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MOTIVATION

Rising temperatures are projected to increase decomposition in
northern peatlands and thus both:

e Production of CO,and CH,4, increasing radiative forcing

e Release of nitrogen bound in poorly decomposed organic
matter into typically nutrient-limited systems

N serves as a nutrient and, when oxidized, as electron acceptor.
Previous studies produced controversial results on the net ef-
fect of N availability [1-5].

Goal: Contribute to understanding the linked carbon and nitro-
gen cycle in peatlands, which is also relevant for thawing per-
mafrost [6,7].

METHODS

Samples from Siikaneva bog, an ombrotrophic peatland in
southern Finland were incubated in 120 ml glass vials under an-
oxic conditions. Peat from above the water table (AWT) and be-
low (BWT) was incubated separately, and at both 4°C and 20°
each. Inorganic N was added as solutions of NH,Cl and NaNO;
in sterilized tap water.
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RESULTS
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Quantified sample properties include (see tables below):

From in situ porewater measurements of TDN (K. Jentzsch)
and fractions of NH, and NOs [8], target concentrations of each
N form were calculated as:

o ambient (CTR) 0.1 mg/I NH4-N, 0.3 mg/l NOs-N;
e +2.5*ambient (N2): 0.3 mg/I NH4-N, 1.1 mg/I NOz-N;
e +5*ambient (N5): 0.6 mg/I NH4-N, 1.8 mg/I NOs-N

( 4°C )( 20°C )
™ G \ @ N
= = = = | blank
‘e | (e ] L L= ]
- - l | l_.“ - e ' (™ w Autoclaved tap water only
= Ll = . . . .
E LL ‘ L@ G " L@ Sl N ambient concentration
< a T | B B ‘] of both NO, and NH,
h LE{Q 5 t‘:@ N- + 2.5 times ambient NH,
- : j plus ambient NO,
5PN 7 & J :
™\ (G \ (G ) + 5 times ambient NH,
.':::,l_’ f':"g_‘n V) S i plus ambient NO,
= (= ] . = 'G _
- =% (= L| [Q d = + 2.5 times ambient NO
¥ = e - e ) 3
E LL- l:ug Rt T S N2 plus ambient NH,,
@ o %= = - = : -
- _ N o= = N |t 5 times ambient NO;
h [_L@ h j plus ambient NH,
o/ & ] JA =)
 \ £ N
R R
5 - L—{_ e
= % I incubation experiment design
WA ) Figure created with biorender.com

CO, and CH,4 concentrations were determined from headspace

samples with gas chromatography. Fluxes were calculated as
differences of CO,-C and CH4-C contents over time between
measurements after correcting for dissolved gas and losses
through sampling.
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Main findings:

e Available N did not limit microbial respiration

(alone)

e Oxidation state of N addendum steers its effect on
carbon mineralization

Effects of temperature and depth:

e very different microbial regimes in above and below water ta-
bles samples expressed in lack of methane production in
AWT.

e Temperature effect on C production was much larger in AWT
compared to BWT samples.

Effects of N addenda:

e Trajectories of C production over time very similar between N
treatments.

e Overall mainly negative trend of carbon production with in-
creased N levels.

e No clear linear effect of total amount of N added.

e only two significantly different results within treatment sets
(Kruskal-Wallis test): NH; addendum affected CO,-C produc-
tion in AWT at 4°C and BWT at 20°C.

e No significant effects on methanogenesis!
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e water content, total organic and inorganic carbon, total nitro-
gen, bulk density (measured on peat samples)

%H20 %TC %TOC %TIC %TN C:N dry BD

% %WW %dw %dw %dw %dw g/cm3

AWT 97.3 42.0 41.9 0.7 0.6 700 0.021
BWT 96.8 42.9 42.8 0.1 0.8 54 0.034
e pH, electrical conductivity, dissolved organic carbon, total

dissolved nitrogen (measured on water extracted with Rhi-
zon samplers from frozen and thawed samples)

pH EC [uS/cm] DOC [mg/l] TDN [mg/l]
AWT 4.02 347 1130 23.8
WT 4.04 119.1 457 5.72
BWT 4.03 64.6 186 3.28
tap water (lab) 7-8 554
tap water
(report) 7.7 550 - 800 1.7

NEXT STEPS

e Do effects hold for shorter time frame around season length?

o Effects of N on date of max. respiration rate, C:N ratio, and
coefficients of exponential fit to production rates after max.
oroduction

e Relative abundance of microbes (S. Liebner lab, GFZ) will
nelp explain the microbial communities
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