Permafrost Carbon: Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems


Contact
claire.treat [ at ] awi.de

Abstract

Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan‐Arctic permafrost maps, an increase in terrestrial measurement sites for CO<jats:sub>2</jats:sub> and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process‐based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO<jats:sub>2</jats:sub> sink with lower net CO<jats:sub>2</jats:sub> uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO<jats:sub>2</jats:sub> sink was located in western Canada (median: −52 g C m<jats:sup>−2</jats:sup> y<jats:sup>−1</jats:sup>) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m<jats:sup>−2</jats:sup> y<jats:sup>−1</jats:sup>). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH<jats:sub>4</jats:sub> m<jats:sup>−2</jats:sup> y<jats:sup>−1</jats:sup>). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year‐round CO<jats:sub>2</jats:sub> and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non‐growing season emissions and disturbance effects.</jats:p>



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Publication Status
Published online
Eprint ID
58370
DOI 10.1029/2023jg007638

Cite as
Treat, C. C. , Virkkala, A. , Burke, E. , Bruhwiler, L. , Chatterjee, A. , Fisher, J. B. , Hashemi, J. , Parmentier, F. W. , Rogers, B. M. , Westermann, S. , Watts, J. D. , Blanc‐Betes, E. , Fuchs, M. , Kruse, S. , Malhotra, A. , Miner, K. , Strauss, J. , Armstrong, A. , Epstein, H. E. , Gay, B. , Goeckede, M. , Kalhori, A. , Kou, D. , Miller, C. E. , Natali, S. M. , Oh, Y. , Shakil, S. , Sonnentag, O. , Varner, R. K. , Zolkos, S. , Schuur, E. A. and Hugelius, G. (2024): Permafrost Carbon: Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems , Journal of Geophysical Research: Biogeosciences, 129 (3) . doi: 10.1029/2023jg007638


Download
[thumbnail of Treat_Virkkala_PermafrostCreview_2024_JGR-B.pdf]
Preview
PDF
Treat_Virkkala_PermafrostCreview_2024_JGR-B.pdf

Download (8MB) | Preview

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Citation


Actions
Edit Item Edit Item