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Abstract. Here we describe the LegacyPollen 1.0, a dataset of 2831 fossil pollen records with metadata, a
harmonized taxonomy, and standardized chronologies. A total of 1032 records originate from North America,
1075 from Europe, 488 from Asia, 150 from Latin America, 54 from Africa, and 32 from the Indo-Pacific. The
pollen data cover the late Quaternary (mostly the Holocene). The original 10 110 pollen taxa names (including
variations in the notations) were harmonized to 1002 terrestrial taxa (including Cyperaceae), with woody taxa
and major herbaceous taxa harmonized to genus level and other herbaceous taxa to family level. The dataset
is valuable for synthesis studies of, for example, taxa areal changes, vegetation dynamics, human impacts (e.g.,
deforestation), and climate change at global or continental scales. The harmonized pollen and metadata as well as
the harmonization table are available from PANGAEA (https://doi.org/10.1594/PANGAEA.929773; Herzschuh
et al., 2021). R code for the harmonization is provided at Zenodo (https://doi.org/10.5281/zenodo.5910972;
Herzschuh et al., 2022) so that datasets at a customized harmonization level can be easily established.

1 Introduction

Broad-scale paleoproxy databases provide important oppor-
tunities to make comparisons of paleoenvironmental synthe-
sis studies and for paleodata–model validation, where har-
monized data processing is the foundation (Gaillard et al.,
2010; Cao et al., 2013; Trondman et al., 2015). Several
continental fossil pollen databases have been successfully

established (Gajewski, 2008); for example, the European
Pollen Database (EPD; http://www.europeanpollendatabase.
net/index.php, last access: 1 July 2020), the North Amer-
ican Pollen Database (NAPD; https://www.ncei.noaa.gov/
products/paleoclimatology, last access: 1 July 2020), and
the Latin American Pollen Database (LAPD; http://www.
latinamericapollendb.com/, last access: 1 July 2020). In
recent years, efforts have been made to integrate such
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databases into the Neotoma Paleoecology Database (https:
//www.neotomadb.org/, last access: 1 April 2021; Williams
et al., 2018), which provides a global collection of pollen
data among other paleoenvironmental proxy data. Further-
more, fossil pollen datasets for China and Mongolia (Cao et
al., 2013; Herzschuh et al., 2019) and Siberia (Cao et al.,
2020) have been compiled.

The numerous pollen records available in open databases,
however, are not yet consistent concerning data type (e.g.,
pollen counts or percentages), pollen taxonomy, and nomen-
clature (Fyfe et al., 2009; Cao et al., 2013), and their meta-
data are neither approved nor harmonized. For example, pa-
lynologists identify pollen taxa to different taxonomic levels
ranging from (sub)species to order, depending on the pur-
pose of their study and the differentiability and preservation
of the pollen grains. Some efforts have been made to harmo-
nize taxonomies of pollen taxa in the databases (Fyfe et al.,
2009; Giesecke et al., 2019; Mottl et al., 2021; Githumbi et
al., 2022); however, a general framework is needed that can
be applied to existing and newly published records.

Here we present LegacyPollen 1.0, a global taxonom-
ically harmonized pollen dataset along with standardized
metadata from 2831 sites for which recent chronolo-
gies have also been established (Li et al., 2022). This
dataset is based on a general framework and imple-
mented in R, which allows customized datasets to be
built as well as the inclusion of new pollen records.
The LegacyPollen 1.0 dataset is available at PANGAEA
(https://doi.org/10.1594/PANGAEA.929773; Herzschuh et
al., 2021) and provides both count and percentage pollen
data. We also provide the R code and the taxa harmonization
table at Zenodo (https://doi.org/10.5281/zenodo.5910972;
Herzschuh et al., 2022).

2 Methods

2.1 Data sources

We initially downloaded 3147 late Quaternary fossil pollen
records (including dating) from the Neotoma Paleoecology
Database (“Neotoma” hereafter) using the Neotoma package
in R (Goring et al., 2019; R Core Team, 2020). As the spatial
coverage of Neotoma records in certain regions is poor, for
example, in China and Siberia, these records were supple-
mented by 324 records compiled by Herzschuh et al. (2019)
and Cao et al. (2013, 2020) and our own data (AWI, Al-
fred Wegener Institute). Out of this pool, we selected 2831
records, including both raw (94.2 %) and digitized (5.8 %)
data, for which standardized chronologies could be estab-
lished (Li et al., 2022).

2.2 Metadata processing

After checking the metadata of all records from the Neotoma
and Asian datasets, we implemented the following modifi-

cations: (1) we evaluated the units of the provided depth in-
formation (meters/millimeters to centimeters) of all records
and contacted Neotoma to correct the depth information of
one record (Dataset ID 27027); (2) we checked each record’s
archive type (e.g., peat, lake) based on its site description
from Neotoma or the original publication; and (3) we inte-
grated two records (Dataset ID 835, 3127) into a combined
record (Dataset ID 70001).

We collected the sample ages from the chronologies pro-
vided by Li et al. (2022), which were newly established
for all 2831 records using a standardized approach. Li et
al. (2022) present estimated ages for each centimeter. For
records with sample depths given at a subcentimeter scale,
we applied a linear interpolation (performed in R; R Core
Team, 2020) to assign the age of each sample.

2.3 Pollen data processing

2.3.1 Pollen taxa harmonization

Only terrestrial pollen taxa (including Cyperaceae) were
taken into account, thus excluding aquatic pollen taxa as
well as spores from mosses, ferns, fungi, and algae. First, we
standardized the taxon nomenclature. To do so, we set up a
master table containing all pollen taxa names from the 2831
records and made names consistent (e.g., “betula” to “Be-
tula”), italicized all taxa below family level (e.g., “Artemisia”
to “Artemisia”), replaced the abbreviations with full names
(e.g., “P. pumila” to “Pinus pumila”), updated with the latest
taxon nomenclature (e.g., “Gramineae” to “Poaceae”), and
corrected wrong spellings (e.g., “Aluns” to “Alnus”). This
master table is published in a machine-readable data format
on PANGAEA (https://doi.org/10.1594/PANGAEA.929773
in the “Further details” section; Herzschuh et al., 2021). Sec-
ond, we harmonized the pollen taxa according to the clas-
sification of the Angiosperm Phylogeny Group IV system
(APG IV; The Angiosperm Phylogeny Group et al., 2016)
and the Gymnosperm Database (https://www.conifers.org/,
last access: 27 July 2021). Woody taxa were harmonized to
genus level as well, as were some very common herbaceous
taxa such as Artemisia, Thalictrum, and Rumex. All other
herbaceous taxa were harmonized to family level. The var-
ious pollen taxa of heather plants were summarized at the
order level as Ericales.

2.3.2 Pollen data type standardization

Although most pollen records contain the count data (“raw”
data hereafter), the “pollen counts” for those without raw
pollen counts were backcalculated using the pollen percent-
ages and assuming a terrestrial pollen sum of 300 pollen
grains, as most of the publications did not provide a pollen
sum. We replaced the original taxon name with its harmo-
nized name and summed all counts of the harmonized taxa
for each sample. As we only considered terrestrial plant taxa,
some samples in the records contained no pollen counts, and
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those samples were excluded from the harmonized dataset.
We then recalculated the terrestrial pollen percentages for
each sample based on their total sum.

3 Structure of the LegacyPollen 1.0 dataset

3.1 Structure of site metadata

The metadata for each site in the LegacyPollen 1.0 dataset
include the following: Event (PANGAEA dataset identi-
fier), Data Source, Data Type (raw or digitized), Site ID
(in the source datasets), Dataset ID (in the LegacyPollen
1.0 dataset), Site Name, Location (longitude, latitude, eleva-
tion, and continent), Archive Type (e.g., peat, lake sediment
core), Site Description (from original publication/Neotoma),
and Reference. All site-specific metadata are available
at PANGAEA (https://doi.org/10.1594/PANGAEA.929773;
Herzschuh et al., 2021) in the “Further details” section
(Metadata of the LegacyPollen dataset.csv).

3.2 Structure of pollen data

Sample-specific pollen metadata for the 2831 sites in-
clude depth, age (according to Li et al., 2022; minimum
age, maximum age, mean age, median age), and harmo-
nized taxon names with count and percentage data. To
ease data handling, data files were separated to give pollen
count data and pollen percentages and files for each re-
gion (western North America, eastern North America, Eu-
rope, Asia, Latin America, Africa, and the Indo-Pacific)
are provided separately in both CSV and TXT format.
In total, 28 pollen data files are published at PANGAEA
(https://doi.org/10.1594/PANGAEA.929773 in the “Other
version” section; Herzschuh et al., 2021) and can be joined
by the Dataset ID with other data products. Furthermore,
we also provide the taxa harmonization table at PANGAEA
(https://doi.org/10.1594/PANGAEA.929773, in the “Further
details” section; Herzschuh et al., 2021).

4 Dataset assessment

4.1 Spatial and temporal coverage of the dataset

Of the 2831 records included in LegacyPollen 1.0, 670
records originate from eastern North America (<105◦ W;
Williams et al., 2000), 362 from western North America,
1075 from Europe, 488 from Asia, 150 from Latin Amer-
ica, 54 from Africa, and 32 from the Indo-Pacific (Fig. 1).
Most records (2659 records, 93.9 %) are from the Northern
Hemisphere, where the main vegetation and climate zones
are covered.

As shown in Fig. 2, only 5.8 % of the records are
available from periods before the Last Glacial Maximum
(>26.5 ka cal BP), 10.2 % cover part of the Last Glacial Max-
imum (26.5–19.0 ka cal BP; Clark et al., 2009), and 45.7 %

cover part of the Last Deglaciation (ca. 19.0–11.7 ka cal BP;
Clark et al., 2012). Almost all records (97.8 %) cover
part of the Holocene; among them, 65.2 %, 79.5 %, and
89.5 % cover the early Holocene (11.7–8.2 ka cal BP), mid-
dle Holocene (8.2–4.2 ka cal BP), and late Holocene (4.2–
0 ka cal BP), respectively.

4.2 Harmonized taxonomy

A total of 10 110 terrestrial pollen taxa or taxa notations were
obtained from the 2831 records, which we condensed to 1002
families or genera through taxonomic harmonization (Fig. 3;
Appendix Fig. A1). On average, 10.8 original taxa or taxa
notations are covered by one harmonized pollen taxon, rang-
ing from 1 to 599 (median: 2). Overall, Asteraceae (599),
Fabaceae (437), and Apiaceae (276) are the pollen taxa with
most variants.

The biggest differences between the taxa names and no-
tations before harmonization and those after harmonization
can be found in Europe (with a mean of 42 variants per har-
monized taxon) and in eastern and western North America
(average of 22), with both regions also exhibiting the high-
est record density (Fig. 4). A high amount of tropical and
subtropical tree and shrub taxa can be found in the South-
ern Hemisphere; these are harmonized to genus level and
are therefore subsumed to fewer harmonized taxa, and they
have a higher taxa diversity overall than the Northern Hemi-
sphere continents. In the Southern Hemisphere, the most taxa
and variants are harmonized for Fabaceae, as this is the most
common family found in tropical rainforests and dry forests
of Latin America and Africa.

Europe has the most harmonizations of herbaceous taxa
from open landscapes, e.g., Asteraceae, Apiaceae, and
Caryophyllaceae. In North America and Asia, several species
or species groups of major woody taxa are harmonized to
their respective genus levels, e.g., Alnus and Acer in North
America and Betula and Quercus in Asia. The Pinus Hap-
loxylon and Diploxylon subgenera are subsumed into the
genus level Pinus, as the differentiation to subgenus level is
not provided consistently.

5 Code and data availability

The data are published in the PANGAEA repository under
PANGAEA (https://doi.org/10.1594/PANGAEA.929773, in
the “Other version” section; Herzschuh et al., 2021) in
both comma-separated values (.CSV) and tab-delimited text
(.TXT) formats for the LegacyPollen 1.0 dataset of counts
per continent and the LegacyPollen 1.0 dataset of percent-
ages per continent. Site metadata, as well as a taxa harmo-
nization master table, are provided in the “Further details”
section.

The R code for taxa harmonization is stored on Zenodo
(https://doi.org/10.5281/zenodo.5910972; Herzschuh et al.,
2022), along with an example dataset. Downloading pollen
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Figure 1. Map of the 2831 records for which standardized chronologies were established by source and data type.

Figure 2. Histogram showing the number of available records in distinct time slices.

data from the Neotoma Paleoecology Database, harmonizing
the pollen taxa, and assigning ages to sample depth data to
create customized datasets can thus be easily done.

6 Discussion

6.1 Quality of the LegacyPollen 1.0 dataset

To our knowledge, LegacyPollen 1.0 is the largest har-
monized fossil pollen dataset; it includes more than twice
the number of records integrated into previously published
datasets (e.g., Fyfe et al., 2009: 1032 records; Trondman et
al., 2015: 636 records; Marsicek et al., 2018: 642 records;
Giesecke et al., 2019: 749 records; Mottl et al., 2021: 1181
records; Githumbi et al., 2022: 1128 records). Several re-

gions have poor pollen-record coverage either because no
records are available due to the scarcity of suitable archives
(e.g., continental interiors) or because available records were
not compiled and integrated into Neotoma. Ongoing initia-
tives to compile pollen data from Africa and Latin America
will allow a straightforward extension of the LegacyPollen
1.0 dataset using the provided framework.

A further advantage of the LegacyPollen 1.0 dataset is that
it is accompanied by consistent metadata, allowing subset-
ting of the dataset. Aside from information about the loca-
tion and archive type, the metadata also include sample ages
that were inferred from recently revised chronologies (Li et
al., 2022) along with their age uncertainties (i.e., output from
BACON; Blaauw and Christen, 2011), and the framework
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Figure 3. Number of records of each taxon per continent and the number of subsumed variants per harmonized taxon. The figure shows the
200 taxa with the highest number of records in the dataset. A full overview of all taxa is given in Appendix Fig. A1.
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Figure 4. Number of taxa before and after harmonization. Note that the color legend does not extend beyond 150, so records with >150 taxa
are plotted in the color corresponding to 150 taxa on the maps.

and R code also allow customized reestablishment of the age-
depth models.

Generally, the temporal coverage is good from about
14 ka cal BP. Rather few records cover the glacial period,
which is mainly due to an absence of archives, as many lakes
and peatlands were dry or covered by ice sheets. Marine iso-
tope stage 3 is covered by many more records from Asia than
from Europe and North America.

Taxonomic harmonization is required for multi-site syn-
thesis studies (Fyfe et al., 2009; Trondman et al., 2015;
Marsicek et al., 2018; Herzschuh et al., 2019; Routson et
al., 2019; Mottl et al., 2021; Zheng et al., 2021; Githumbi
et al., 2022). This is particularly true when numerical ap-
proaches are applied that measure the compositional dissim-
ilarity between pollen spectra; for example, between fossil
and modern sites for climate reconstructions using the mod-
ern analogue technique or regression methods, or among fos-

sil records for beta-diversity studies (Birks et al., 2012). If
taxa are not harmonized, an inferred high dissimilarity be-
tween two spectra may originate solely from differences in
taxa nomenclature. On the other hand, if all taxa are har-
monized to a taxonomic level that is too high, the ecolog-
ical signal may be lost (Giesecke et al., 2019). We applied
an intermediate level of harmonization, using growth form
(i.e., woody vs. nonwoody) as additional guidance. We as-
sume that our approach best reflects the typical presentation
of pollen data, which is mainly limited by the pollen mor-
phological features visible at 400× magnification using light
microscopy and the typical taxa identification precision of
most pollen analysts.

Earth Syst. Sci. Data, 14, 3213–3227, 2022 https://doi.org/10.5194/essd-14-3213-2022
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6.2 Potential uses of LegacyPollen 1.0

LegacyPollen 1.0 can be used for a variety of paleoenviron-
mental synthesis studies, including reconstructions of taxa
distributions, climate, and biome change, which can be used
for paleomodel validation (Gaillard et al., 2010; Cao et al.,
2013; Trondman et al., 2015; Cao et al., 2020; Mottl et al.,
2021).

Plant taxa distribution changes based on the mapping of
pollen taxa can yield information about glacial refugia and
past migration patterns, as, for example, previously imple-
mented for Quercus (Brewer et al., 2002), Picea (van der
Knaap et al., 2005; Zhou and Li, 2012), Larix (Cao et al.,
2020), east Asian tree taxa (Cao et al., 2015), and Euro-
pean broadleaf forest (Woodbridge et al., 2014; Fyfe et al.,
2015). With the establishment of LegacyPollen 1.0, a North-
ern Hemisphere-wide analysis of past changes in distribu-
tional ranges is now possible, which would help us, for ex-
ample, to better understand the different postglacial colo-
nization patterns of Larix in Europe, North America, and
Siberia (Herzschuh, 2020). Such an understanding of past
range changes can underpin conservation management via
the use of species distribution modeling at a broad scale en-
hanced by the higher spatial resolution and larger extent of
LegacyPollen 1.0.

Studies aiming at broad-scale pollen-based vegetation re-
constructions can benefit from the harmonized LegacyPollen
1.0 dataset, including those performed via biomization ap-
proaches (Prentice et al., 1996), multisite ordination or clas-
sification approaches (e.g., two-way indicator species anal-
ysis; Hill, 1996; Fletcher and Thomas, 2007; Connor and
Kvavadze, 2009), or approaches relating modern to fossil
datasets (e.g., the modern analogue technique; Overpeck et
al., 1985). Furthermore, quantitative vegetation reconstruc-
tions (e.g., the Regional Estimates of Vegetation Abundance
from Large Sites (REVEALS) model; Sugita, 2007) can be
easily implemented, as a synthesis of relative pollen produc-
tivity estimates is already available for the Northern Hemi-
sphere (Wieczorek and Herzschuh, 2020). Such quantita-
tive information about taxa covers changes that can be di-
rectly compared to vegetation model outputs (Dallmeyer et
al., 2021) at regional to continental scales, which is a poten-
tially more accurate approach than first translating pollen and
model outputs to biomes (Cao et al., 2019).

Pollen-based climate reconstructions are the backbone of
paleoclimate synthesis studies for the continents (Marcott et
al., 2013; Marsicek et al., 2018; Routson et al., 2019; Kauf-
man et al., 2020a, b). The reconstruction of mean annual tem-
perature (Tann), mean annual precipitation (Pann), and mean
temperature in July (TJuly) using LegacyPollen 1.0 as input
is an ongoing LegacyClimate 1.0 project. This will substan-
tially increase the number of records and close data gaps in
the global temperature datasets, thus enabling the evaluation
of climate simulations at the hemispheric scale (Wu et al.,
2013; Hao et al., 2019). It will contribute to the “Holocene
conundrum” debate (Liu et al., 2014) and to the discussion
of the relationship between temperature and precipitation
change (Trenberth, 2011; Routson et al., 2019).

Human activities are an important driver of vegetation
change, in addition to climate and other natural forces (El-
lis and Ramankutty, 2008; Mottl et al., 2021; Pavlik et al.,
2021). Deforestation during the Holocene period is of par-
ticular relevance, and, with the help of the LegacyPollen
1.0 dataset, this can now be investigated at the hemispheric
scale. The harmonized chronologies of the LegacyPollen 1.0
dataset allow for the analysis of similarities and dissimilari-
ties between continents in the temporal pattern of deforesta-
tion.
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Appendix A

Figure A1.
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Figure A1.
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Figure A1. Number of records of each taxon per continent and the number of subsumed variants per harmonized taxon (full taxon list).
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