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This is an over 20 year old discussion: 
Lu (2001)(12);  McDougall, Greatbatch, Lu (2002)(30),   
Greatbatch, Lu, Cai (2001)(30);  
Huang et al. (2001)(38); 
de Szoeke and Samelson (2002)(36), Losch, Adcroft, Campin (2004)(34)



• Very accurately measures gravity 
• Can infer changes in mass distribution in oceans 
• Boussinesq models conserve volume not mass 
• How can we test whether the difference matters?

GRACE 
(G)ravity (R)ecovery (A)nd (C)limate (E)xperiment



Boussinesq Approximation

 According to Spiegel and Veronis (1960): 
1. The fluctua>ons in density which appear with the advent of 

mo>on result principally from thermal (as opposed to pressure) 
effects.  

2. In the equa>ons for the rate of change of momentum and mass, 
density varia>ons may be neglected except when they are 
coupled to the gravita>onal accelera>on in the buoyancy force. 

mass balance 
becomes volume 
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=> any sea level study should use non-Boussinesq models 
(but the global mean can be recovered accurately a-
posteriori: Greatbatch, 1994).



How to include non-Boussinesq effects?

various methods for integrating the full continuity equation 

 

• modify/reinterpret existing codes:  
- Lu (2001); McDougall, Greatbatch, Lu (2002), implemented in 

Greatbatch, Lu, Cai (2001); 
- de Szoeke and Samelson (2002): exploit duality between 

Boussinesq and non-Boussinesq equations, implemented in 
MITgcm (Losch, Adcroft, Campin, 2004) 

• write new non-Boussinesq models (from scratch) 
- in pressure coordinates: Huang et al. (2001);  

- -model: Song et al. (2004, 2006, 2010, …) 
- new non-Boussinesq algorithm: Auclair et al (2018)
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more non-Boussinesq effects
• various estimates of size of effects, generally larger than 

previously assumed 
- According to McDougall, Greatbatch, Lu (2002): “On 

Conservation Equations in Oceanography: How Accurate 
Are Boussinesq Ocean Models?” Davies (1994): “Diapycnal 
mixing in the ocean: Equations for large-scale budgets”, 
errors of order of diagpycnal mixing occur in Reynolds 
averaged equations when replacing density by a constant: 

∂t(ρC) + ∇ ⋅ (ρuC) = ∇ ⋅ (ρκC ∇C)
with ∂tC + ∇ ⋅ (uC) ≈ ∇ ⋅ (κC ∇C)

RA: ∂tC + u ⋅ ∇C ≈ − ∇ ⋅ (u′ C′ )



non-Boussinesq equations: Z-coordinate approach  
(McDougall et al 2002, implemented in Greatbatch et al 2001)

Problem for Reynolds 
averaged equations:

Solution: interpret variables  as density weighted means

Ct + u ⋅ ∇C = − ∇ ⋅ (u′ C′ )

uρ = ρu /ρ, ũ = ρ uρ/ρ0 = ρu /ρ0, Cρ = ρC/ρMAY 2002 1579N O T E S A N D C O R R E S P O N D E N C E
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Note that the molecular flux terms in (21) and (22)
(involving kC and m) have been absorbed into the tur-
bulent fluxes, and that the turbulent fluxes have been
parameterized using a Fickian approach, as is traditional
(noting that the diffusion tensors K and A may have
both symmetric and antisymmetric parts).
These are the fully non-Boussinesq conservation

equations, written in terms of our new velocity variable
which is proportional to the average mass flux per unit
area. The Boussinesq approximation consists of replac-
ing with ro everywhere except in the vertical gravi-r
tational acceleration term. If we perform this Boussinesq
replacement procedure on (24)–(26), we obtain our ver-
sion of the Boussinesq conservation equations:

= · ũ ¯ 0, (27)
r r r

C 1 = · ( ũC ) ¯ = · (K=C ), (28)t

1 r
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Notice that these equations correspond exactly to the
instantaneous Boussinesq equations, (4)–(6), but here
we interpret the variables (particularly the velocity) in
a special way to ensure, as we shall show, that (27)–
(29) are much more accurate than the average of (4)–
(6).

5. The steady, geostrophic hydrostatic equations
are fully non-Boussinesq

We begin by noting that if the mean fields are in a
steady state (that is if t and are zero), the fully non-rr Ct
Boussinesq continuity and tracer equations [i.e., (24)
and (25), respectively] can be written very simply as
= · 5 0 and = · ( r) 5 = · (K= r). These conser-ũ ũ C C
vation equations are exactly the ones used by numerical
ocean models, and contrary to common assumption,
there are no error terms here of up to 5% magnitude,
as normally associated with the Boussinesq approxi-
mation, nor are there errors of order 30% or more, as
implied by MG92. Furthermore, under the geostrophic
and hydrostatic balance, the momentum equation also

holds without error. In summary, when the ocean is
statistically steady, geostrophic and hydrostatic, the con-
tinuity, tracer and momentum equations are, without any
Boussinesq error;

r r
= · ũ 5 0; = · ( ũC ) 5 = · (K=C );

1
2V 3 ũ 5 2 = p; and p 5 2gr , (30)H H zro
where H is the horizontal component of and =H isũ ũ
the horizontal gradient operator. This implies that, sub-
ject to the geostrophic restriction, when the present gen-
eration of hydrostatic ocean models reach a steady state,
they are in fact fully non-Boussinesq and so do not
suffer the errors of 5% or more associated with the
Boussinesq approximation.
We wish to emphasize that the equations in (30) have

been derived without the need to make the Boussinesq
approximation and yet they are exactly the same con-
servation equations as are used in Boussinesq numerical
models of the ocean circulation. Certainly it appears
that the Boussinesq approximation has been made in
(30) because (i) is not present inside the divergencer
terms = · and = · ( r), and (ii) there is a constantũ ũ C
reference density in the 2=H /ro term. However, wep
have avoided having to make the Boussinesq approxi-
mation by redefining the velocity vector as being the
average mass flux per unit area (and then dividing by
ro to give it the dimensions of velocity).
There are two remarks that need to be made in regard

to the hydrostatic balance in (30), z 5 2g , and thesep r
remarks remain pertinent in the more general situation
where the flow is unsteady and the momentum equation
is not simply taken to be the geostrophic balance. The
first remark is the point made by Dewar et al. (1998)
that should be allowed to respond to the changingr
pressure at fixed depth. While the past practice in this
regard is not actually part of a Boussinesq approxi-
mation (since the appearance of the in situ density in
the vertical momentum equation is the only place in the
Boussinesq approximation procedure where the in situ
density is not replaced by ro) it has led to errors of
similar magnitude to that usually associated with the
Boussinesq approximation.
The second remark relates to our ability to evaluate
given the fact that the model is assumed to carry ther

density-weighted salinity and potential temperature, rS
and r. In hydrostatic ocean models, the hydrostaticu
equation is vertically integrated to yield the pressure
whose horizontal gradient appears in the horizontal mo-
mentum equations. An estimate of the error due to our
inability to exactly determine can be gained by ex-r
amining the thermal wind equation which can be found
from (30), namely,

g
2V 3 (ũ ) 5 = r . (31)H z Hro

Here one needs the horizontal gradient of , and withr



non-Boussinesq equations: Z-coordinate approach  
(McDougall et al 2002, implemented in Greatbatch et al 2001)

Problem for Reynolds 
averaged equations:

Solution: interpret variables  as density weighted means

Ct + u ⋅ ∇C = − ∇ ⋅ (u′ C′ )
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non-Boussinesq pressure coordinates

JULY 2002 2195D E S Z O E K E A N D S A M E L S O N

free-surface condition may be transposed to the ocean
surface. A non-Boussinesq set of equations, which
conserve mass, not volume, may be obtained with an
additional approximation in the horizontal momentum
balance only. This set is an exact dual of the Bous-
sinesq equations, in the sense that the roles of bottom
pressure and sea surface height are reversed.

2. Primitive equations in p coordinates
The equations of motion written in terms of pressure

as an independent variable are well-known, much used
in dynamical meteorology, and can be found, for ex-
ample, in Haltiner and Williams (1980):

Du
5 2= M 2 fk 3 u 1 F, (2.1)pDt

]M
215 2a 1 r , (2.2)0]p

]v
= · u 1 5 0. (2.3)p ]p

Du
5 Q, (2.4)

Dt

and, for the ocean,
DS

5 Q . (2.5)sDt
In these equations, u is the horizontal velocity, M 5
gz 1 p/r 0 is the Montgomery function, F is the fric-
tional force per unit mass, and =p is the gradient along
pressure surfaces; the substantial rate-of-change op-
erator is

D ] ]
5 1 u · = 1 vp1 2Dt ]t ]pp

] ]
5 1 u · = 1 w , (2.6)z1 2]t ]zz

where v is the pressure tendency, defined by
Dp

v 5 (2.7)
Dt

(see appendix A for details), w is vertical velocity, and
=z is the horizontal gradient at constant depth z. Specific
volume (reciprocal of density) is given by the equation
of state

21r 5 a 5 a(S, T, p) 5 ã(S, u, p), (2.8)
the second form of which is written in terms of potential
temperature u rather than in situ temperature T (Jackett
and McDougall 1995). The constant bias applied to21r 0
specific volume in (2.2) and used in defining M is quite
arbitrary but is conveniently chosen so that r0 is a mean
density. Temperature and salinity are controlled by the

heat and salt balances, (2.4) and (2.5), in which the
irreversible transfer processes are given by Q and Qs,
respectively. Because of (2.6), scalar conservation equa-
tions such as (2.4) and (2.5) have the same form in
pressure or depth coordinates.
The solenoidal form of the continuity Eq. [(2.3)] for

the three-dimensional pseudovelocity (u, v) is a con-
sequence of the hydrostatic assumption (2.2); it does
not require the neglect of dilatation r21Dr/Dt. For when
the continuity equation,

Dr ]w
1 r = · u 1 5 0 (2.9)z1 2Dt ]z

is transformed to a general coordinate p (not necessarily
pressure) that replaces z, it becomes (appendix A)

D ]v
(rz ) 1 rz = · u 1 5 0 (2.10)p p p1 2Dt ]p

in which the Jacobian of the transformation ]z/]p mul-
tiplies the density (de Szoeke 2000). But if p is indeed
pressure, assumed hydrostatic, then rzp 5 21/g, which
is constant, so that (2.3) follows. Hence, (2.3) represents
full conservation, not of volume but of mass, including
compressibility, or dilatation, effects. The same hydro-
static assumption, whereby vertical inertia is neglected,
is responsible for a crucial simplification in the hori-
zontal momentum balance of (2.1). Otherwise, (2.1)
would contain an additional term on the left, (=pz) Dw/
Dt, representing the effect of vertical inertia along slant-
ing pressure surfaces.

Boundary conditions

At the free surface, z 5 h(x, y, t), we assume that
pressure is constant (taken to be zero), and that the
surface is material:

M 5 gh, v 5 0 at p 5 0 (2.11)
The ocean bottom at z 5 2H(x, y), where pressure is
pb(x, y, t), is likewise a material surface, so that

p ]pb bM 5 2 gH, v 5 1 u · =pbr ]t0

at p 5 p (2.12)b.

By integrating the continuity equation (2.3) from p 5
0 to p 5 pb, and using (2.11) and (2.12) for v, one
obtains

pb ]pb= · u dp 1 5 0, (2.13)E1 2 ]t0

which furnishes a prognostic equation for pb.
There are a number of useful results related to (2.11)–

(2.13), which provide simplification of these exact
boundary conditions. By integrating the hydrostatic re-
lation (2.2) from p 5 0 to p 5 pb, one obtains a relation

with hydrostatic pressure ρzp = ρ
∂z
∂p

= −
1
g

= constant

de Szoeke and Samelson (2002)



Variability in Bottom Pressure (cm)

• 4˚ model, between 80˚N/S, 15 levels, no sea ice, simple convective 
adjustment, no eddy parameterisation scheme, nonlinear free 
surface (Losch et al, 2004)

Different color scale



How important are these effects?
• < 2000km 
– error in GRACE 

data larger than 
effects 

•  > 2000km 
– effects in model 

no bigger than 
due to numerical 
noise! 

• coarse 
resolution!!!! 

• Story will 
change at 
higher 
resolution

Losch et al. (2004), 4deg grid



for a coarse resolution general circulation model

• Boussinesq and hydrostatic approximations 
have similar effects on the circulation 

• effects due to numerical truncation error and 
unclear parameterisations are of similar 
magnitude 

• even coarse models are sensitive to small 
changes in dynamics and forcing!!!!!



Update: increase complexity and resolution

• LLC270 (1/3 ˚), 50 levels, some “eddies”  
• sea ice model (levitating) 
• Gent-McWilliams and Redi-scheme ( ) 
• Vertical mixing scheme: TKE (Gaspar et al, 1990) + 

IDEMIX (Olbers and Eden, 2013, Eden and Olbers, 
2014) 

• (new TEOS10 equation of state, unfinished)

κGM = 80 ms−2



 vs -coordinates (year 62)z p

-coordinates (non-Boussinesq)p-coordinates (Boussinesq)z



differences small but systematic?



Difference due to model numerics



 vs -coordinates (year 62)z p
• with IDEMIX!!! 
• section through the Pacific Ocean

-coordinates (non-Boussinesq)p-coordinates (Boussinesq)z



Mean volume and mass



Mean volume and mass



Mean volume and mass



Seasonal equatorial transport



at higher resolution

• Greatbatch (1994) correction is still great 
• differences between non-Boussinesq and Boussinesq 

model may be larger at higher resolution, maybe even 
systematic, but still at the level of other uncertainties 
(here, EOS) (But more careful comparison required: 
initial conditions, quasi-hydrostatic approximation) 

• Order (10%) of cross-equator mass transport not 
resolved in Boussinesq model 

• Replacing pressure by mass coordinates ( ) 
conveniently solves forcing issue by atmospheric 
pressure (to be done)

gp


