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ABSTRACT: Investigating the biogeochemistry of dissolved
organic matter (DOM) requires the synthesis of data from
several complementary analytical techniques. The traditional
approach to data synthesis is to search for correlations between
measurements made on the same sample using different
instruments. In contrast, data fusion simultaneously decom-
poses data from multiple instruments into the underlying
shared and unshared components. Here, Advanced Coupled
Matrix and Tensor Factorization (ACMTF) was used to
identify the molecular fingerprint of DOM fluorescence
fractions in Arctic fjords. ACMTF explained 99.84% of the
variability with six fully shared components. Individual
molecular formulas were linked to multiple fluorescence
components and vice versa. Molecular fingerprints differed in diversity and oceanographic patterns, suggesting a link to the
biogeochemical sources and diagenetic state of DOM. The fingerprints obtained through ACMTF were more specific compared
to traditional correlation analysis and yielded greater compositional insight. Multivariate data fusion aligns extremely complex,
heterogeneous DOM data sets and thus facilitates a more holistic understanding of DOM biogeochemistry.

The complex multifaceted interactions between dissolved
organic matter (DOM) and biological1 and physical

processes2 cements its central role in aquatic ecosystems.3 The
wide variety of environmental processes involved results in an
extremely complex pool of organic compounds that spans
nearly all possibilities defined by the laws of chemical
bonding.4−6 In order to understand the biogeochemical role
of DOM in natural waters, it is essential to reduce the
complexity of analytical data and to trace and characterize
various underlying fractions. Owing to its molecular complex-
ity, the simultaneous quantification and characterization of
DOM presents a formidable analytical challenge. Users often
have to choose between techniques with different strengths
and limitations.7,8 The insight gained from independent
analytical techniques strongly depends on the experimental
design and data analysis approach and is ultimately limited by
the intrinsic constraints of the individual approach.
The determination of ultraviolet−visible (UV−vis) spectro-

scopic properties (targeting chromophoric and fluorescent

DOM, CDOM, and FDOM, respectively) represents a rapid
method to follow DOM dynamics.9,10 An ever-increasing
number of studies focus on FDOM, since its measurement is
cost-efficient, highly sensitive, and suitable for field deploy-
ment.11 Fluorescence excitation emission matrices (EEMs) are
frequently decomposed into the underlying independently
fluorescing components using multiway techniques such as
Parallel Factor Analysis (PARAFAC).12 However, since
fluorescence and absorbance require optically active com-
pounds, they can only target a fraction of the DOM pool. The
chemical structures responsible for the UV−vis spectroscopic
properties of DOM have yet to be uncovered.10 Moreover, the
chemical interpretation of PARAFAC spectra is inherently
difficult and often results in the ambiguous labeling of
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components that suggests representation of molecular species
(e.g., proteins or humic substances).13

Another analytical approach to DOM characterization is
ultrahigh-resolution mass spectrometry,14 which determines
the exact masses, and thus molecular formulas, of organic
substances present.5 Importantly, while DOM can be mass-
resolved, ultrahigh-resolution mass spectrometry cannot
routinely distinguish structural isomers for a given mass peak
and thus still produces convoluted analytical signals that can be
challenging to interpret in complex mixtures. To date, this has
mainly been addressed by multivariate analysis with Principal
Component Analysis (PCA) or Hierarchical Cluster Anal-
ysis.15 PCA in particular is a powerful approach to reduce
complexity and isolate factor loadings that correspond to the
chemical imprint of environmental processes. However, the
properties of the decomposition might hinder the discovery of
true chemical signals. For example, in PCA, components are
orthogonal; i.e., all factors have a loading similarity of zero.
However, many properties of DOM can be expected to be
correlated (nonorthogonal). A more flexible multivariate
approach to distinguish underlying factors of molecular
formula matrices is therefore needed.
The comparison of fluorescence spectroscopy and ultrahigh-

resolution mass spectrometry makes apparent that the
strengths and limitations of both approaches are diametrically
opposite: The former approach, when coupled with
PARAFAC, allows meaningful statistical description but offers
only limited insight into DOM chemical composition, while
the latter offers a wealth of qualitative chemical information
with limited means to systematically elucidate the primary
factors responsible for observed dynamics. Experience in other
disciplines, such as metabolomics, shows that considerable
analytical advances are achieved when two or more
complementary data sets are jointly analyzed.16 For DOM,
recent studies have employed post hoc rank-correlation
analysis to establish links between optical and chemical
properties of DOM.17,18 However, considering that thousands
of signals are compared, the risk of false positive correlations is
significant. Moreover, correlations may sometimes be hard to
interpret, e.g., when negative correlations are reported while
both signals in principle correspond to analyte concentrations.
A promising approach is to jointly decompose these data sets
into multiple underlying factors using advanced data fusion
that can account for their convoluted character. However, no
such models have been tested for DOM.
The heterogeneous nature of DOM data sets requires an

approach that can handle the different types of data sets while
accounting for the partial overlap of detector signals. A data
fusion model based on simultaneous factorization of multiple
data sets, called Advanced Coupled Matrix and Tensor
Factorization (ACMTF), has been developed specifically for
such scenarios.19 In recent years, ACMTF has been used in
metabolomics20 and medical applications.21 Here, we applied
ACMTF to simultaneously analyze and decompose data from
two popular DOM characterization techniques, fluorescence
EEMs and Fourier transform ultrahigh-resolution mass
spectrometry (FT-ICR-MS) molecular formulas (N = 527)
for samples (N = 174) originating from three Arctic Fjords.
The associations reported by the statistical components
identified by ACMTF are subsequently compared to those
suggested by post hoc correlation analysis. We propose that
data fusion represents a vital step toward a more holistic data

analysis that can help to better elucidate the complex dynamics
of DOM.

■ MATERIALS AND METHODS
Sample Collection. In July 2016, 174 water samples were

collected onboard R/V Maria S. Merian (cruise MSM56,
Ecological Chemistry in Arctic Fjords) over a three-week period
(see Figure S1 and Table S1 for an overview of sampling
regions, salinity, temperature, DOC, and depth ranges). The
transect encompassed three fjords (Kongsfjorden [Long-
yearbyen], Scoresby Sound [East Greenland], and Arnarfjör-
đur [West Iceland]) spanning from 79 °N to 65 °N and 28 °W
to 12 °E. Kongsfjorden and Scoresby Sound both have marine
terminating glaciers, while Arnarfjörđur further south in
Iceland does not. All fjords receive limited DOM input from
rivers in their catchments, and the flux of marine DOM from
the shelf and production of DOM associated with plankton
productivity dominate. Scoresby Sound, similar to many East
Greenland fjords, receives terrestrial organic matter from the
Arctic transported in the East Greenland Current (EGC) and
has low productivity. Kongsfjorden and Arnarfjörđur are not
influenced by the EGC and are primarily supplied with Atlantic
water with little or no terrestrial DOM. Water samples were
collected at depths ranging from 1.7 to 1397 m with a 24-
bottle CTD Rosette, equipped with Niskin bottles and
immediately filtered using precombusted GF/F filters (0.7
μm, Whatman) by applying a vacuum of <200 mbar. After
filtration, DOM was immediately solid-phase extracted using
200 mg of PPL resins as described previously.22 Cartridges
were desalted and dried onboard and stored dark and frozen at
−20 °C. In the home laboratory, DOM was eluted with 1000
μL of methanol. The final extract volume was determined by
weight, and samples were stored at −18 °C until analysis.

Spectroscopic Measurements. A total of 50 μL of DOM
extract (in methanol) was dried using a gentle stream of N2 at
room temperature, reconstituted in 4 mL of 150 mM
ammonium acetate (pH 7) in precombusted amber glass
vials, and equilibrated at room temperature for 30 min.
Fluorescence and absorbance measurements were obtained
using a HORIBA AquaLog fluorometer using a 10 mm quartz
cuvette (Helma Analytics). Fluorescence emission was
detected in the range of 240−600 nm (increment ∼3.3 nm)
at excitation wavelengths between 240 and 450 nm (increment
3 nm between 240 and 360 nm, 9 nm between 360 and 450
nm). A separate absorbance measurement was carried out to
measure absorbance between 240 and 600 nm at increments
matching the fluorescence excitation. The fluorescence data
were processed using the drEEM toolbox.12 Data were
corrected for inner filter effects using the absorbance-based
method (absorbance between 0.014 and 0.07 cm−1 at 260
nm).23 First and second order physical scatter was removed
and not interpolated. A fluorescence EEM of 150 mM
ammonium acetate was subtracted as the spectroscopic
blank. Average EEMs for the three fjords are depicted in
Figure S2.

Spectrometric Measurements. Fourier transform ion
cyclotron resonance mass spectra were collected with a 12 T
Bruker Solarix mass spectrometer (Bruker Daltonics, Bremen,
Germany) using an Apollo II electrospray ionization (ESI)
source in negative ionization mode. Samples were diluted in
50/50 (v/v) methanol/water to a concentration of 1.5 nmol
DOC mL−1 and injected into an electrospray source at a flow
rate of 0.12 mL h−1 with a nebulizer gas pressure of 2.2 bar and
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a drying gas flow rate of 4 L min−1. Spectra were externally
calibrated using arginine clusters and then internally calibrated
using marine DOM molecular formulas.24 The spectra were
acquired at 4 Mega words over a mass range of m/z 100−1000,
and 300 scans were accumulated for each spectrum. The
average mass resolution of all signals at 400 m/z was 375 000.
The formula assignment was carried out as detailed in the SI.
Briefly, molecular formulas were calculated from m/z values
allowing for elemental combinations 12C0−∞,

13C0−1,
1H0−∞,

14N0−2,
16O0−∞, and

32S0−1; a mass accuracy threshold of |Δm|
≤ 0.2 ppm; and a relative abundance of >1%. Formulas which
were either detected in process blanks (PPL extraction of
ultrapure water) or contained in the list of potential surfactants
were removed from the entire data set.25 It should be
considered that every assigned molecular formula most likely
implies an immense structural diversity of isomers.6 Since FT-
ICR-MS alone is unable to distinguish between such structural
isomers, we reserve the term component for statistical
components and use the term molecular formula in the context
of spectrometric signals.
Data Processing. In order to describe optical and chemical

properties of DOM using statistical models, data were
preprocessed as follows: (1) EEM data were normalized to
reduce concentration effects and match the character of
relative formula abundances (using the “normeem” function in
drEEM). (2) Signals in EEMs and the molecular formula
matrix were scaled with their Euclidean norm to equalize their
numerical leverage. (3) FT-ICR-MS formula abundances were
scaled by division with the square root of the standard
deviation to reduce modeling leverage of highly abundant
formulas. (4) Undetected FT-ICR-MS formulas in a given
sample were assigned as “missing,” and formulas with more
than 3.6% missing detections (i.e., more than 10 samples
without formula observation) were excluded from further
analysis (81% of the 2776 formulas in the original data set).
While this represents a significant reduction in molecular
formula data, a linkage between fluorescence signals present in
all samples with molecular formulas only present in a small
fraction of samples is unlikely. Preliminary ACMTF models
indicated high residuals below m/z 300 and above m/z 500,
therefore these formulas were removed to mitigate disturban-
ces. The resulting data sets had the following structure and
dimensions: sample × emission × excitation (174 × 91 × 44)
and sample × formula abundance (174 × 527) for fluorescence
EEMs and FT-ICR-MS formula abundances, respectively. On
the basis of the original relative molecular formula abundances,
the subset of 527 modeled molecular formulas represented 38
± 5% of the ESI-MS molecular formula abundance (Figure
S3).
Advanced Coupled Matrix and Tensor Factorization.

A detailed description of the fundamental principle of the
ACMTF model is presented in the SI (section S1). Briefly,
ACMTF jointly decomposes fluorescence EEMs and molecular
formula matrices into a set of trilinear fluorescence
components and bilinear molecular formula components by
fitting a PARAFAC model to the fluorescence EEMs and
factorizing the molecular formula matrix in a way that the
component scores are identical. Component weights (λ for
EEMs and σ for formula matrices) are used to evaluate
whether a particular component is shared between both
analytical data sets. ACMTF modeling was carried out using
the Matlab CMTF toolbox19,26 in conjunction with the Tensor
toolbox27 and the SNOPT toolbox.28 ACMTF factorization is

computationally intense, and calculations were therefore
carried out using a set of IBM NeXtScale nx360 M4 nodes,
with 100 models being fit simultaneously (reducing the
analysis time for 100 models from 6 days on a single-core
computer to 3 h with parallel computing).
Nonnegativity constraints in all modes of both data sets were

applied during the modeling. Furthermore, angular constraints
in the excitation mode were applied to prevent the algorithm
from converging on solutions with highly similar factors
(violating model assumptions): Model components were
constrained to have Tucker Congruence Coefficient (TCC)
values between all excitation spectra of less than 0.93 (limit set
by maximum similarity between PARAFAC excitation spectra).
ACMTF models were evaluated by (1) an assessment of the
fluorescence spectra (chemical coherence), (2) a variability
assessment of the component weights λ and σ (model
uniqueness), and (3) split-half validation. ACMTF component
scores were converted to Fmax values by multiplying
component scores with the spectral maximum of fluorescence
excitation and emission, which returns scores in the unit of the
modeled data. Here, Fmax values represent unitless, relative
values, since both data sets were scaled and normalized prior to
analysis. Contrary to similar procedures during PARAFAC
analysis, these preprocessing steps are currently irreversible.
The chemodiversity of ACMTF components was estimated

as the richness estimator Chao 1 using the R software package
vegan (R v3.5.1) with molecular formulas as species and
component loadings as species counts.29,30 To mimic species
counts, the loadings of all components were normalized by the
maximum loading across all components, multiplied by 100,
and rounded in order to represent integer species counts.

Parallel Factor Analysis, Principal Component Anal-
ysis, and Pearson Rank Correlation. The underlying
components of fluorescent DOM in 191 samples (data set
contained a small number of samples for which no mass
spectra were collected) were isolated using Parallel Factor
Analysis using the drEEM toolbox.12 To do so, models with
different numbers of components with nonnegative loadings
and scores were explored (four to seven components).
Ultimately, a six-component PARAFAC model with a core
consistency of 1.5% and an explained variance of 99.9% was
found to best represent the data set.31 This model was
validated using a split-half validation, for which the whole data
set (N = 191) was split into six separate randomly split halves
(94 > N < 97).
PCA was performed on the molecular formula matrix

exclusively to determine the explanatory power of this
technique in comparison to ACMTF and to compare the
extent of autocorrelation between component loadings. A six
component PCA model was calculated for autoscaled and
mean-centered molecular formula abundances (in addition to
the preprocessing detailed above). PCA models were
calculated using PLS_toolbox in Matlab (Eigenvector Research
Inc. v.8.52). Factor similarities between ACMTF and PCA
components were quantified using Tucker congruence
coefficients for all unique combinations of components (N =
15).32

Pearson rank correlation was performed on the processed
data set described above. Molecular formula relative
abundances were correlated to the Fmax values of a split-half
validated six component PARAFAC model using only pairwise
complete comparisons. A Holm−Bonferroni correction for
multiple comparisons was applied to address the possibility of
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type I errors,33 eliminating 19.5% of correlations that would
have otherwise been reported as significant. The matrix of

correlation coefficients (r) was subsequently restricted to
comparisons satisfying the significance threshold of α = 0.01;

Figure 1. Example of measured vs modeled data. (A−C) Fluorescence EEMs (scaled and therefore unitless intensities). (D−F) FT-ICR-MS mass
spectra scaled by the maximum peak intensity. First column: Examples of raw data. Second column: Examples of corresponding modeled data.
Third column: Model residuals, scaled by the maximum peak intensity in the sample. The depicted sample was taken in Kongsfjorden, Norwegian
monitoring station Kb5 (78.9 °N, 12.4 °E) at a depth of 30 m.

Figure 2. The molecular fingerprint of fluorescent DOM as identified by ACMTF and post hoc correlation. Panel A depicts fluorescence loadings
as a function of excitation (dashed line) and emission (solid line); panel B and C show molecular formula loadings as a function of mass-to-charge
ratio and molecular composition in the van Krevelen space. For comparison, the correlation between PARAFAC component scores (spectrally
congruent with components in the top row, also provided in Figure S8) is shown in panel D. Linear correlation coefficients were restricted to p <
0.01 prior to visualization and are corrected for false-positives using a Holm−Bonferroni correction.
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correlation coefficients with p > α (based on Holm−
Bonferroni corrected p values) were ignored in subsequent
analyses.

■ RESULTS AND DISCUSSION

Model Validation. Similar to other multivariate models
such as PARAFAC, the validity of ACMTF models primarily
depends upon the applicability of the underlying model to
explain the data set variability, as well as choosing the right
number of components. The application of data fusion
furthermore depends on a stable, reproducible relationship
between signals obtained on different instruments. ACMTF
was applied under the assumption that the statistically
identifiable signals in fluorescence EEMs and molecular
formulas respond linearly to the presence of the corresponding
(unknown) analytes. The adherence to this assumption was
investigated by judging the robustness and representativeness
of the model. This validation of the selected ACMTF model
was carried out by analyzing the overall degree of explained
variance, the randomness of residuals, the chemical coherence
of component loadings, and the ability of reproducing the
overall model from fully independent subsets of the overall
data set.
After the initial data exploration, a six-component ACMTF

model was found to best explain the variability in fluorescence
EEMs and the molecular formula matrix. With six components,
ACMTF explained 99.84% of variance in both data sets and
featured mostly random, low model residuals (example shown
in Figure 1, Figure S4). The properties of fluorescence spectra
(Figure 2, top row) were generally consistent with those
observed for pure fluorophores (single emission peak, Stokes’
shift between 0.55 and 1.13 eV, Table 1). Further
investigations, described in the Supporting Information (SI,
Figures S4−S8, Table S2), indicated the suitability of ACMTF
for the simultaneous decomposition of fluorescence EEMs and
molecular formulas. The split-half validation indicated that a
relatively low number of the modeled formulas did not
produce the same component loadings in both independent
data set halves (Figure S6). This indicates that the dynamics of
this small subset of modeled formulas deviated from the ideal,
linear behavior to some degree. It is possible that these
molecular formulas either were not detected reproducibly by
ESI-MS or they represented independent molecular structures
that were not represented by a statistical component
(molecular fingerprint) present across a range of samples.
Overall, the majority of analytical signals were represented by
the ACMTF model in a robust fashion, and our results thus
indicate that the analytical signals identified by ACMTF scaled
linearly with analyte abundance.

Chemical Properties of Fluorescence Spectra. The six-
component ACMTF model featured fluorescence components
with emission maxima at 310, 350, 410, 420, 460, and 510 nm
(Figure 2, panel A, henceforth referred to by these emission
maxima) and molecular formula components with distinctly
different molecular weight distributions, elemental composi-
tion, and overall varying degrees of chemodiversity (Figure 2,
panel B and C, Table 1). A comparison with the OpenFluor
database34 revealed similarities of all ACMTF fluorescence
components with previously identified PARAFAC components
(TCCex,em > 0.98). Specifically, C310, C350, and C510 were
similar to components identified in the coastal Canadian
Arctic.35 However, matches were also observed across other
aquatic environments, such as the Baltic Sea (C310 with C5 in
Stedmon et al.), small streams (C350 with C5 in Yamashita et
al. or C410 with C1 in Graeber et al.), or drinking water (C420
with C3 in Shutova et al.).36−39

The component weights λ and σ (see SI section S1 for
further details) indicated that components were generally
shared between both data sets. For C410, C420, C460, and C510, λ
(weights for fluorescence components) and σ (weights for
molecular formula components) deviated less than 15%
between each other, indicating shared components (Table
1). In contrast, weights differed by almost 80% for C310 and
C350. While this represents a significant difference, factors other
than unshared signals may have contributed to this
observation. In addition to “sharedness” of components in
both data sets, weights in the ACMTF model also reflect
contributions of a given component to the overall variability in
each data set. The weights λ and σ are thus influenced by
detector response. Furthermore, differences in component
complexity may lead to different weights of shared components
in separate data sets. In our application, the ionization
efficiencies of molecular formulas associated with C310 and
C350 compared to their fluorescence quantum yields may have
been partly responsible for different component weights.
However, further investigations are necessary to investigate
this hypothesis and the response of component weights to
analytical factors. Overall, despite C310 and C330’s different
component weights, these findings indicate that all modeled
components were shared between both data sets and therefore
represented interpretable, chemically meaningful components
that allow the investigation of molecular formulas associated
with fluorescence spectra.
ACMTF addresses the multivariate character of molecular

formulas by dissecting the abundance of one formula into
multiple components (Figure S9), and the identification of the
most prominent links between formula and fluorescence
described in a specific component is therefore complicated.

Table 1. Properties of ACMTF Componentsa

component λ (EEMs) σ (FT-ICR-MS) Stoke’s shift (eV) O/Cwa H/Cwa m/zwa DBEwa N/Cwa Ci

C310 0.22 ± 0.005 0.12 ± 0.002 0.56 0.5 1.23 399.7 8.44 0.04 422
C350 0.24 ± 0.003 0.13 ± 0.007 0.8 0.52 1.24 382.6 7.8 0.02 314
C410 0.46 ± 0.007 0.40 ± 0.005 0.94 0.55 1.21 400 8.36 0.03 400
C420 0.15 ± 0.002 0.15 ± 0.002 1.13 0.56 1.16 382 8.27 0.01 459
C460 0.27 ± 0.003 0.32 ± 0.004 0.72 0.45 1.27 388.2 8.01 0.03 422
C510 0.19 ± 0.002 0.17 ± 0.003 0.61 0.6 1.15 390.2 8.35 0.02 355

aComponent weights (λ and σ) indicate the contribution of a component to the overall variability and indicate their sharedness across EEMs and
FT-ICR-MS. Weighted averages (subscript wa) refer to the weighted average chemical composition of specific components. O/C: Oxygen-to-
carbon ratio. H/C: Hydrogen-to-carbon ratio. m/z: mass-to-charge ratio. DBE: Double bond equivalent. N/C: Nitrogen-to-carbon-ratio. Ci:
Chemodiversity index.
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Here, we propose an approach to simplify the interpretation of
ACMTF mass spectra for the purpose of initial investigations:
The molecular formula loadings (Figure 2B,C) can be
simplified by identifying the component with the highest
relative loading for every molecular formula while disregarding
the remaining components. In the resulting modif ied component
mass spectra, every molecular formula is only represented once,
and the interpretation is simplified (Figure S9 depicts several
examples).
When plotting modified mass spectra in the van Krevelen

space (Figure 3), the chemical properties associated with
fluorescence spectra clustered in specific regions. The modified
component loadings tracked a continuum of chemical
properties along a diagonal line in the van Krevelen space
from the most saturated formulas (high H/C, low O/C) to the
most oxygenated, unsaturated formulas (high O/C, low H/C)
where oxygenation and unsaturation increased in the order
C460 < C310 < C350 < C410 < C420 < C510. This shift of elemental
composition between components observed in the modified
component spectra accurately reflected the properties of the
unmodified components revealing identical shifts in the
weighted averages of O/C and H/C (Table 1). This indicates
that the shift is an inherent pattern and not an artifact of the
simplification of the molecular fingerprint of each component
to modified loadings. However, as would be expected, there
was a large discrepancy between the chemodiversity of
molecular formula components (Table 1) and the number of
formulas represented in modified mass spectra (148 > N > 42,
Figure 3). Despite considerable data reduction, modified mass
spectra appear to offer adequate insight into the compositional
differences between components, but further in-depth
investigations of chemical properties require the consideration
of the complete component molecular fingerprint and thus all
further model interpretations refer to the loadings depicted in
Figure 2C.
Because ACMTF indicated that all identified fluorescence

components were linked (i.e., shared) with distinctly different
mass spectra, our study allowed the first multivariate estimate
of the molecular fingerprint of fluorescent organic matter. As
can be seen in Figure 2C, the chemodiversity and elemental
composition of components differed significantly, but fluo-
rescence properties such as emission maximum or Stokes shift

did not correlate with molecular properties such as chemo-
diversity, weighted average elemental composition, or weighted
average molecular weight. This suggests that while EEM
fluorescence was possibly caused by the excitation of one or
several chemical moieties summarized in the molecular
fingerprint of ACMTF components, these fluorescing moieties
do not dominate the molecular fingerprint to an extent that
would allow the usage of fluorescence properties as indicators
for, or predictors of, associated molecular fractions (and vice
versa). Moreover, it should not be assumed that the molecular
formulas summarized in ACMTF components predominantly
consist of moieties that fluoresce but rather that their dynamics
are indistinguishable from the moieties that do. However, if
further studies should reveal consistent trends in the molecular
fingerprint of fluorescent DOM, the stable, albeit potentially
noncausal relationship could be utilized routinely to expand
the analytical window of UV−vis spectroscopic analyses.

Comparison of Data Fusion and Traditional Ap-
proaches. Since the present study is the first application of
ACMTF to analytical DOM data sets, it is important to
compare the results obtained with ACMTF to existing
approaches employed in previous studies. First, the factoriza-
tion of molecular formulas with ACMTF was compared to
PCA, a widely used method to decompose molecular formula
tables.15 The first significant difference between PCA and
ACMTF is the ability to impose non-negativity constraints in
ACMTF. Our analysis indicated that loadings and scores of
PC1−PC6 in PCA were both positive and negative (Figure
S10), while ACMTF component loadings were exclusively
positive (Figure 2, panel C). In ACMTF, component loadings
and scores therefore directly correspond to analytical signals,
while in the case of PCA, the interpretation of components is
less intuitive since a combination of negative and positive
scores and loadings must be considered. The option to
constrain models to nonnegative loadings and scores in
ACMTF represents an improvement in the characterization
of complex mixtures such as DOM with mass spectrometry.
Compared to the strict orthogonality of components in

PCA, ACMTF allows some degree of similarity between
molecular formula loadings. A congruence analysis between all
unique combinations of the six ACMTF components showed
that ACMTF loadings of molecular formula components were

Figure 3. Modified component mass spectra of ACMTF components. For the purpose of simplification, every formula is only represented when it
dominates the loading of a particular component (i.e., has the highest loading). Panel A: Modified component molecular weight distributions. Panel
B: Modified component van Krevelen plots, where the size of dots represents the component loadings.
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autocorrelated to some degree (between 0.21 and 0.85, on a
scale from zero to one, Figure S11). The similarity between
ACMTF components highlights that environmental processes
or independent chemical fractions may overlap in their spectral
properties. Models with strictly orthogonal components (such
as PCA) would ultimately be unable to recover these spectra.
Together, our comparison indicated that ACMTF provides
more chemically intuitive results, making it a more appropriate
model for the decomposition of molecular formula matrices of
DOM. However, it is important to stress that ACMTF models
are primarily driven by the variability of the tensor
(fluorescence EEMs). The description of variability beyond
EEMs depends on fitting unshared components that can
describe variability independent of fluorescence. Future efforts
should also include the comparison of components derived
from data fusion using ACMTF and those derived from
factorizations based solely on molecular formulas to investigate
how data fusion models relate to models describing only
molecular formulas. However, this is pending the validation of
non-negative matrix factorizations applicable to molecular
formula data sets of DOM, and a comparison is thus not yet
possible.
Since ACMTF is based on PARAFAC, there should be a

basic agreement between loadings and scores of a PARAFAC
model fit to the EEM data exclusively, and the ACMTF model
describing both EEMs and molecular formulas. A detailed
comparison between ACMTF and PARAFAC is given in the SI
(SI S2, Figure S8). In short, ACMTF loadings were highly
congruent with corresponding PARAFAC components, while
the scores of some components (C420, C460) diverged from the
PARAFAC solution despite clearly showing a positive
correlation. These discrepancies are most likely attributable
to the occurrence of mass spectrometry-specific disturbances.
Among other possibilities, matrix effects in ESI-MS affecting
certain groups of samples could have caused deviations in
component scores of shared components. Despite this, the
simultaneous factorization of fluorescence EEMs and the
molecular formula table resulted in a model that generally
agreed with PARAFAC.
Finally, we compared associations between fluorescence

EEMs and molecular formulas identified by ACMTF with the
correlations identified by the post hoc Pearson rank correlation

of PARAFAC Fmax values and molecular formula abundances
(Figure 2, panel D). Although, there was a degree of overlap
between associations identified by each approach (Figure 2,
panel C, D), there was also substantial disagreement. The
correlation-weighted mass spectra (showing correlation co-
efficient in place of abundances) were compared to ACMTF
component mass spectra, using the Tucker congruence
coefficient. For all comparisons, TCCs were smaller than
0.45, indicating poor agreement. In extreme cases, such as C310,
C350, and C460, correlations were found to be inverse in areas of
the van Krevelen space that showed relatively low but positive
loadings in corresponding ACMTF components. C510 was
inversely correlated with highly oxygenated, highly unsaturated
molecular formulas in the rank analysis, while ACMTF
indicated a strong positive correlation in that compositional
space.
Comparisons between data fusion and rank correlation are

hindered by some key differences between the correlation and
data fusion approaches. Rank correlations in their simplest
interpretation provide a binary indication of direct or inverse
association between fluorescence and molecular formulas. This
approach does not decompose a multivariate signal and often
returns multiple possible correlations between variables. This
leaves users to decide which of the significant correlations are
valid, and which can (or should) be ignored. On the other
hand, data fusion readily addresses this issue by dissecting a
particular molecular formula abundance into multiple
components. This multivariate decomposition represents a
more objective approach that is far less vulnerable to false
positive errors and thus provides more robust estimates of the
molecular fingerprint of fluorescent DOM.

Biogeochemical Sources, Chemical Fractions, or
Diagenetic State? DOM is a highly complex mixture of
organic compounds with contrasting chemical properties,
varying biogeochemical sources and sinks, and different
degradation potential. It is striking that more than 99% of
the modeled mass spectral variability (∼38% of the mass
spectra) was described by only six statistical components. This
represents a significant reduction in complexity that facilitates a
far easier interpretation of DOM data sets. However, the
partitioning of DOM fluorescence and molecular formulas into
statistical components poses the question: Do ACMTF

Figure 4. Average distribution of ACTMF components across three Arctic fjords. Average scores are shown in A−C and colored according to the
respective fjord in the map (D). Error bars indicate the standard deviation of the mean. For oceanographic context, a temperature-salinity plot is
shown in (E). Sampling stations outside of the fjords are marked in gray and not shown in other plots.
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components indicate biogeochemical source materials (e.g.,
terrestrial substances), reflect its diagenetic state (e.g.,
recalcitrant material), or represent distinct chemical fractions
(e.g., high molecular weight DOM)?
To assign an interpretation to the six ACMTF components,

across-fjord patterns (Figure 4) and depth-dependent trends in
Scoresby Sound (Figure 5) were investigated while bearing in
mind the molecular fingerprint of respective components
(Figure 2C). The most distinct oceanographic pattern was
observed for C420, which was most prevalent in Scoresby
Sound (Figure 4). In Scoresby Sound, Fmax values of C420 also
exhibited a distinct surface maximum, followed by a decrease
in its relative abundance with depth, and a subsurface peak at
all stations in the polar waters (S < 34, T < 0) was observed
(Figure 5). Since Scoresby Sound receives terrestrial material
from the EGC, terrestrial material is most likely a major source
of this component. However, because a recent study identified
a component highly similar to C420 as ubiquitous across a wide
range of environments,40 C420 is likely not a highly selective
proxy for terrestrial material but rather represents a
fluorescence fraction that is particularly abundant in
terrestrially influenced waters. Interestingly, C420 had the
lowest average molecular weight, was strongly associated with
the most oxygenated, unsaturated molecular formulas, and
showed the highest chemodiversity, suggesting that terrestrially
derived substances represent a distinguishable chemical
fraction. The identification of this terrestrially dominated
component provides targets for further experiments, for
example, via MS/MS to explore molecular structures.
Components fluorescing in the spectral range of C350 are

commonly termed “protein-like”; a term which is derived from
the apparent spectral similarity with amino acid fluorescence
that has been shown to correlate with amino acid
concentration.41 The presence of a UV-A fluorescence
signature has often been used as a proxy for surface water
biological activity, and recent studies have demonstrated that
such processes impact DOM mass spectra with high
selectivity.42 In agreement with these findings, ACMTF
indicated a low chemodiversity of the molecular fingerprint
associated with C350, which can be interpreted as representing
fresh organic material closely linked to planktonic productivity
in the surface layer (Figure 5). Similar to C350, C310 also
exhibited a subsurface decrease in Scoresby Sound (10−30 m)
but slightly increased again at 45 m. The higher chemodiversity

of C310 compared to C350 suggests that C310 may encompass
degradation products related to lateral terrestrial inputs,
plankton productivity, or (photo)degradation in the surface
layer. A more constrained assignment is not possible at present
and would require further experiments.
For the remaining components, across-fjord differences were

subtle, while depth profiles differed between components. The
composition in Arnarfjörđur and Kongsfjorden was relatively
stable with depth (Figures S12 and S13), whereas distinct
changes were observed in Scoresby Sound (Figure 5). C410 and
C510 increased with depth, suggesting that this moderately
complex fingerprint was possibly impacted by the processing of
sinking organic matter. In contrast, C460 was invariant with
water depth in all three systems, which suggests it may
represent a recalcitrant component of high molecular complex-
ity (Figure 5, also see Figure S12−13). These systematic trends
provide further confidence in the components identified by this
data fusion approach.

Challenges and Future Directions. Multivariate data
fusion simultaneously decomposes multiple analytical data sets
and provides a tool to link heterogeneous data sets, such as
fluorescence spectroscopy and mass spectrometry. The
methodological similarities with PARAFAC provide the
opportunity to integrate data fusion algorithms into popular
existing software toolboxes (such as drEEM), as well as related
public databases (such as OpenFluor). With the continuous
development of multicore processors and improvements in
modeling algorithms, the computational expense of data fusion
will greatly decrease in the future, making it widely applicable
for the scientific community. While multivariate data fusion
may not be able to identify the chemical compounds
responsible for the optical properties of complex environ-
mental DOM data sets, it greatly improves the chemical
interpretability of fluorescence data sets and offers potential for
future developments. With data fusion as a central interface,
future studies will be able to leverage the superior analytical
depth of mass spectrometry while utilizing the spatiotemporal
resolution of ultraviolet−visible spectroscopy.
Assigning an interpretation to ACMTF components is

confounded by the increased information content of
components, particularly the high complexity of molecular
fingerprints. Whereas fluorescence components are continu-
ous, and their chemical interpretation may generally be
assessed by comparison to pure fluorophore spectra, the

Figure 5. Depth variation of physical and environmental parameters in Scoresby Sound. Panel A: Salinity, temperature, and chlorophyll a, along
with a station map. Panel B: Depth profiles of the six ACMTF component Fmax values (surface to 100 m, the actual water column depth was
greater). Dots represent Fmax values, black lines the binned average along with the standard deviation of the mean (gray).
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complex and discontinuous nature of component mass spectra
constitutes a significant challenge in this regard. In light of
their generally high diversity, it appears reasonable to assume
that ACMTF component mass spectra represent multiple,
currently unresolvable chemical fractions. The ability to further
separate chemical fractions may be improved by integrating
additional DOM analyses, such as absorbance or 13C or 1H
nuclear magnetic resonance (NMR) spectroscopy. ACMTF is
theoretically able to link one trilinear data set (fluorescence
EEMs) with multiple matrices (such as 13C and 1H NMR).
However, ACMTF requires that one of the data structures be
trilinear. The fusion of bilinear data sets, such as FT-ICR-MS
and 13C NMR, requires other data fusion strategies.43

There are a number of methodological challenges that
remain to be solved in regard to the applicability of ACMTF to
DOM data sets. For example, it is very likely that FDOM
EEMs and FT-ICR-MS formula matrices do not share the
same number of underlying components. While ACMTF is
able to address this disparity between two data sets with data-
set- and component-specific weights, it is currently unknown
how well this approach can cope with the potentially large
discrepancy between the number of components in fluo-
rescence vs molecular formula data sets of DOM. An expanded
analysis of this is warranted, and this topic needs consideration
in future efforts. Furthermore, our study put focus on the 527
most conserved molecular formulas since the primary goal was
to identify the molecular fingerprint of quasi-ubiquitous
fluorescence signals. Relaxing the data preprocessing criteria
by including more unique (uncommon) molecular formulas
would be desirable from a biogeochemical point of view.
However, this presents a challenge for model validation and
considerably increases computation time. In order to include
sparsely observed molecular formulas, further developments of
the modeling approach are necessary.
The scientific community utilizing FDOM EEMs has

converged toward a standard methodology for measuring
samples and analyzing resulting data sets with PARAFAC,
achieved through a substantial number of efforts including
interlaboratory comparisons.12,23,44 This was driven mostly by
the fact that multivariate analysis demands a stringent and
standardized sample and data processing routine, to provide
globally consistent data. The measurement and data analysis of
FT-ICR-MS mass spectra is in the process of being
standardized, and this is essential if advanced data analysis
techniques are to be employed.45 For the time being, however,
different guidelines for formula assignment, peak identification,
and signal normalization exist across the community, and no
central, open database has been developed to our knowledge. If
data fusion should become a viable tool for community-wide
DOM characterization, these discrepancies must be addressed
to provide reproducible results that enable replication.
Key differences between fluorescence spectroscopy and FT-

ICR-MS currently complicate joint description of fluorescence
and ESI-MS data sets. Fluorescence quantum yields and ESI
efficiencies of analytes are unknown; therefore, peak intensities
and proportions between peaks reflect a combination of actual
concentrations and differences in fluorescence and ionization
efficiencies, respectively. However, ESI-MS peak intensities
differ from fluorescence, because carbon concentrations of
samples are typically adjusted before injection, and signals are
normalized to the sum of peaks (or the highest peak) during
postprocessing. These steps are designed to improve data
robustness, but peak abundances subsequently depend on (1)

ionization efficiencies and (2) the abundance of the remaining
peaks in relation to the total carbon concentration. To ensure
the compatibility of the two data sets during data fusion,
fluorescence signals must currently be normalized to the total
fluorescence per sample. As a result, ACMTF scores represent
proportions. Obtaining more quantitative ACMTF component
scores hinges on developing approaches that yield robust mass
spectra without a carbon- and peak-normalization step.
Beyond issues related to sample and data treatment, practical

issues related to the ion source may further compromise the
ability to quantify analytes with ESI-MS. The ionization of
DOM constituents with ESI is inherently selective, and matrix
effects introduce artifacts.3,46 However, the extent to which
matrix effects impact DOM mass spectra remains poorly
quantified as the molecular structures of DOM remain largely
uncharacterized. Nonetheless, matrix effects have been
documented for isolated marine metabolites.47 The application
of models assuming linear relationships between analyte
concentration and detector signal thus requires careful
investigation. Here, we observed that the majority of the 527
modeled formulas could be described using a model that
assumes a linear relationship between fluorescence signals and
molecular formula abundances. The reproducibility of our
efforts should be investigated in future studies carried out
across a wide variety of aquatic environments.
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