalue of B1 if e1 is not a zero vector.
On the other hand, if e1 equals zero, λ(J) must be an eigenvalue of B3. Consequently,
the eigenvalues of λ(J) are given by the eigenvalues of B1 and B3. However, since the
eigenvalues of B3 are non-positive constants, it suffices to examine the eigenvalues of B1.
With similar logic, we can divide B1 into four blocks where one block is a zero matrix.

Consequently, the eigenvalues of B1 are given by the blocks formed by variables F −R and
[FF ] − [FR]. The eigenvalues of the first block are non-positive constants, meaning that
the stability conditions can be found by examining the matrix

C =





−2δ β 0
0 Y γ
δ 0 −γ − δ



 , (17)

where Y = βM− (β + δ)diag(vec(A)) and M is of the form
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[F1I1] [F2I1] ... [F1I2] [F2I2] ....
[F1I1] A11A11 A21A11 ...
[F2I1] A12A21 A22A21 ...
...

[F1I2] A11A12 A21A12 ...
[F2I2] A12A22 A22A22 ...
...

(18)

In words, the entry of M corresponding to row [FiIj ] and column [FkIl] equals one if there
is a path k → l = j → i.
We observe that the nonzero eigenvalues of the matrix M are equal to those of the

edge adjacency matrix E. The rows and columns of E correspond to the existing edges
of the network, and Eij = 1 if edges j and i form a directed path. The eigenvalues are
equal because of the symmetric structure of M; if the ith column consists of zeros because
Akl = 0, the same must be true for the ith row. Consequently, M corresponds to a linear
transformation where the ith unit vector (corresponding to the ith column) collapses to
the origo. As the ith component of all other columns is zero, the transformation can be
depicted in a lower-dimensional space (i.e. the ith column and row can be removed) without
affecting the nonzero eigenvalues. Finally, we note that the nonzero eigenvalues of the edge
adjacency matrix are equal to the eigenvalues of the adjacency matrix A. Consequently,
λi(Y) = βλi(A)− β − δ.
Given the eigenvalues λi(Y), the eigenvalues of the matrix C can subsequently be found

by setting each eigenvalue λi(Y) to the diagonal of the middle block in C and solving the
eigenvalues of this modified matrix CD. This is possible because the part of any eigenvector
e(C) that Y modifies must be an eigenvector of Y. To see this, we look at the eigenvalue
equation Ce = λ(C)e where e = [e1e2e3]

T . The multiplication results in equations

−2δe1 + βe2 = λe1 (19)

Ye2 + γe3 = λe2 (20)

δe1 + (−γ − δ)e3 = λe3. (21)

Substituting equations 19 and 21 into equation 20, we obtain

Ye2 =
(

λ(C) +
βδγ

(λ(C) + γ + δ)(−2δ − λ(C))

)

e2. (22)

As the first term on the right-hand side is a constant, it must be the case that e2 is an
eigenvector of Y.
The modified matrix CD can be expressed as a Kronecker product





−2δ β 0
0 βλi(A)− β − δ γ
δ 0 −γ − δ



 I
N2×N2

. (23)

Consequently, the eigenvalues of C are given by the eigenvalues of the small 3 × 3 matrix
above. This matrix has the same form as the matrix in Droste, Do, and Gross (2013), and
the signs of its eigenvalues can be solved similarly using the Hurwitz theorem. Solving for
the critical value of λ1, we obtain that the trivial steady state loses stability when

λ1 =
δ

β
+

δ + γ/2

δ + γ
. (24)

VIII. Critical drift in a Watts-Strogatz network

As mentioned in the main text, the leading eigenvalue λ1 of the network’s adjacency
matrix can change during the critical drift in some highly structured networks as well as
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in networks with a significant amount of loops. In such cases, the value of λ1 alone does
not determine whether or not the system resides at criticality. To illustrate this, we create
a directed Watts-Strogatz network, a directed ring lattice where each node is connected to
the next node as well as to the node directly after. When this network is evolved according
to the adaptation rules, the drift is clearly visible in all tracked parameters. Contrary to
the initialization with ER networks, however, λ1 does not stay constant during the drift
[Fig. 9]. Instead, its value stabilizes only after the link removals and random additions have
erased some of the original structure and increased randomness in the network.

FIG. 9. Drift in a network initialized as a directed Watts-Strogatz model. The graphs are obtained
similarly to those in Fig. 2 in the main text, only the initial network structure differs.

IX. Correlation of the eigenvector centrality and the probability of firing

We show that a node’s eigenvector centrality correlates with its probability of being in
the firing state F . This has previously been shown for several different epidemic models
on undirected networks, including the SIS model (Goltsev et al. (2012)). The proof for our
directed IFRI model follows a similar pattern. Let us denote the probability of node i being
in state F at time t by Fi and the probability of being in state R by Ri. For simplicity,
the corresponding vectors are denoted by F and R. Assuming that the states of all nodes
are independent of each other, the time evolution of the state vectors obey the differential
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equations

Ḟ = −δF + βI ◦ FA (25)

Ṙ = δF − γR, (26)

where A denotes the network’s adjacency matrix and ◦ denotes the Hadamard product. In
addition, we know that

I = 1− F −R. (27)

At criticality, the derivatives equal zero as we are at a steady state. Substituting expressions
26 and 27 into Eq. 25, we obtain

F =
β

δ
(1− F −

δ

γ
F ) ◦ FA (28)

Assuming that the effect of terms involving F ◦ F is negligible, this can be expressed as

F =
β

δ
FA. (29)

For this equation to apply, it must be the case that F is a left eigenvector of A. If we
assume that the network is strongly connected, Perron-Frobenius theorem for non-negative
matrices guarantees that the principal eigenvector is the only eigenvector where all elements
are non-negative. Hence, as we require F to be non-negative, it must correspond to the
principal eigenvector, which gives the eigenvector centralities of individual nodes. If the
network is not strongly connected, we can apply Perron-Frobenius theorem individually to
each of the network’s strongly connected components.

X. Driving force of the drift

As discussed in the main text, the drift of the mean degree 〈k〉 results from the targeted
link removals decreasing the leading eigenvalue λ1 more efficiently than the random link
additions increase it on average. We verify this by freezing a network at two different times
during the critical drift, first at the beginning of the drift and second after the value of 〈k〉
has stabilized. In these frozen networks, we repeatedly remove or add a link to the network
and measure the resulting change in λ1 [Fig. 10]. Since a node’s eigenvector centrality
correlates with its probability of being in the firing state, we simulate the targeted link
removals from firing nodes by first choosing a node with probability proportional to its
eigenvector centrality and then randomly removing one of its incoming links.
We observe that at the beginning of the drift, the targeted link removals decrease λ1

more efficiently than random link additions increase it on average, while at a later stage of
the drift, the effects of link removal and addition have evened out. At this later stage, link
removals have a weaker effect on λ1 than in ER networks with the same 〈k〉, as expected.
In addition, the network topology has changed in a way that the link additions increase λ1

more than expected in an ER network with the same mean degree.
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FIG. 10. Average absolute change in the leading eigenvalue λ1 after a random link addition (red
circles) or targeted link removal (blue circles) in the evolved networks at two different times during
the critical drift. The triangles show the effect of a link addition/removal in static ER networks with
mean degree equal to that of the evolved network at the corresponding time point. The markers
show the mean effect of 10000 repeated link additions/removals with the bars displaying the 95%
confidence intervals. Initial 〈k〉 of the evolved network is 2, and the parameters are identical to
those of Fig. 2 in the main text.

XI. Dependence of the drift on parameters β, δ and γ

It has been shown in Droste, Do, and Gross (2013) that our model self-organizes to crit-
icality irrespective of the specific choices of β, δ and γ controlling the dynamics. In this
section, we investigate how these parameters affect the critical drift of 〈k〉.

As argued in the previous section, the increase in 〈k〉 during the drift originates from the
imbalanced effect of targeted link removals and random additions on the leading eigenvalue
λ1. If the network structure is such that the effects of a link addition and removal are
already balanced when the system reaches criticality, we do not expect to observe this drift.
Hence, as β, δ and γ affect the critical value of λ1 that the network self-organizes towards
(see Eq. 1 in the main text), they indirectly influence the network topology at the beginning
of the critical drift, which in turn determines whether or not 〈k〉 will increase during the
drift.

To understand the effect of parameters β, δ and γ on the drift, we first examine how the
average effects of link addition and removal change when the mean degree of a static ER
graph increases. As shown in Fig. 11, increasing 〈k〉 causes the distribution of eigenvector
centralities (corresponding to the elements of the left principal eigenvector) to concentrate
heavily around one value. This means that all nodes have an increasingly equal probability
of firing, which causes the targeted link removals to reduce to random link removals. Con-
sequently, the average value of a random link addition and a targeted removal converge to
the same value, 1/N [Fig. 12].

Since the drift of 〈k〉 is driven by the difference in the expected effect of a link removal
and addition, we expect to observe this drift in ER networks only if the value of 〈k〉 is
relatively low when the system first reaches criticality. This value can be approximated by
the critical value λ∗

1 given by Eq. 1 in the main text (the approximation works especially
well when the initial 〈k〉 at the start of the topological evolution is smaller than λ∗

1). As λ
∗
1

is determined by the parameters β, γ and δ controlling the dynamics, the combination of
these parameters controls whether we observe the critical drift of 〈k〉 in ER networks. Note,
however, that this reasoning applies directly only to ER networks, and a network with a
more varied topology and a more refined local structure may behave differently.

To verify the previous reasoning with simulations, we evolve networks with different
combinations of parameters β, δ and γ [Fig. 13]. We observe that the slope in which 〈k〉
increases during the drift seems to be unaffected by the specific parameter combination, and
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FIG. 11. Histogram of the left principal eigenvector elements for static ER networks with different
mean degrees. The size of the networks is N = 105. The distributions of right principal eigenvector
elements behave in a similar manner.
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FIG. 12. Change in λ1 after a random link addition or targeted link removal for ER networks
with different mean degrees. The targeted link removals are simulated by repeatedly choosing a
node with probability proportional to its eigenvector centrality and randomly removing one of its
incoming links. The markers show the mean of 10000 trials and largely overlay the 95% confidence
intervals.

– as expected – this slope decreases as λ∗
1 increases. We also observe that the parameter

combination has an influence on how much the stabilized value of λ1 deviates from the
theoretical critical value λ∗

1. This latter observation, however, can be explained by the
network evolution parameters l and ǫ being finite. As already discussed in section IIIb, the
system self-organizes to criticality in the limit l, ǫ → 0, and for finite values of l and ǫ, the
mean degree of the evolved networks is expected to deviate slightly from its critical value.
Droste, Do, and Gross (2013) have shown that for networks with a random ER structure,
the magnitude of this deviation depends on δ, γ and 〈k〉∗ when l and ǫ are finite. While
this proof does not directly apply to our case, we expect to observe a similar dependency.
Indeed, as shown in Fig. 14, decreasing the value of ǫ causes the evolved λ1 to decrease
towards its theoretical value or even below it, which – to our understanding – is a result of
the finite spontaneous firing rate pushing the system slightly towards the subcritical regime.
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FIG. 13. Time evolution of λ1 and 〈k〉 for different combinations of parameters β, δ and γ. On
each row, the parameter combinations have been chosen to produce a specific value of λ∗

1 (dashed
lines) according to Eq. 1 of the main text. We have first chosen (with no specific logic) the values
of δ and γ, after which the parameter β is chosen so that Eq. 1 gives the desired value of λ∗

1. Other
parameters are identical to those in Fig. 2 of the main text.
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parameter combination resulting in λ∗

1 = 10 (dashed line) according to Eq. 1 of the main text.
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XII. Degree distribution of the evolved networks

Figure 15 shows the distributions of in- and out-degrees at three different points during
the drift.
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FIG. 15. Distribution of in- and out-degrees at three different times during the drift

XIII. Time series of firing rates

Figure 16 shows a few examples of firing rate time series of individual nodes during a
burst of activity along the critical drift. The nodes are chosen randomly.
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FIG. 16. Firing rate time series of individual nodes. The parameters are identical to those in Fig.
2 of the main text.
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