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Summary

The global climate change has an unprecedented impact on the Arctic Ocean, resulting in warm-

ing of the Arctic surface air at much faster rates than the global average. The warming temper-

atures lead to constantly declining Arctic sea ice cover, which reached in September 2018 the

sixth lowest summertime minimum extent in the satellite record (since the late 1970s). Shrink-

ing sea ice has a strong impact on the entire Arctic marine ecosystem, through alterations of the

primary production, grazers communities, and subsequently the biological carbon pump. Cur-

rent predictions of entirely sea-ice free summers in the Arctic Ocean already in the second half of

this century urges the need to understand the ongoing oceanographic and biological processes

in order to predict how the Arctic ecosystem will respond to further environmental changes.

The differentiation between natural temporal ecosystem variability and anthropogenically-

induced impact of the climate change requires long-term observations. The Ocean Observing

System FRAM (FRontiers in Arctic marine Monitoring), which was established in 2014, is an Arc-

tic long-term observatory for investigating the impact of changing ocean properties and sea ice

conditions of the Arctic Ocean on its marine ecosystem. The starting point for the FRAM project

was the already existing long-term observatory HAUSGARTEN, situated in the main gateway

between the Arctic and the Atlantic Oceans - the Fram Strait. To date, despite their impor-

tance for the biogeochemical cycling, very little is known regarding the diversity and function

of microbial communities in the Arctic Ocean in general, and specifically in the Fram Strait. In

the framework of FRAM, a Molecular Observatory was established, for conducting standardized

molecular-based high-resolution observations of the Arctic microbial communities.

This thesis was conducted as part of the FRAM Molecular Observatory, and as part of the estab-

lishment process of the observatory it contributes to the methodological and procedural stan-

dardization required for long-term microbial observations. This thesis provides a first compre-

hensive overview of currently existing long-term microbial observatories around the world, it

provides guidelines for initial steps towards establishing a community network between them,

and stresses the urgent need in community efforts towards methods standardization. Further-

more, as part of the methods standardization for long-term microbial observations, this thesis

includes a performance comparison between two, broadly used in microbial oceanography, 16S

rRNA gene primer sets.

The main focus of the thesis is on the ecology of pelagic bacterial and archaeal communities in

the Fram Strait. Its overall objective was to investigate the distribution of these communities in

the Fram Strait, and to identify environmental drivers of their diversity. The observations of this

thesis reveal that sea ice has a strong impact on the development of the seasonal phytoplankton
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bloom during the summer. As a result, sea ice conditions are affecting the bacterial diversity in

surface water, and are leading to a distinct community in sea-ice free and sea-ice covered regions

of the Fram Strait. However, the impact of the sea ice is not limited to the surface ocean, as it also

heavily affects the vertical export of aggregated organic matter to the deep ocean. The results

of this thesis also show that aggregates formed under the sea ice sink faster, and by that provide

a stronger vector for transport of bacterial and archaeal taxa to the deep ocean, compared to

ice-free waters.

Altogether, this thesis contributes to the baseline knowledge needed for further long-term ob-

servations of pelagic microbial communities in the Arctic marine ecosystem. Furthermore, it

provides an important insight into the strong impact of the sea ice on bacterial and archaeal

communities throughout the entire water column, underlining the potential impact of further

environmental changes on the Arctic Ocean in the light of prevalent global warming and climate

change.



Zusammenfassung

Der Einfluss des globalen Klimawandels ist an keinem Platz der Welt so deutlich sichtbar wie

in dem Arktischen Ozean. Dies lässt sich besonders an der Erwärmung der Luft über der Arktis

messen, die sich hier wesentlich schneller erwärmt als im globalen Durchschnitt. Diese warmen

Temperaturen führten in den letzten Jahren zu einer konstant schmelzenden Eisdecke. Dieses

Jahr im September wurde seit Anbeginn der Messungen (1970) die sechstniedrigste Eisstärke

auf dem Arktischen Ozean gemessen.

Die Abschmelzung der Eisdecke auf dem Arktischen Ozean hat extreme Folgen für das gesamte

marine Ökosystem, da es zu Veränderungen in der Primärproduktion und der Zooplank-

tonzusammensetzung kommt, was schlussendlich einen Effekt auf die biologische Kohlenstoff-

pumpe besitzt. Man geht momentan davon aus, dass bereits in der zweiten Hälfte dieses

Jahrhunderts die Arktis im Sommer komplett eisfrei sein wird. Diese starken Veränderungen

der Umwelt werden die ozeanografischen und biologischen Prozesse zwangsläufig beeinflussen.

Daher ist es unabdingbar zu verstehen, wie sich die Klimaerwärmung bereits heute auf unsere

Ökosysteme auswirkt, um zukünftige Veränderungen besser prognostizieren zu können.

Um den Einfluss des Klimawandels im Grundsatz zu verstehen und um unterscheiden zu kön-

nen zwischen natürlicher, zeitlicher Variabilität des Ökosystems und anthropogenen Einflüssen,

braucht es Langzeitstudien. Das Ozean-Beobachtungssystem FRAM (FRontiers in Arctic marine

Monitoring) ermöglicht genau diese Langzeitbeobachtungen, welche sich auf den Einfluss der

Veränderungen des Ozeans und der Eisverhältnisse auf das marine Ökosystem der Arktis konzen-

trieren. Den Grundstein für das FRAM Projekt legte das bereits seit langem bestehende Obser-

vatorium HAUSGARTEN, welches sich in dem Hauptzugang vom Arktischen zum Atlantischen

Ozean befindet- der Framstraße.

Bis heute weiß man sehr wenig über die generelle Vielfalt und die Funktion mikrobiologischen

Lebens in der Arktis, obwohl dies für das Verständnis des biogeochemikalischen Kreislaufs ins-

besondere in der Framstraße unbedingt notwendig ist. Im Rahmen des FRAM Projektes wurde

daher ein Observatorium aufgebaut, welches es ermöglicht, genau diese Prozesse durch standar-

disierte molekulare Methoden hoch auflösend zu beobachten und besser zu verstehen wie die

arktischen mikrobiologischen Gemeinschaften funktionieren.

Die Forschungsarbeit auf der diese Doktorarbeit basiert, wurde im Rahmen des mikrobiellen

FRAM Observatoriums ermöglicht und trägt zu einer Methodenentwicklung und Prozessstan-

dardisierung bei, die unbedingt für mikrobiologische Langzeitbeobachtungen dieser Region

benötigt werden. Diese Arbeit gibt zudem den ersten allumfassenden Überblick aller derzeit ex-

istierenden mikrobiologischen Langzeitobservatorien, sowie Handlungsempfehlungen für erste
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Schritte um ein Kommunikationsnetzwerk zwischen ihnen aufzubauen und betont die dringende

Notwendigkeit Methoden zu standardisieren. Aus diesem Grunde werden in dieser Arbeit als er-

ster Schritt Richtung Methodenentwicklung die zwei meist genutzten 16S rRNA Genprimersets

miteinander verglichen.

Der Schwerpunkt dieser Doktorarbeit liegt auf der Ökologie der pelagischen bakteriellen und ar-

chaeellen Gemeinschaften in der Framstraße mit dem Ziel, die Verteilung dieser Gemeinschaften

zu untersuchen und die Haupteinflüsse der Umwelt auf ihre Artenvielfalt zu identifizieren. Die

Arbeit kommt zu zwei Hauptergebnissen: zum einen hat die Ausbreitung von Meereseis einen

großen Einfluss auf die Entwicklung der saisonalen Planktonblüte im Sommer und die Vielfalt der

Bakterien im Oberflächenwasser, was zu sich deutlich unterscheidenden Diversität der Gemein-

schaften in vereisten und nicht vereisten Regionen auf allen Wasserebenen der Framstraße führt.

Dies bedeutet, dass nicht nur das Oberflächenwasser von den Veränderungen beeinflusst ist, son-

dern genauso auch der vertikale Export aggregierter organischer Materie in die Tiefsee. Außer-

dem zeigt diese Arbeit, dass Aggregate, welche unter dem Meereis entstanden, schneller sinken

und einen schnelleren Transportvektor bakterieller und archaeeller Taxa in die Tiefsee darstellen

im Vergleich zu Aggregaten, die sich in eisfreien Gebieten bildeten.

Insgesamt liefert die Doktorarbeit einen entscheidenden Beitrag zum Aufbau des Basiswissens

zur Langzeitbeobachtungen von pelagischen mikrobiellen Gemeinschaften des arktischen mari-

nen Ökosystems, welches für zukünftige Forschung unabdingbar ist. Des Weiteren liefert sie

wichtige Erkenntnisse über den Einfluss des Meereseis auf bakterielle und archaeelle Gemein-

schaften innerhalb der gesamten Wassersäule, welches den potentiellen Einfluss von weiteren

Veränderungen der Umwelt auf den Arktischen Ozean im Hinblick auf die globale Erwärmung

und den Klimawandel weiter unterstreicht.
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Chapter 1

Introduction

1.1 The Arctic Ocean

The Arctic Ocean is the smallest ocean on Earth, making up ~4% of the global ocean area

and only ~1% of its volume (Jakobsson, 2002). The Arctic Ocean has a unique circumpolar

oceanography, characterized by strong seasonal cycles in temperature, solar irradiation and sea-

sonal formation of sea ice (Johannessen et al., 1994). Unlike the Southern Ocean, the Arctic

Ocean is almost completely enclosed by land and is classified as a mediterranean sea, compris-

ing 35% of the world coastline (Tomczak and Godfrey, 2013). Furthermore, about 50% of the

Arctic Ocean surface area is comprised of continental shelves, which are considered to be the

most fertile regions of the Arctic Ocean (Carmack and Wassmann, 2006). Its central basin is

separated by the subsurface Lomonosov Ridge into the Amerasian Basin, which connects to the

North Pacific Ocean, and the Eurasian Basin, which connects the North Atlantic Ocean (Fig-

ure 1.1; Beszczynska-Möller et al., 2011). Despite its small size, the Arctic Ocean has important

functions in the global ocean circulation. It absorbs the heat from the north Atlantic thermo-

haline circulation, and produces the colder and denser waters that form the deep layers of the

North Atlantic (Aagaard et al., 1985). It also provides an oceanic connection between the North

Atlantic and North Pacific Oceans that has an important role in the nutrient fluxes between these

oceans (Torres-Valdés et al., 2013).

1.1.1 Physical oceanography

The Arctic Ocean exchanges water with both the Pacific and the Atlantic Oceans through two

main oceanic gateways, Bering Strait and Fram Strait (Beszczynska-Möller et al., 2011). The low

salinity Pacific waters are entering the Arctic Ocean through the shallow (50 m) Bering Strait.

These waters are characterized by high silicate and phosphate concentrations, providing a large

source of nutrients for the Arctic Ocean (Torres-Valdés et al., 2013). However, they comprise

only a small fraction of the total inflow to the Arctic Ocean. In contrast, Atlantic inflow through

the Fram Strait is roughly 10 times larger than the Pacific inflow (Beszczynska-Möller et al.,

2011). The Atlantic waters (AW) are more saline and have higher nitrate to phosphate (N:P)

ratio, compared to the Pacific waters. At depths of more than 1000 m, the Arctic Deep Water

1



2 CHAPTER 1. INTRODUCTION

layer begins (Smith Jr, 2013). This very dense homogeneous layer comprises the Arctic Ocean

deep waters, and reaches the seafloor (Figure 1.1).

In general, the surface waters of the Arctic Ocean are stratified by salinity, with relatively weak

vertical mixing (Carmack, 2007). In both basins, the water column is characterized by a low

salinity polar mixed layer at the surface (10 m depth), separated by a cold halocline from the

layers below (Rudels et al., 1996). Being relatively fresher, the Pacific waters lie higher in the

water column than Atlantic waters (AW), and provide part of the strong stratification of the

Arctic water column. This strong water column stability isolates the surface waters from the

heat of the Atlantic and the Pacific inflows, and allows formation of sea ice in winter (Rudels,

2012).

The most defining characteristic of the Arctic Ocean is the sea ice, that covers in winter the

entire Arctic Ocean (Thomas, 2017). In the dark autumn and winter the temperature of surface

waters drops below the freezing point. During that time the Arctic sea ice is formed, reaching its

maximum seasonal coverage in March (Polyak et al., 2010). The sea ice formation process results

in brine rejection that increases the salinity of the underlying waters. Weakened stratification of

the water column initiates deep vertical mixing, which forms the Arctic bottom water and "fills

up" the nutrients budget in the surface (Korhonen et al., 2013). In summer, as a result of solar

radiation and warmer incoming waters, the sea ice melts, and reaches its seasonal minimum

in September. The melting process releases freshwater and strengthens the stratification of the

water column once again (Korhonen et al., 2013).

The sea ice buffers interactions (e.g., heat exchange) between the atmosphere and the ocean,

and governs light availability in the underlying water column (Perovich and Polashenski, 2012).

Furthermore, it prevents surface and internal waves, and isolates the water surface from winds

(Thomas and Dieckmann, 2003). As such, it is affected by both the winds above and the wa-

ter currents below, and is carried with the transpolar drift towards the Fram Strait (Figure 1.2

Pfirman et al., 1997).

The concentration and thickness of the sea ice are a result of thermodynamic processes and

provide an important evidence for the global climate change (Gao et al., 2015; Budikova, 2009).

The shrinking sea ice extent results in surface warming twice as fast as the global average (Sun

et al., 2016; Dobricic et al., 2016). Warmer surface waters are weakening the cold halocline

layer, allowing stronger vertical mixing and upward AW heat flux, which further amplifies the

sea-ice loss (Polyakov et al., 2017). According to current model projections the Arctic Ocean

may experience sea-ice free summers already by the second half of this century (Overland and

Wang, 2013; Wang and Overland, 2015). Such fundamental change of the Arctic Ocean will

lead to strong alterations of the marine ecosystem (Wassmann and Reigstad, 2011; Arrigo et al.,

2008).

1.1.2 Primary production

On a global scale, one of the key biological processes that occurs in the ocean is primary produc-

tion by photosynthetic organisms (Falkowski et al., 1998; Field, 1998). This process is fueled

by solar radiation and provides the basis of the marine food web, as it converts inorganic car-

bon sources (such as carbon dioxide) into bioavailable organic carbon. Primary production by
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photosynthetic organisms is often limited by the availability of additional nutrients, such as ni-

trogen and phosphorous, which are required for the carbon fixation (Howarth, 1988). In the

Arctic Ocean, primary production is also constrained by the availability of solar radiation, which

is governed by the presence of sea ice (Popova et al., 2012; Arrigo, 2014). Furthermore, due to

the low angle of the sun, overall the Arctic Ocean receives less solar radiation and has a lower

annual primary production compared with other oceanic regions (Lee et al., 2015).

The primary production rates in the Arctic Ocean differ strongly between the deep central basin

(i.e., central Arctic Ocean) and the continental shelves (Carmack and Wassmann, 2006). The

broad shelf areas of the Arctic Ocean are seasonal sea-ice zones which receive 11% of the global

river runoff and can sustain high primary productivity (Aagaard and Carmack, 1989; Tremblay

and Gagnon, 2009; Carmack and Wassmann, 2006). The inflow shelves, through which nutrient

rich sub-Arctic waters are entering the Arctic Ocean, are considered to be by far the most fertile

regions in the Arctic Ocean (Wassmann, 2015). The central basin, on the other hand, due to high

sea-ice coverage and low nutrient availability, is considered to be significantly less productive

(Tremblay et al., 2015; Sakshaug, 2004).

Unlike the sub-Arctic regions, the Arctic Ocean is shaped by extreme seasonality with three

months a year of complete darkness (winter) and three months of permanent daylight (summer).

During the dark winter time, as a result of vertical mixing and lack of active primary production,

the nutrient level in the surface waters reaches its annual maximum (Codispoti et al., 2013).

In spring, with the increase in light availability the seasonal phytoplankton bloom begins (Leu

et al., 2011). There are two main sources for primary production in the Arctic Ocean, sea-ice

algae and pelagic unicellular phytoplankton. Due to differences in light sensitivity, these two

groups of primary producers differ in the timing of their bloom (Terrado et al., 2013). The sea-

ice algae are adapted to lower light conditions, and therefore able to start growing earlier in

the spring (Hancke et al., 2018; Arrigo, 2014). The total production of sea-ice algae is highly

variable and depending on the sea-ice situation, however it is estimated between 5 and 10 g

C m-2 yr-1 (Gosselin et al., 1997; Leu et al., 2011). The sea-ice algae contribute more than

50% of the primary production in the central Arctic Ocean, and only up to 25% of the primary

production in the Arctic shelf regions (Gosselin et al., 1997; Legendre et al., 1992). With the

increasing availability of solar radiation and due to retreating sea ice, the pelagic phytoplankton

bloom usually occurs on the sea-ice edge in short massive bloom events (Arrigo et al., 2012;

Fernández-Méndez et al., 2015), and is estimated to 12-50 g C m-2 yr-1 (Gosselin et al., 1997;

Leu et al., 2011).

The primary production in the Arctic Ocean is carried out by unicellular eukaryotic algae, such

as, diatoms, dinoflagellates and haptophytes (Poulin et al., 2011; Terrado et al., 2013). Overall,

diatoms are considered to be the main contributors to primary production in the Arctic Ocean

(Gosselin et al., 1997). Diatoms are an extremely diverse taxonomic group with more than

10,000 species (Smetacek, 2000), characterized by a silicified cell wall which provides mechan-

ical protection from grazers (Hamm et al., 2003). They are unicellular organisms which may

occur both as solitary cells and in colonies, ranging in size over several orders of magnitude

(Smetacek, 2000). They are found in a wide range of freshwater and marine environments, and

in the Arctic Ocean are present both in the water column and associated with sea ice (Arrigo,

2014). The most common pelagic diatom species in the Arctic Ocean belong to the lineages

Chaetoceros and Thalassiosira (Lovejoy et al., 2007a), and the most common diatoms found in
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the sea ice are pennate diatoms, such as, Nitzschia and Navicula (Quillfeldt, 2005). In addition,

the centric diatom Melosira arctica is known to form long filaments attached to the bottom of

the sea ice (Boetius et al., 2013).

1.1.3 Vertical export of organic matter

The oceans are the largest reservoir of carbon in the biosphere, on time scales of hundreds to

thousands of years, and therefore they play a central role in the regulation of the increasing

atmospheric CO2 concentrations (Takahashi et al., 2002). The Arctic Ocean is responsible for

an uptake of 66-199 Tg C yr-1, contributing up to 14% to the global uptake of CO2 (Bates and

Mathis, 2009). Part of the sequestered atmospheric CO2 is due to production of organic carbon by

the primary producers in the surface ocean. The vast majority of the produced organic carbon

is respired, by heterotrophic organisms, back to carbon dioxide already in the surface ocean

(Ducklow et al., 2001). Nevertheless, up to 30% of it is exported to the deep ocean by sinking

particles of organic matter (e.g., decaying phytoplankton and fecal pellets; Turner, 2002), a

process also termed "the biological pump” (de La Rocha and Passow, 2003; De La Rocha and

Passow, 2007). The sinking particles of organic matter (OM) which escape the photic layer of

the ocean, provide the main source of food for the deep ocean biology (Ducklow et al., 2001).

Overall, less than 5% of the produced OM in the surface ocean are eventually reaching the

seafloor (Jørgensen and Boetius, 2007).

The magnitude of the vertical export is greatly dependent on the presence of zooplankton, and

microbial activity (i.e., the "microbial loop" - further discussed in section 1.2). In temperate and

tropical latitudes the cycles of the phytoplankton bloom, and the zooplankton grazing, are vary-

ing within narrow limits. The relatively small community fluctuations allow strong retainment

and large recycling of the produced OM in the upper part of the water column (Rivkin et al.,

1996; Calbert and Landry, Michael, 2004). In contrast, in the Arctic Ocean, the link between

phytoplankton and grazers is less pronounced (Klein et al., 2002). This results in an episodic

vertical export of ungrazed OM in the beginning of the seasonal bloom (Wassmann et al., 2004,

1996), especially on the Arctic Ocean shelves (Carmack and Wassmann, 2006). With increas-

ing grazing activity throughout the season, the vertical export is declining and the ecosystem is

shifting from an export food chain towards a retention food chain, at the end of the productive

season (Wassmànn, 1997).

1.1.4 Climate change impacts

Global climate change is enhanced in high latitudes, resulting in a warming of the Arctic surface

air at much faster rates than the global average (Dobricic et al., 2016; Woodgate et al., 2012).

Combined with the increase of Atlantic heat flux into the Arctic Ocean (also termed "Atlantifi-

cation"; Polyakov et al., 2017), this causes strong reduction in sea-ice coverage and thickness

(Peng and Meier, 2017; Kwok and Rothrock, 2009; Notz and Stroeve, 2016), at unprecedented

rates over at least the last few thousand years (Polyak et al., 2010; Kinnard et al., 2011). With

continuous anthropogenic release of CO2, current projections suggest that the Arctic Ocean may

experience sea-ice free summers already in the second half of this century (Overland and Wang,

2013). In addition to the significant sea-ice loss, Arctic surface waters are also getting warmer
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(Steele and Dickinson, 2016) and fresher (Carmack et al., 2016). All these phenomena are inter-

connected in a positive feedback process termed "Arctic amplification" (Serreze and Barry, 2011).

The decreasing coverage of sea ice, its thinning and early melting, results in higher light trans-

mission into the water column (Arrigo et al., 2008). Furthermore, increasing atmospheric CO2

concentrations enhance the absorption of CO2 in the seawater, causing a more pronounced acid-

ification than in any other ocean (Steinacher et al., 2009; Bates and Mathis, 2009; Popova et al.,

2014). These abiotic changes are clearly impacting the primary production under the sea ice

and in the water column (Arrigo and van Dijken, 2015). Based on the predicted changes, there

are environmental factors that may enhance the primary production, such as, higher light avail-

ability due to sea ice melt, and higher nutrient availability on the Arctic shelves, as a result of

stronger discharge from rivers (Arrigo et al., 2008). However, on the other hand, there are also

environmental changes which may diminish the primary production, such as, stronger water col-

umn stratification as a result of sea ice melt, and lower light availability due to higher cloudiness

(warmer temperatures will increase evaporation and cloud formation; Bélanger et al., 2013).

Thus, the direction, and the magnitude, of climate change impact on the total primary produc-

tion in the Arctic Ocean is still heavily debated.

Not only a change in total primary production is expected. Numerous evidence for shifts in

composition of the Arctic phytoplankton community towards very small (<2 μm diameter) phy-

toplankton groups, such as, Prasinophytes (Degerlund and Eilertsen, 2010; Metfies et al., 2016;

Li et al., 2009). These small nanoflagellates are considered to be one of the main phytoplankton

taxa impacting the biogeochemical cycles on a global scale (Schoemann et al., 2005). Unlike

diatoms which produce heavy silicate rich cells, the Prasinophytes form almost buoyant gelati-

nous colonies with very low sinking rates (Smetacek and Nicol, 2005; Wolf et al., 2016). Longer

retainment in the surface ocean allows higher recycling of the OM in the upper water column.

Therefore, integrated estimates suggest that Prasinophytes contribute less than 5% to the vertical

export in the Arctic Ocean (Reigstad and Wassmann, 2007). Thus, further shifts in the Arctic

phytoplankton community from diatom- to flagellate- dominated communities will strongly im-

pact the vertical export of OM to the deep ocean.

As primary production is the basis of the food web, its further alterations are most likely to cas-

cade through the entire Arctic ecosystem (Leu et al., 2011; Sakshaug, 2004). There are well

documented ecological changes in larger organisms (Post et al., 2009), such as, stronger mis-

match between the phytoplankton bloom and the reproduction cycle of Arctic copepods (e.g.,

Leu et al., 2011; Søreide et al., 2010; Weydmann et al., 2012), as well as, further migration

northwards of the Atlantic cod (e.g., Drinkwater, 2005; McBride et al., 2014; Hollowed et al.,

2013; Ingvaldsen et al., 2017). On contrary, the ongoing changes in the microbial communities,

and specifically the bacterial and archaeal communities, remain largely understudied. Never-

theless, the existing evidence suggests that these communities are also likely to be affected by

the changing conditions (Piontek et al., 2015; Brussaard et al., 2013; Sala et al., 2010; Kritzberg

et al., 2010).
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1.2 Ecology of bacterial and archaeal communities in the Arc-

tic Ocean

Microorganisms perform key functions in the oceanic biogeochemical cycles by mediating the

fluxes of matter, and energy, through the ecosystem (Azam and Malfatti, 2007). A large fraction

of the primary production in the ocean becomes dissolved in the water column (i.e., dissolved

organic matter - DOM) and is almost exclusively accessible to heterotrophic bacteria and archaea

(Thornton, 2014; Sarmento and Gasol, 2012). Heterotrophic microorganisms also utilize a sig-

nificant fraction of the OM found in marine particles (i.e., particulate organic matter- POM) by

enzymatic “digestion” (Biddanda and Benner, 1997; Arnosti et al., 2011). As a result, a large

fraction of the oceanic primary production is consumed by heterotrophic microorganisms, which

has a strong impact on the global elemental cycle (Azam, 1998). The consumed OM is either

directly respired to CO2 or converted into biomass which is then channeled into the "microbial

loop" (Azam et al., 1983).

1.2.1 Microbial heterotrophic activity

The term "microbial loop" refers to a complex microbial food web of production and decompo-

sition, based on the uptake and metabolism of DOM (Azam et al., 1983). In the global ocean,

heterotrophic bacteria are responsible for almost half of the community respiration, making

them the main heterotrophic microoganisms involved in OM turnover (Robinson, 2008). Bacte-

rial productivity is the key pathway which "fuels" the flux of OM through the loop, and therefore

is an important proxy for microbial activity in the water column (Ducklow, 2002). The estimated

bacterial productivity, in different seasons and regions of the Arctic Ocean, ranges over two or-

ders of magnitude between 0.1 to 11 μg C l-1 day-1 (Kritzberg et al., 2010; Sherr and Sherr, 2003;

Sherr et al., 2003; Malmstrom et al., 2007; Nikrad et al., 2012; Nguyen et al., 2012; Kirchman

et al., 2009). These values are following the seasonal pattern of the primary production (Nikrad

et al., 2012; Nguyen et al., 2012), and are in the same range with other oceanic regions (Rich

et al., 1997).

An additional way to observe microbial activity in the water column is through cell density

dynamics (Ducklow, 2002). Similar to the bacterial productivity measurements, the cell densities

in the Arctic Ocean show strong seasonal differences. Bacterial and archaeal cell densities in

the surface waters of the Arctic Ocean are estimated in the range of 105 cells ml-1 in winter,

and up to 108 cells ml-1 in summer (Sala et al., 2010; Sherr et al., 2003; Alonso-Sáez et al.,

2008; Kirchman et al., 2007), which is similar to cell densities in other oceanic regions (Morris

et al., 2002; Sunagawa et al., 2015). Interestingly, the proportion of Archaea in the community

increases with depth (Kirchman et al., 2007) and in winter (Alonso-Sáez et al., 2008). Although

very little is known regarding their role in the Arctic Ocean water column, these patterns suggest

that Archaea may play an important role in the Arctic marine ecosystem.
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1.2.2 Pelagic bacterial and archaeal diversity

In recent years, there were major efforts to survey the diversity of pelagic bacterial and archaeal

communities in surface (e.g., TARA Oceans; Sunagawa et al., 2015) and deep (e.g., Malaspina;

Salazar et al., 2016) waters of the global ocean, using molecular approaches. However, due to the

harsh climatic conditions and the logistical challenge, no pan-Arctic surveys of pelagic Bacteria

and Archaea have been done. A synthesis of the few existing regional diversity studies show that

bacterial and archaeal communities are shaped by the hydrography of the Arctic Ocean, with

distinct communities in surface and deep waters.

Surface waters communities exhibit a strong seasonality in their composition. During summer

they are dominated by phytoplankton-bloom associated bacteria, such as, Flavobacteria and

Gammaproteobacteria. In winter there is a strong increase in bacterial and archaeal diversity

(Ladau et al., 2013), and the community is dominated by oligotrophic taxonomic groups, such

as, the SAR11 clade (Alphaproteobacteria; Wilson et al., 2017). On contrary, deep waters com-

munities show relatively small seasonal variation. These communities are dominated by poorly

characterized taxonomic groups, such as, SAR202 clade and Marinimicrobia (Galand et al., 2010;

Ghiglione et al., 2012), and to some extent resemble the surface winter communities (Wilson

et al., 2017). Archaea are present throughout the entire water column, especially the Thaumar-

chaeota, and comprise a significant fraction of the community in winter (Müller et al., 2018).

Below, is a brief review of the current state of knowledge on the diversity, biogeography, and

potential functions of key taxonomic groups of Arctic pelagic microbial communities:

• SAR11 clade - of the Alphaproteobacteria is considered to be the most abundant bacterial

lineage in the global ocean (Morris et al., 2002). All members of the SAR11 clade are

small, mostly free-living, aerobic chemoheterotrophs (Giovannoni, 2017). Their highly

streamlined genomes minimize their nutrient requirement, which potentially explain their

ecological success in the oligotrophic waters of the open ocean (Giovannoni et al., 2014;

Giovannoni, 2017). The diversity within the SAR11 clade often described by nine ecotypes,

which were defined based on genomic phylogeny and spatiotemporal distribution (Vergin

et al., 2012; Brown et al., 2012). Interestingly, the SAR11 surface-ocean 1a ecotype can

be further divided into cold-water (1a.1) and warm-water (1a.3) subgroups, which have

distinct latitudinal distribution (Brown et al., 2012). In various molecular observations of

the Arctic Ocean, the SAR11 clade comprised up to 30% of the sequences in the community

and was present in the water column down to 1000 m (Alonso-Sáez et al., 2008; Ghiglione

et al., 2012; Balmonte et al., 2018; Wilson et al., 2017).

• Flavobacteria - are one of the most abundant bacterial taxa in the surface waters of the

Arctic Ocean (Wilson et al., 2017; Ghiglione et al., 2012; Balmonte et al., 2018). Micro-

scopic counts which targeted the broad flavobacterial genus Polaribacter, using fluorescent

in-situ hybridization (FISH), revealed that this taxonomic group may reach up to 10% of

summer bacterial communities in Arctic waters (Malmstrom et al., 2007). Furthermore,

Flavobacteria were identified to prevail in sea ice, where they comprise around 20% of

the bacterial community (Rapp et al., 2018; Boetius et al., 2015; Bowman et al., 2012;

Brinkmeyer et al., 2003). Interestingly, Flavobacteria have been identified to exhibit strong

biogeographical partitioning both in the Southern Ocean and the North Atlantic Ocean.

This has been suggested to be associated with niche separation between various clades
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of this taxonomic group (Abell and Bowman, 2005; Gómez-Pereira et al., 2010). The

Flavobacteria can be found both free-living and associated with particles, and are one of

the main groups responding to phytoplankton blooms in high-latitudes (Alderkamp et al.,

2006; Pinhassi and Hagström, 2000; Pinhassi et al., 2004; Chafee et al., 2018). They pos-

sess a large arsenal of hydrolytic enzymes which enable them to degrade and assimilate a

wide variety of organic biopolymers (Williams et al., 2013; Teeling et al., 2012), making

them important in remineralization of primary production products (Buchan et al., 2014).

• Gammaproteobacteria - are one of the most abundant bacterial taxa throughout the en-

tire water column of the Arctic Ocean, accounting for up to 30% of the bacterial commu-

nity sequences (Kirchman et al., 2010; Wilson et al., 2017; Ghiglione et al., 2012; Balmonte

et al., 2018). These organisms can be found both free-living and particle-associated, they

possess a large enzymatic arsenal that allow them rapid adaption to a wide range of carbon

sources (Buchan et al., 2014). In polar regions, similar to Flavobacteria, the Gammapro-

teobacteria exhibit strong variability in cell densities and community composition, follow-

ing the seasonal phytoplankton bloom (Wilson et al., 2017; Williams et al., 2012; Alonso-

Sáez et al., 2008). Seasonal metaproteomic analysis in Antarctic coastal waters revealed

that diverse lineages of Gammaproteobacteria significantly increased their activity during

summer in comparison to winter (e.g., Alteromonadales proportion increase from 1% in

winter to 13% in summer; Williams et al., 2012). Furthermore, Gammaproteobacteria are

also one of the dominant taxonomic groups in sea ice (Rapp et al., 2018; Bowman et al.,

2012; Boetius et al., 2015). It has been suggested that the ecological success of Flavobac-

teria and Gammaproteobacteria in sea ice is related to their enzymatic potential to exploit

the high concentrations of exopolymeric substances (EPS) and DOM that are produced by

sea-ice algae (Grossmann and Dieckmann, 1994; Aslam et al., 2012; Boetius et al., 2015).

• Verrucomicrobia - are a widespread minority phylum found in various marine environ-

ments (Freitas et al., 2012). Analyses of phenotypic, and genomic traits of a single Verru-

comicrobia isolate strain revealed their specific adaptation to utilization of glycopolymers

(Alonso-Sáez et al., 2015; Spring et al., 2016). Furthermore, this phylum has been identi-

fied as the most active polysaccharide degrading taxa in the waters of Smeerenburgfjord

(Svalbard; Cardman et al., 2014). In general, little is known regarding their ecological role,

but there is increasing evidence for their potential importance in marine biogeochemical

cycles.

• Deltaproteobacteria - have been identified as the second most abundant taxonomic group

in deep waters of the Arctic Ocean (Galand et al., 2010; Wilson et al., 2017). They have

been also found to comprise up to 10% of the sequences in surface communities during

winter (Wilson et al., 2017). Taxonomically, the majority of the Deltaproteobacteria se-

quences were associated with the SAR324 clade.Although, very little is known regarding

this taxonomic clade, there are genomic evidences that link them to sulfur oxidation, as

well as, oxidation of methylated compounds (Swan et al., 2011). Thus, suggesting that

they may play an important role in chemoautotrophic processed in the Arctic Ocean.

• SAR202 clade - of the class Dehalococcoidia is among the most dominant taxonomic groups

in the meso- and bathy- pelagic waters of the global ocean (Salazar et al., 2016), where

they account for ~10% of the cells in microbial communities (Morris et al., 2004). In the
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Arctic Ocean this group was one of the dominant members of deep water communities

(Galand et al., 2010; Bano and Hollibaugh, 2002). However, they also comprised a sig-

nificant proportion of sequences in the upper part of the water column in winter (Wilson

et al., 2017). The ecological niche occupied by SAR202 clade is still not fully understood,

but there is evidence for their potential role in the remineralization of recalcitrant OM in

the deep ocean (Landry et al., 2017; Colatriano et al., 2018).

• Marinimicrobia (SAR406 clade) - were among the first bacterial groups detected in the

deep ocean (Fuhrman et al., 1993), and are found to be abundant in meso- and bathy-

pelagic waters of the global ocean (Salazar et al., 2016). They have higher abundance at

low oxygen concentrations (Hawley et al., 2017), and they were found to be especially

abundant in oceanic oxygen minimum zones (Bertagnolli et al., 2017). This taxonomic

group comprised 9% of the 16S rRNA sequences in deep waters of the Arctic Ocean (Galand

et al., 2010), and also identified in surface waters during winter (Wilson et al., 2017).

Genomic observations of this taxonomic group linked it to sulfur cycling via a polysulfide

reductase gene cluster (Wright et al., 2014; Allers et al., 2013), and to the nitrogen cycle

via expression of a nitrous oxide reductase (Hawley et al., 2017). Furthermore, it has been

shown in a methanogenic bioreactor study that Marinimicrobia participate in a syntrophic

interaction with metabolic partners to accomplish degradation of amino acids (Nobu et al.,

2015). Altogether, these traits suggest their potential importance in biogeochemical cycles

of the deep ocean.

• Thaumarchaeota - often addressed as the ammonia-oxidizing archaea (AOA), are the

most abundant pelagic archaeal group in both the surface and the deep ocean (Sunagawa

et al., 2015; Salazar et al., 2016). They consist of several phylogenetic clades which are

distributed through different water layers of the water column, with a general increase

in abundance with depth. It has been shown that in mesopelagic waters (1000 m) of

the Arctic Ocean, the Thaumarchaeota may comprise up to 25% of microbial community

sequences (Wilson et al., 2017; Müller et al., 2018). In the surface waters of polar oceans

they exhibit seasonal patterns with an increase in relative abundance during winter and

a decline in summer (Alonso-Sáez et al., 2008; Grzymski et al., 2012). This seasonality

was previously linked to the photoinhibition of ammonia oxidation (Merbt et al., 2012),

or potentially to a stronger competition for nutrients with phytoplankton during summer

(Connelly et al., 2014; Kirchman et al., 2007).

1.3 Observing ecological changes in the Arctic Ocean

Since the beginning of the 20th century, oceanographers have recognized the need for extended

sampling periods to monitor and understand processes that occur in the ocean ecosystem. The

longest record of sustained oceanographic observations is obtained by the Continuous Plankton

Recorder (CPR) which goes back to 1931 (Reid et al., 2003). In 1988, as part of the Joint Global

Ocean Flux Study (JGOFS), a new era of long-term observatories emerged, with the establish-

ment of two major oceanographic time series programmes: the Hawaii Ocean Time-series in the

Pacific Ocean (HOT; Karl and Church, 2014) and the Bermuda Atlantic Time-series Study in the

Atlantic Ocean (BATS; Morris et al., 2005). These Long-Term Ecological Research (LTER) obser-
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vatories made a great contribution to our current understanding of the marine biogeochemistry,

the biological pump (Karl et al., 2001; Steinberg et al., 2001), and the key role of microorgan-

isms in them (Karl and Church, 2014). Furthermore, these long-term observatories provided a

platform to observe impacts of climate change impact on the marine ecosystem (Ducklow et al.,

2009). As the value of such studies has become clear through the datasets produced at HOT

and BATS, the number of oceanographic observatories has continued to grow. To date, there are

more than 50 oceanographic observatories around the world. Among them the LTER observa-

tory HAUSGARTEN in the Fram Strait, which is the only open ocean long-term observatory in

the Arctic Ocean (Soltwedel et al., 2005).

1.3.1 The Fram Strait and the LTER observatory HAUSGARTEN

The 450 km wide Fram Strait separates Northeast Greenland from the Svalbard Archipelago,

and is the only deep gateway to the Arctic Ocean (sill depth of ~2600 m; Hop et al., 2006).

The exchange of water in the Fram Strait occurs in both directions, by two major opposing

current systems, which generate distinct physical and chemical conditions between the eastern

and western parts of the Strait (Figure 1.2).

The Atlantic inflow occurs through the West Spitsbergen Current (WSC) that flows above the

eastern shelf slope of Fram Strait. It carries the relatively warm, and saline AW northward into

the Central Arctic (Beszczynska-Moller et al., 2012). Oceanographic time-series of the WSC

reveals a positive linear trend of temperature, with an annual increase of 0.06°C in the upper

400 m of the water column, and an increase of 0.015°C at depth of 1000 m (Walczowski et al.,

2017). The Atlantic inflow through the Strait provides the largest input of heat into the Arctic

Ocean, sufficient to melt its entire sea-ice cover (Østerhus et al., 2005). Thus, the mass and the

heat exchange through the Fram Strait have a strong impact on the entire Arctic region.

In the western Fram Strait, the East Greenland Current (EGC) carries cold polar water and sea

ice into the North Atlantic (de Steur et al., 2009). The exported freshwater and sea ice through

EGC comprise roughly half of the total freshwater flux from the Arctic Ocean (Serreze et al.,

2006). While the freshwater outflow through Fram Strait may vary from year to year (due to

an alternative exit through Bering Strait; Rabe et al., 2009), almost the entire sea-ice flux from

the Arctic Ocean is exported by EGC (Kwok, 2009). The area of the exported sea ice increases

with a trend of 10% per decade since 1990 (Renner et al., 2014). However, this positive trend is

compensated by continuous thinning of the sea ice, and the total annually exported volume of

sea ice does not show a significant increase (Zamani et al., 2018). These observations suggest

that the exported sea ice through the Fram Strait is changing, from a thicker old sea ice to thinner

and younger sea ice.

The deep-sea LTER observatory HAUSGARTEN was established in 1999 by the Alfred Wegener

Institute, Helmholtz-Center for Polar and Marine Research (AWI). It is located in a highly produc-

tive transitional area between sea-ice covered and sea-ice free regimes of the Fram Strait (i.e.,

marginal ice zone; Smith Jr et al., 1987). The observatory consists of 21 permanent stations

which are sampled repeatedly in annual summer expeditions since 1999, and includes moni-

toring the diversity of all faunal size classes, as well as, biogeochemical measurements (e.g.,

chlorophyll a and nutrient concentrations). The observations are complemented by continu-
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ous year-round oceanographic measurements collected by autonomous instruments mounted

on moorings (Soltwedel et al., 2005). The observatory covers continental shelves with water

depths of few hundred meters down to the deepest point of the Arctic Ocean - the Molloy Deep,

at around 5600 m water depth. The stations array covers both the typically sea-ice covered area

in the Arctic outflow (EGC), and the seasonally sea-ice covered area in the Atlantic inflow (WSC)

(Soltwedel et al., 2005). These distinct conditions between the current systems provide a valu-

able opportunity for studying ecological processes across strong gradients of temperature, and

ice cover, in the deep water column and on the shallow continental shelves. Moreover, a compar-

ison between the increasing Atlantic inflow in the east and the Arctic outflow in the west, allows

the investigation of ongoing changes in the Arctic marine ecosystem. Throughout the years, the

time-series at HAUSGARTEN observatory produced important insights into ecological processes,

and temporal variability (Soltwedel et al., 2016).

A comparison between the observations in the distinct pelagic regimes (EGC and WSC) revealed

higher chlorophyll a concentration in the sea-ice free WSC (Nöthig et al., 2015). There was no

direct correlation identified between the chlorophyll a and the sea-ice concentration. However,

as a result of sea-ice melt and solar radiation, the vertical stratification of the surface waters

have shown to promote a higher phytoplankton growth (Cherkasheva et al., 2014). There was

also a clear difference in the phytoplankton community composition between the regimes, with

a predominance of diatoms in the EGC and a mixed community of haptophytes, dinoflagellates

and diatoms in the WSC (Nöthig et al., 2015; Engel et al., 2017). The heterotrophic bacte-

rial communities also showed strong differences between the regimes, with cell densities in the

range of 104-105 cells ml-1 in the EGC, and in the range of 106 cells ml-1 in the WSC. Bacterial

productivity and cell-specific enzymatic activity showed strong differences between the regions

as well, with higher values in the EGC, where the OM was enriched in combined carbohydrates

(Piontek et al., 2014). Showing that bacterial growth and degradation activity in WSC and EGC

are regulated not only by the different physicochemical conditions, but also by the compositional

differences in OM. To date, almost nothing was known about the bacterial diversity in the dis-

tinct pelagic regimes. The results of this thesis provide the first taxonomic comparison of these

communities across the Fram Strait.

1.3.2 Ecological alterations in the Fram Strait as a result of a Warm-Water

Anomaly

The oceanographic observations at the HAUSGARTEN observatory have captured an AW warm

pulse between 2004 and 2007 (i.e., Warm-Water Anomaly), with temperature anomalies of up

to 1°C along the AW inflow pathway (Beszczynska-Moller et al., 2012). The ecological impact

during the anomaly has been visible through the entire marine ecosystem of the Fram Strait.

From a higher chlorophyll a concentrations in surface waters (Cherkasheva et al., 2014), over

a lower vertical export of POM (Lalande et al., 2013), to a sharp change in the phytodetritus

concentrations at the seafloor (Soltwedel et al., 2016). While some of the monitored variables

of the ecosystem returned to their previous state (e.g., benthic bacterial communities; Jacob,

2014), for others the original conditions have not been restored. One of the major changes

in the pelagic ecosystem, which has remained after the end of the anomaly, is a shift from a

diatom- to a flagellate- dominated phytoplankton community in the WSC (Metfies et al., 2016;
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Nöthig et al., 2015; Lasternas and Agustí, 2010; Engel et al., 2017). Aggregates formed by

small flagellates, such as the haptophyte Phaeocystis spp., are more buoyant and sink slower in

comparison to diatom aggregates. The longer retainment of the aggregates in the surface ocean

allows stronger recycling in the upper water column (Lalande et al., 2013).

Such a fundamental change in the nature of the OM and its vertical distribution, may have a

strong impact on future carbon cycling processes, from the surface down to the seafloor (Ver-

net et al., 2017). However, it is important to note that natural temporal variations of marine

ecosystems may occur across a wide range of timescales from diurnal to decadal dynamics (e.g.,

Gilbert et al., 2012; Fuhrman et al., 2015). Moreover, they may be subject to even longer global

cycles, such as the El Niño-Southern Oscillation or the North Atlantic Oscillation (Ikeda, 1990;

Stenseth et al., 2003). Thus, it cannot be concluded with absolute confidence that the observed

alterations in the Fram Strait are a result of global climate change. However, they provide an

important insight into the potential future of the Arctic marine ecosystem as a result of further

warming of the Arctic Ocean.

1.3.3 Ocean Observing System FRAM

The extensive knowledge acquired from 15 years of observations in the Fram Strait, strengthened

the urgent need for integrative, and interdisciplinary, observations not only in the Fram Strait

but also in the central Arctic Ocean. In order to do so, in 2014, the AWI and partner institutes

in Europe, established the long-term Arctic open-ocean infrastructure project FRAM (FRontiers

in Arctic marine Monitoring Soltwedel et al., 2013). The FRAM Ocean Observing System is

designed according to the extensive knowledge baseline from the HAUSGARTEN observatory,

which provides the starting point for the observing system infrastructure (Figure 1.2). The main

novelty of the FRAM project is the integrated observation of physical (e.g., autonomous under-

water vehicles; Wulff et al., 2016), chemical (e.g., autonomous benthic crawlers; Wenzhoefer

et al., 2016) and biological (e.g., remotely operated vehicles; Katlein et al., 2017) processes,

in the water column and at the seafloor, using cutting edge technologies. In order to allow a

comprehensive assessment of the ecosystem responses to global change processes in the Arctic

Ocean in the next 25 years.

Due to their key role in biogeochemical processes, microorganisms are of central interest within

FRAM. In the HAUSGARTEN observatory, the microbial research in the water column has been

focused mainly on eukaryotic biota (Soltwedel et al., 2016), with very little exploratory work on

Bacteria and Archaea. However, in order to better understand natural dynamics of the marine

ecosystem, and have the ability to detect consequences of the environmental changes, obser-

vations of all three domains of life are required (e.g., Steele et al., 2011). In the framework

of FRAM, all microbial observations are integrated into a Molecular Observatory (MolObs),

which aims to conduct standardized molecular-based high-resolution observations of the Arctic

Ocean microbiome. The molecular sampling is conducted synchronously with other observato-

ries within FRAM (e.g., physical oceanography and biogeochemistry), which provides a unique

opportunity for monitoring microbial communities in a comprehensive environmental context.

Unfortunately, extensive microbial long-term time-series studies in the framework of oceano-

graphic observatories are rare. Unlike other research fields of oceanographic long-term obser-
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vatories (e.g., physical oceanography), microbial oceanography lacks standardization in the ap-

plication of high-throughput methodologies. Microbial observations are often dedicated to a

specific research questions, and specific methodologies are applied. These discrepancies be-

tween studies challenge their comparability, and their incorporation into one large mechanistic

system. Thus, one of the challenges currently faced in the FRAM MolObs is the development of

a standardized, sustainable, methodological workflow for conducting long-term microbial ob-

servations, which is at the same time comparable to other molecular observatories.

1.4 Thesis objectives

The Arctic Ocean is rapidly changing towards a warmer conditions that are altering the entire

ecosystem. Long-term time-series, such as the LTER HAUSGARTEN observatory in the Fram

Strait, are essential for the detection and understanding of large-scale environmental changes.

To date, the microbial research in the water column of the Fram Strait was mainly focused on

phytoplankton communities. These primary producers play the key role in the oceanic uptake of

CO2 through the fixation of inorganic carbon, and are very important for estimating carbon fluxes

between the atmosphere and the ocean. The heterotrophic bacterial and archaeal communities,

on the other hand, respire a large fraction of the produced organic carbon back to CO2. They

are also involved in other nutrient cycles (e.g., nitrogen cycle) that can both enhance, and limit,

the primary production by phytoplankton. Thus, marine microorganisms of all three domains of

life are relevant for studying Arctic marine ecosystem and its biogeochemical cycles.

The aim of this thesis was to investigate the composition and diversity, of pelagic bacterial and ar-

chaeal communities in the Fram Strait. Addressing their distribution in space, both horizontally

and vertically, in relation to environmental and biological parameters. In addition, this work

contributed to the establishment of baseline knowledge for long-term microbial observations in

the framework of the FRAM project. The ecological objectives of the thesis were: (i) to charac-

terize the bacterial and archaeal communities associated with the different water masses of Fram

Strait, and (ii) to identify environmental factors, which drive the diversity of these communities.

Specifically the thesis addressed the following questions:

• What are the requirements for long-term microbial observations in the Arctic Ocean?

- Time-series microbial observations are of a high relevance for the assessment of the on-

going changes, not only in the Arctic ecosystem, but in the entire global ocean. The ob-

servations should include various habitats (e.g., water column and seafloor), at various

geographic locations, integrated into a holistic evaluation of the ecosystem state. Such

a complex task requires an establishment of a network between various long-term micro-

bial observatories, and methodological standardization for comparability of biological, and

biogeochemical observations between them. In chapter 2 we reviewed existing microbial

observatories, and suggest potential directions for the establishment of communication

and data flows between them.

• Which universal primer set for the 16S rRNA gene should be implemented in Arc-

tic Ocean bacterial observations? - The 16S rRNA gene-based studies of the marine

sediment microbiome, often use the primer set 341F/785R that targets the V3-V4 hyper-

variable regions of the 16S rRNA gene. In contrast, the 16S rRNA gene based studies of the
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pelagic microbiome often implement the primer set 515F-Y/926R that targets the V4-V5

hypervariable regions of the 16S rRNA gene. In the framework of the FRAM MolObs, we

aim to integrate microbial observations from the different habitats (water column and sed-

iment) into one holistic ecosystem observation. Such integration requires methodological

standardization between the sampling and analysis procedures of the different habitats.

The methodological comparison of the different primer sets in chapter 3, will allow the se-

lection of a single primer set for future standardized observations of bacterial communities

in the Arctic marine ecosystem.

• Which environmental parameters shape summer pelagic bacterial diversity in the

photic layer of the Fram Strait? - Temperature has been identified as the main driver of

the microbial diversity in the surface waters of the global ocean. It has also been shown

that light driven phytoplankton blooms have a strong impact on the associated bacterial

diversity. In the Fram Strait, there is a strong temperature gradient across the EGC and

WSC waters, ranging between -1°C and +8°C, respectively. Due to the distinct sea-ice

conditions this temperature gradient is also coupled with strong differences in light pene-

tration through the water column, which may have an impact on the phytoplankton bloom.

This, suggests that bacterial diversity in the Fram Strait might be driven by both tempera-

ture and differences in sea ice cover. However, previous observations of bacterial activity

in the Fram Strait revealed stronger correlation with phytoplankton bloom conditions,

rather than physical characteristics of the water masses. Thus, the bacterial community

is expected to exhibit stronger dissimilarity across the Fram Strait as a result of different

sea-ice regimes, associated with different phytoplankton bloom conditions. Addressed in

chapter 4.

• How do sea-ice conditions affect the vertical connectivity between surface and deep

ocean microbial communities? - The OM produced by phytoplankton is exported to the

deep ocean through sinking aggregates. It has been shown that these sinking aggregates

may provide a connectivity vector between surface and deep ocean microbial communities.

Sea ice plays a key role in regulating the primary production in the Arctic marine ecosys-

tem. Furthermore, sea-ice covered and sea-ice free waters are characterized by different

phytoplankton communities, which have different sinking velocities to the deep ocean.

Thus, fast sinking diatom aggregates in sea-ice covered regions are expected to provide

a stronger vertical connectivity between surface and deep ocean microbial communities.

Addressed in chapter 5.

1.5 Publication outline

Chapter 2 - Marine Microbes in 4D – Using time series observation to assess

the dynamics of the ocean microbiome and its links to ocean health

Pier Luigi Buttigieg, Eduard Fadeev, Christina Bienhold, Laura Hehemann, Pierre Offre and

Antje Boetius
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The review publication underlines the relevance of microbial observations in the marine

environment for scientific and societal concerns, such as, ocean productivity, harmful algal

blooms, and pathogen exposure. It provides a first comprehensive overview of the currently

existing long-term microbial observatories around the world, and stresses the urgent need for

the establishment of a network between them. Such a community network will provide an

opportunity for data sharing and methodological standardization, and will allow to monitor

shared environmental variables for an estimation of the global ocean state and health.

Furthermore, the publication provides examples from existing community networks from other

research fields, and makes suggestion for initial steps towards such a network through existing

infrastructures.

Data synthesis and communication with coordinators of time-series projects was conducted by EF.

The overview of the long-term observatories was conducted by EF and LH. The manuscript was

written by PB and AB, with contribution from CB, PO, EF and LH.

Chapter 3 - Primer selection for Arctic Ocean microbiome studies - a taxo-

nomic resolution trade off

Eduard Fadeev, Verena Carvalho, Massimiliano Molari, Magda Cardozo Mino, Josephine Z

Rapp and Antje Boetius
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This study was conducted in the framework of FRAM MolObs development of ”best practices”

for microbial monitoring in the Arctic Ocean. It also contributes to the methodology

standardization of the Integrated Atlantic Ocean Observing Systems project (AtlantOS) . The

study compared two 16S rRNA gene primer sets that are often applied in studies of marine

bacterial communities. The performance of the primer sets was assessed on various marine

samples (sea ice, surface and deep seawater, and seafloor sediment), from both the Fram Strait

and central Arctic, in order to select the best suited primer set for long-term monitoring.

The study was designed and conducted by EF and AB. Samples included in the study were collected

and processed by EF, MM and JR. M-CM and VC conducted the microscopy counting. EF conducted

the data analysis and wrote the manuscript. All co-authors contributed to the manuscript

preparation.

Chapter 4 - Microbial communities in the East and West Fram Strait during

sea-ice melting season

Eduard Fadeev, Ian Salter, Vibe Schourup-Kristensen, Eva-Maria Nöthig, Katja Metfies, Anja

Engel, Judith Piontek, Antje Boetius and Christina Bienhold

���� �����	
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This study focused on the spatial dynamics of the microbial communities in the photic layer of

the Fram Strait, and their association with different ecosystem states in ice-free and
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ice-covered regions. Using a combination of in-situ measured biogeochemical parameters and

modeled data, we identified two ecological states in different parts of the Fram Strait: early

bloom conditions in the ice-covered region, and late bloom conditions in the ice-free region.

Using 16S rRNA gene and 18S rRNA gene sequencing we analyzed the composition and the

diversity of microbial communities in each region, and statistically identified environmental

factors which potentially affect these communities. We observed that bacterial diversity

correlates with environmental factors that are associated with the distinct phytoplankton

bloom conditions. Then, in order to identify potential associations between bacterial and

phytoplankton microorganisms, we have conducted a co-occurrence network analysis between

the bacterial and the microbial eukaryotes communities.

EF, CB, IS and AB designed and conducted the study. IS and KM collected the samples and provided

the sequence data for the study. AE and JP provided the cell counts and bacterial productivity data.

EN conducted the biogeochemical measurements. VK provided the modeled chl a estimates. EF

conducted the data analysis and wrote the manuscript with guidance from CB, AB and IS.

Chapter 5 - Arctic Ocean sea ice enhances vertical connectivity of microbial

communities through sinking marine aggregates

Eduard Fadeev, Morten H. Iversen, Claudia Wekerle, Andreas Rogge, Anya M. Waite, Christina

Bienhold, Ian Salter, Laura Hehemann and Antje Boetius
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This study focuses on the vertical connectivity of bacterial and archaeal communities in the

water column of the Fram Strait, and their association with different sea-ice regimes. We

characterized on board the differences in size, composition and sinking velocities between

aggregates in ice-covered and ice-free regions, supported by in-situ measured size distribution

throughout the entire water column. We modeled the sinking trajectories of the aggregates in

different regions of the Strait using the measured on board sinking velocities. Using 16S rRNA

gene sequencing we analyzed the composition and the diversity of free-living and

particle-associated bacterial and archaeal communities from surface to deep waters in both

regions. Finally, using Bayesian modeling we estimated potential vertical connectivity of

bacterial and archaeal communities throughout the water column. Revealing strong vertical

connectivity between surface and deep ocean microbial communities in ice-covered waters.

EF, CB, IS and AB designed and conducted the study. MI conducted the sampling and on-board

measurements of the marine aggregates. CW conducted the modeling of the sinking trajectories.

AR and AW provided the in-situ particles size distribution. EF conducted data analysis and wrote

the manuscript with guidance from MI, CB, AB and IS.
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2.1 Abstract

Microbial observation is of high relevance in assessing marine phenomena of scientific and so-

cietal concern such as, ocean productivity, harmful algal blooms, and pathogen exposure. How-

ever, we have yet to realise its potential to coherently and comprehensively report on global

ocean status. The ability of satellites to monitor the distribution of phytoplankton has trans-

formed our appreciation of microbes as the foundation of key ecosystem services; however, more

in-depth and localized understanding of microbial dynamics is needed to fully assess natural and

anthropogenically induced variation in ocean ecosystems. While notable efforts exist, vast re-

gions such as, the ocean depths, the open ocean, the polar oceans, and the coasts of the Indian

Ocean, South Atlantic, and South West Pacific lack consistent observation. To secure a coordi-

nated future for a global microbial observing system, existing long-term efforts must be better

networked to generate shared bioindicators of the Global Oceans state and health.

2.2 Highlights

• Ocean ecosystem assessments require insight into the biosphere’s microbial underpinnings

• Technologies are ripe to monitor marine microbes year-round with ocean physics and

chemistry

• A global registry of marine microbial observatories with regular status updates and links

to data portals is needed for higher impact

• Observatory output must be robust to rapidly developing practice and technology as well

as societal challenges

• Microbial observatory data and results should be coherently linked to indicators of ocean

health

2.3 Introduction

Despite decades of effort, the oceans remain strongly undersampled in space, hampering the

estimation of global and regional element fluxes as well as assessments of the diversity and

distribution of marine life. Well-structured and sustained temporal sampling is also limited,

despite its central importance in detecting changes in ocean productivity, food webs, biodiversity,

and habitat structure. Strategically distributed ocean time series are thus key to the assessment

and quantification of ecosystem change, and doubly so in detecting anthropogenic impacts across

decadal time scales. Unfortunately, these efforts are rare in the marine realm, follow no global

strategy, and typically do not measure biological phenomena in the deep (see Table 2.1 and

Smith Jr. et al., 2015). The need to advance the status quo has never been more pressing: ocean

ecosystems are facing rapidly warming and acidifying seas, compounded by the influence of

pollutants, eutrophication, and the spread of hypoxia (Gruber, 2011). Additionally, industries

such as, mineral, gas and oil extraction, tourism, international shipping, and large-scale fisheries

are further impacting marine ecological assemblages and food webs at every scale (Halpern
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et al., 2015; Seebens et al., 2016). Microbial observation has a large role to play in monitoring

the biogeochemical functioning and biotic structure of the ocean, but must transition into a

spatiotemporally coherent and comprehensive activity to realise its full potential.

Taxonomically and functionally diverse assemblages of marine microbes from all three domains

of life, along with their viruses, are the primary contributors to ocean productivity, biomass,

and diversity. They are the core drivers of ocean biogeochemical cycles, control the emission

of radiatively active gases, and constitute the foundations of many marine ecosystem services.

Further, they are essential to the functioning of other trophic levels, providing animals with

access to essential lipids and vitamins while supporting skin, tissue, and gut health (e.g. Bierlich

et al., 2017; Bik et al., 2016; Apprill, 2017). These essential marine microbes - just as any

other form of life - will respond to both natural and anthropogenic stressors; however, assessing

how responses on the population and community level will contribute to ecosystem functions

remains a challenging research target (Bourne et al., 2016). Pioneering studies such as, the TARA

Oceans expedition (Sunagawa et al., 2015), and Ocean Sampling Day (OSD; Kopf et al., 2015)

have shown that the large-scale assessment of microbiome variations in space can be achieved,

and their results have confirmed the need to extend observations through time. As autonomous

technologies extend the spatiotemporal reach of marine sampling, archiving and measurement

(Herfort et al., 2016), we must establish a sustained and integrated system with which to provide

novel microbiological insights into the changing state of the oceans.

In this contribution, we comment on the role of long-term microbial observatories in assessing

ocean health: the degree to which the marine ecosystem provides its full range of ecosystem

services in a temporally stable way when compared to past measurements or knowledge of its

natural state (Halpern et al., 2015). Anthropogenic activities altering the web of life in the sea

can easily jeopardize the biodiversity which underpins many of these services, often indicated

by a spectrum of ecological responses (see, e.g., Halpern et al., 2012). We stress the value of

microbial observatories as sites to develop trustworthy microbial indicators and ensure stable

reporting in the face of changing technologies. Finally, we discuss the great need to rally micro-

bial observatories towards a common goal: to provide science and society with coherent, global

insight into the health and functioning of the microbially-driven ocean ecosystem.
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2.4 Monitoring the microbial role in ocean health

Given their central place in the oceanic web of life, microbial assemblages are a prime indicator

of ocean’s state and health. Their metabolic and compositional responses to variations in light,

temperature, oxygen, nutrients, and a vast host of metabolites make them excellent candidates

for biosensing and bioindication of both short- and long-term dynamics. As a result, microbes

have been used in the production of biosensors to detect, among other stimuli, the presence of

organic substances, biofouling-linked compounds, toxins, and heavy metals. Further, microbial

indicators (MIs) have been developed for hazard monitoring, primarily based on the detection

of taxa such invasive or pathogenic species (e.g., Ramírez-Castillo et al., 2015). For example, the

close association of bacteria such as, E. coli with untreated sewage allows effective screening for

faecal contamination in aquatic systems (Ramírez-Castillo et al., 2015), while the temperature-

dependent ranges and activity of pathogenic Vibrio strains can be predicted across global change

scenarios (Baker-Austin and Oliver, 2017; Turner et al., 2016). Eukaryotic MIs, which report on

flagellates, ciliates, and diatoms (Pawlowski et al., 2016), are also being developed to detect the

occurrence of harmful algal blooms. The emergence of new microbial functions, such as, the

metabolism of plastics (Yoshida et al., 2016), promises to steadily increase this sensing reper-

toire, tracking the diversification of anthropogenic stressors. Undoubtedly useful, MIs of this

kind have a narrow focus, centered on risks to human health and well-being. To report on ocean

health, a suite of MIs, integrated into broader observational framework is urgently needed to fill

pronounced gaps in marine assessment strategies (e.g., note the underrepresentation of micro-

bial indicators in Piroddi et al., 2015).

Holistic evaluations of ecosystem state require complex, community-level insight integrating

both taxonomic and functional information over time (Fuhrman et al., 2015; Chafee et al., 2018).

For example, studies on phytoplankton assemblages have detected compositional change track-

ing climate variation (Barton et al., 2016; Nöthig et al., 2015) and broader microbial community

shifts have been detected in a rapidly warming Arctic Ocean (Soltwedel et al., 2016; Boetius et al.,

2013). Unfortunately, heterogeneous and asynchronous reporting prevents these and other ad-

vancements, such as, the sensing of hydrocarbon pollution (Lozada et al., 2014) and heavy-metal

contamination (Moberly et al., 2016), from contributing to more global assessments of ecosys-

tem state. Credible baseline data and frameworks for integrated reporting (e.g., Racault et al.,

2014) are now needed to transition individual studies and time series into a globally coherent

diagnosis of marine health. Indeed, this class of MIs can be fully utilized only if they allow the

differentiation of baseline, natural variation (e.g., by seasonality, El Niño, or the North Atlantic

Oscillation) from deviations explained by other factors, a challenge even for mature time series

with strong microbial components (e.g., Soltwedel et al., 2016).

The repertoire of technologies allowing the identification of community-level microbial bioindi-

cators has been greatly augmented with multi-omic technologies and techniques to sense the

metabolic capacities and behaviours of the uncultivable majority. Despite these technologies un-

dergoing rapid transformations every 4-5 years in the past 20 years, a growing body of expertise

in handling community metagenomes, metatranscriptomes, and environmental DNA (eDNA) is

forming the basis of a new generation of MIs (Borja et al., 2016; Thomsen and Willerslev, 2015;

Goodwin et al., 2017). Concurrently, omics approaches are increasing the efficiency and cost-

effectiveness of MIs already in operation (e.g., Tan et al., 2015). Importantly, these approaches
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are allowing the use of functional genes as indicators (e.g., antibiotic resistance genes as indica-

tors for aqua- and agricultural impacts Li et al., 2015; Chen et al., 2013; Raverty et al., 2017),

allowing more sensitive assessment of environmental change (Louca et al., 2016) and have facil-

itated the application of well-established macroecological indicators such as, the AZTI (Centro

Tecnológico Experto en Innovación Marina y Alimentaria) Marine Biotic Index (AMBI) to the

microbial realm (microgAMBI, Aylagas et al., 2017). It is clear that sequencing technologies will

be a prime focus of future marine microbial observation and monitoring. Efforts here will be

fuelled by progress in autonomous sampling and bioinformatics technologies (Ottesen, 2016),

contextualisation by large-scale omics-focused sampling campaigns (e.g., Sunagawa et al., 2015;

Kopf et al., 2015; Ottesen, 2016), and the applications of techniques such as, machine learning

to omics data (e.g., Cordier et al., 2017).

Regardless of what technologies can be applied to individual samples, the problem of meaning-

fully linking shifts in complex community composition and function to environmental change

remains an issue of spatiotemporal coverage. In most regions, far too little is known and mea-

sured to reliably discriminate background microbial dynamics from all but a few, pronounced

responses to climatic and anthropogenic factors. Consequently, we struggle to detect less obvi-

ous changes with profound consequences. For example, we lack MIs sensitive enough to detect

the slight increases in the degradation rate of dissolved organic carbon expected to profoundly

impact ocean’s capacity to take up CO2 (Kim et al., 2015). Additionally, current MIs are not so-

phisticated enough to consistently report on functional changes caused by the synergistic action

of multiple marine stressors (Hutchins and Fu, 2017). Long-term marine microbial observato-

ries, with their sustained focus and highly developed understanding of their host ecosystem,

represent our best chance to advance this front. These facilities can permit rigorous develop-

ment and testing of MIs within multidisciplinary frameworks which which have established a

background against which to compare new sources of variation. For example, the Hawaii Ocean

Time-series (HOT; est. 1988) has sampled its ALOHA (A Long-term Oligotrophic Habitat Assess-

ment) station monthly, providing deep insight into the North Pacific Subtropical Gyre (NPSG)

for three decades (Bryant et al., 2016). Here, recent analyses of data from dozens to hundreds of

sampling events have thoroughly characterized the foundational relationship between sea sur-

face irradiance, chlorophyll a concentration, and oxygen production (Letelier et al., 2017; Laws

et al., 2016) and linked both local primary production and the large-scale climatic variation of

the North Pacific Gyre Oscillation to monthly and annual mesozooplankton dynamics (Valencia

et al., 2016). Moreover, the cycling of methane and nitrous oxide, potent greenhouse gases, in

the system’s euphotic zone (5-175 m) was investigated over an eight year period, detecting reg-

ular oscillations in the former and a decline of methane concentrations linked to increased phos-

phate levels recorded in 2012-2013, furthering the understanding of microbial aerobic methane

production in oligotrophic systems (Repeta et al., 2016) while providing the raw knowledge

to develop new MIs. Similarly, the only open ocean long-term ecological research station in the

Arctic, HAUSGARTEN (est. 1999; now operated under the Frontiers in Arctic Marine Monitoring

programme; (Soltwedel et al., 2016)), has provided perspectives only possible with sustained

observation while facilitating short-term process and methodological studies. In this remote

site, work to improve the preservation of autonomously collected marine particles (e.g., Metfies

et al., 2017) is enhancing the temporal continuity of microbial data to match the output of the

observatory’s network of autonomous sensors, while yearly expeditions have generated more
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multifaceted microbial data across its 5000 m depth gradient and 21 permanent sampling sites.

Its 15 years of multidisciplinary observation have revealed fascinating properties of the rapidly

changing Arctic, including: tight coupling of deep microbial communities to surface variability

(Soltwedel et al., 2016); interactive effects of temperature, acidification, and organic matter

linked to increased bacterioplankton biomass production and extracellular enzyme activity (Pi-

ontek et al., 2015); punctuated seasonal pico- and nanoplanktonic turnover during warm water

anomalies as well as decadal increases in chlorophyll a concentration (Nöthig et al., 2015);

and the biological control of microbially derived transparent exopolymeric particles (TEP) con-

centrations involved in transporting carbon to deeper ecosystems and nucleating cloud and ice

formation, thus increasingly influencing regional climatic conditions (Engel et al., 2017).

From the above, it is clear that microbial observatories have created a refined, localized store of

knowledge demonstrating that microbial dynamics are linked to multi-layered ecosystem states

and events. Many more examples exist (e.g., increases in coccolithophore abundance in response

to increased dissolved inorganic carbon at the Bermuda Atlantic Time-series Study Krumhardt

et al., 2016) and are readily apparent when exploring the resources listed in (Table 2.1). In the

face of global challenges, the natural corollary for the next 5-10 years is two-part: 1) The mi-

crobial observatory community must align and create a coordinated and well-integrated global

microbial observation system and 2) microbial phenomena which provide consistent information

on issues of societal and scientific concern should be reported in a well-documented set of mi-

crobial indicators which can be consumed by the broader community. While both processes may

occur in parallel, we believe the construction of a global marine microbial observatory network

is of particular importance to catalyze a more globally integrated and sustained solution.

2.5 Building a network for marine microbial observation and

monitoring

As illustrated above, long-term ocean observatories - as instituted and standardized acts of mul-

tidisciplinary observation - offer an ideal context to bring complex, prototypical MIs of ecosystem

health to maturity. These facilities are necessarily concerned with ensuring the continuity and

consistency of datasets spanning decades in order to detect change in ecosystem state. As such,

observatories provide the baseline of data and knowledge needed to characterize an MI’s behav-

ior and relevance within a well-examined ecosystem. In the marine realm and spurred by ini-

tiatives such as, the Genomic Observatories Network (Davies et al., 2014), a growing collection

of observatories are now conducting regular microbial sampling. However, to be sustainable,

extant efforts must seek to integrate with one another under a common, mutually reinforcing

observatory framework (see (Scholes et al., 2012) for an analogous case).

In (Table 2.1) and Figure 2.1, we have attempted to compile overview of existing oceanic micro-

bial observatories to initialise a more formal community registry and encourage a more intercon-

nected future. During our survey, we noted that most microbial observatories augment one of the

three types of physicochemical ocean observatories, each with their strengths and weaknesses.

Traditional observatories operated by ship-based transects (e.g., the Global Ocean Ship-based

Hydrographic Investigations Program, GO SHIP) provide the best opportunities for biological
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sampling due to the flexibility of ships as sampling platforms; however, they often lack temporal

resolution due to uncertainties in securing ship time. Moorings and anchored buoys provide fixed

platforms for autonomous observation through time, but lack sufficient energy stores to operate

advanced in situ sensors and samplers. Lastly, tagged marine mammals and drifting Lagrangian

observatories including Argo profiling floats, gliders, and buoys have considerable spatial reach

and resolution, accessing depths of ca. 2000 m, but have limited capacities to carry equipment

for handling microbial samples (Seegers et al., 2015). All these options are challenged by high

maintenance costs (Smith Jr. et al., 2015), yet present our only options in detecting environmen-

tal trends and their links to microbial community structure and function. Encouragingly, many

of these physicochemical frameworks have already established common practices and shared

governance strategies, a feature that can be used to catalyze similar progress in the microbial

observation domain.
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The now global network of Continuous Plankton Recorder (CPR; http://www.globalcpr.org) sites

presents an excellent example of interconnected and harmonized ecological and physicochem-
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ical observation. The CPR network has used collecting instruments with conserved design and

standardized processing protocols for many decades, which now acts as a platform upon which

new sensors can be mounted. The integrity and coverage of this system has allowed the detec-

tion of numerous signals in the plankton, such as, population dynamics of invasive Vibrio species

linked to warming waters (Vezzulli et al., 2016), interannual variability in herring populations

(Batten et al., 2016), and planetary-scale regime shifts (Reid et al., 2016). This knowledge has

allowed the CPR community to identify essential, ecosystem-specific variables to improve global

assessments (Constable et al., 2016) and channel their collective outcomes into a wide array of

policy development organizations. Of equal importance, the network is able to buffer loss of

capacity by any of its members by, for example, maintaining sample records or stepping in when

tows cannot be performed. At many levels, from governance to stakeholder engagement, the

CPR network is a viable model upon which a global consortium of microbial observatories can

be based; however, a graded approach to this goal is needed to progressively align initiatives in

this complex and active domain.

As we noted above, the immense methodological variability and rapid development in microbial

observation hinders the construction of a network unified by standardized methodology and

technology. At the initial stages, it is more feasible that networking microbial observatories

will be a question of aligning information flows via interoperable reporting standards along

widely endorsed principles (notably, (Wilkinson et al., 2016)). In this manner, frequent contact

between existing and new initiatives will become more normalized, increasing the potential

to perform meta-analyses and synthetic studies. This, in turn, is very likely to drive greater

alignment at all levels to promote globally impactful studies. Some success is already visible

through the grassroots development of standards for sequence-derived data (e.g., the BIOM

format McDonald et al., 2012) and its metadata (e.g., MIxS Yilmaz et al., 2011), which are

converging with more general biodiversity standards such as, Darwin Core (Wieczorek et al.,

2012) and Humboldt Core (Guralnick et al., 2018) as well as resources in domains such as,

Earth sensing through shared semantic technologies (e.g., Buttigieg et al., 2016). The time is

ripe for microbial observatories to interface through such standards, while collectively shaping

them to be fit for purpose. Importantly, the use of these standards should be coupled to the

stabilization of variable low-level information through some degree of information abstraction

(see below). The community can then approach integrative reporting mechanisms aimed at

a far broader base of stakeholders, including researchers from other domains, policy analysts,

decision makers, educators and the general public.

Three emerging foci which could facilitate such integration present themselves: the Essential

Ocean Variables (EOVs), the Essential Biodiversity Variables (EBVs Pereira et al., 2013; Kissling

et al., 2018)) and the Ocean Health Index (OHI; Halpern et al., 2015). The EOVs, championed

by the Global Ocean Observing System (GOOS), are a developing mixture of low- and high-level

variables deemed necessary to report on the state of the ocean. Microbiological variables, as

most biological/ecological variables in this scheme, exist in a conceptual state with no estab-

lished guidelines on measurement or assessment, in part due to the turnover of technologies,

methodological variability, and the lack of low-price automated biosensors. The EBVs, promoted

by the Group on Earth Observations Biodiversity Observation Network (GEO BON), play a some-

what different role: they aim to offer an intermediary layer of abstraction between raw biodiver-

sity measurements, such as, genetic beta diversity, and high-level indicators (e.g., “connectivity /
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fragmentation of ecosystems”) used to monitor adherence to agreements such as, the Convention

of Biological Diversity. With careful handling, this abstraction layer may allow harmonisation of

biodiversity data generated using diverse, regionally-tuned methods across different observato-

ries, preserving rationale-driven differentiation while promoting unified reporting. Researchers

who operate and utilize microbial observatories are well-poised to report on some EBVs, such as

,“Taxonomic diversity” and “Physiological traits” through methods including marker gene anal-

ysis, labeled cell counts, enzymatic activity assays, and meta-omic approaches. However, there

is a great need to build consensus on how data generated by local methodologies – many of

which have been tuned to the ecosystems under scrutiny or are determined by local resource

constraints – can be credibly merged across sites to provide global reporting. In our opinion,

observatories should take stock of how their data streams can report on each essential vari-

able, documenting caveats as appropriate and accounting for uncertainties. Subsequently, these

strategies should be publically, allowing for peer review and comment prior to standardization

by a task group of data analysts charged with formulating a robust set of aggregate indicators.

Naturally, activities of this kind must be accompanied with diagnostic studies, continually test-

ing whether integrative approaches centered on essential variables and indices adequately and

accurately capture ecological signals. While this may sound daunting, similar activity reported

almost a decade ago has provided the broader biodiversity community with a common basis to

highlight increasingly urgent issues on a global scale and simultaneously conduct fascinating

research (e.g., Butchart et al., 2010). In this vein, the OHI (Halpern et al., 2015) - now in its

fifth year of operation – provides another framework which may benefit from harmonized mi-

crobial insight and novel MIs. The OHI integrates information about the ecological, social, and

economic benefits that a healthy ocean provides to humans. Relatively low-level components

of the OHI - including the counts of alien species and habitat destruction - are organized into

the dimensions of status, resilience, pressures, and trend. Microbial components would have a

natural home in the OHI’s framework, but, as discussed above, need firmer scientific founda-

tions and consensus within the observing community before they can be globally applied. For

example, thresholds for declaring the detection of invasive species in molecular data are likely to

vary across systems (due to varying degrees of natural turnover) and technologies (e.g., due to

variation in error rates), thus well-documented and reproducible expert intervention is required

prior to integration. Together, these reporting frameworks exemplify a challenging, but feasible,

route towards global integration of marine microbial observation, especially when compared to

the incredibly cumbersome and currently unsustainable option of attempting to standardize the

use of samplers, filters, extraction technologies, primers and sequencing pipelines at a global

scale. If taken up, we believe that this vital task of harmonized reporting will nucleate a tightly

coordinated network of observatories, laying a solid foundation for further alignment.

2.6 Conclusion: Realizing the societal relevance of marine

microbial observatories

Ocean biodiversity and its relationship to ecosystem health and human well-being has never

been a more pressing target for research and monitoring (e.g., Egan and Gardiner, 2016; Lamb

et al., 2017; Russi et al., 2016; Kite-Powell et al., 2008). This urgency will only increase with
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rapid growth of human settlements in coastal zones, increasing dependence on the ocean’s re-

sources and exposure to its biotic hazards. Indeed, UN Environment Chief, Erik Solheim, has

recently called for the elevation of biodiversity monitoring to the same level as climate monitor-

ing by 2020, and stressed the central importance of functioning ecosystems to societal well-being

(COP12, Manila, 2017-10-25). Bolstering the capacity of long-term ocean observatory networks

to coherently monitor microbes - the greatest store of biodiversity in the oceans - would do much

to accomplish this target and enhance reporting on many components of the UN’s Sustainable

Development Goals (esp. SDGs 14:“Life Below Water” Malone et al., 2014a,b). Indeed, much

in the same way that the human microbiome is becoming increasingly relevant in monitoring

human health, the ocean microbiome must be integrated into monitoring the health of our Blue

Planet.

Microbial observing efforts at all scales can accelerate this mission if they are able to harmonise

their outputs and function as a consolidated system capable of generating coherent, spatiotempo-

rally comprehensive indicators and assessments tuned to societal priorities. Further, aligned ob-

servatories have the ability to cross-validate and test the validity and generalizability of existing

and emerging methods and best practices, which are often developed in isolation. Observatories,

projects, programs, and consortia such as, the Genomic Observatories Network (GON), DNAqua-

Net (Leese et al., 2016), the “Optimising and Enhancing the Integrated Atlantic Ocean Observ-

ing Systems” (AtlantOS) project, and the Association of European Marine Biological Laboratories

Expanded (ASSEMBLE+) have an immense opportunity to align these efforts and collectively in-

terface with broader coordination mechanisms offered by organisations such as, GOOS and the

Marine Biological Observation Network (MBON). Such a convergence would greatly promote

analyses and syntheses with greater coverage across time and space, which already draw from

the findings of long-term observation efforts (e.g., Fuhrman et al., 2015). Lastly, as societal needs

associated with the marine ecosystems frequently cross the land-ocean interface, we must cre-

ate operationalized links to observation infrastructures targeting more terrestrial systems (e.g.,

NEON Cesare, 2016). The scale of this challenge is immense, however, a concerted effort to

establish stable microbial monitoring will vastly enhance our ability to understand, monitor, and

protect the ocean’s health. At an even larger scale, international microbiologists have already

called for a unified microbiome initiative, with the overarching goal to take the next step from

microbial monitoring to prediction of how Earth’s microbiome will respond to the 21st century

challenges (Blaser et al., 2016). Marine microbiology must rally its capacities and prepare for

the key role it will play in this process.



Chapter 3

Primer selection for Arctic Ocean

microbiome studies - a taxonomic

resolution trade off

Eduard Fadeev1,2, Verena Salman-Carvalho2, Massimiliano Molari2, Magda Cardoz Mino2,

Josephine Z Rapp1,2,3, Antje Boetius1,2

1 Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

2 Max Planck Institute for Marine Microbiology, Bremen, Germany

3 School of Oceanography, University of Washington, Seattle, Washington, USA

Keywords: bacterial communities, 16S rRNA gene, tag-sequencing, methods comparison, uni-

versal primers

���� �����	
 �� �� �
	��
����� 
�
 ���������� �� ������	�	�
�� ���
����

38



3.1. ABSTRACT 39

3.1 Abstract

The microbiome of the Arctic Ocean is strongly understudied in comparison to other aquatic en-

vironments. However, the Arctic marine ecosystem harbors unique bacterial communities, which

are strongly specialized to harsh environmental conditions (e.g., near-freezing temperatures),

and extreme seasonality. The gene for the small ribosomal subunit (16S rRNA) is commonly

used to study microbial communities in their natural environment. The primer sets for this

marker gene were extensively tested using various environmental samples, but which typically

originated from low-latitude locations. To-date, their performance in representing the bacte-

rial communities of the Arctic Ocean was not yet evaluated. To select a suitable primer set for

studying the bacterial communities in various habitats of the Arctic marine ecosystem (sea ice,

surface and deep ocean, and deep-sea sediment), we have conducted a performance comparison

between two commonly used primer sets, targeting different hypervariable regions of the 16S

rRNA gene (V3-V4 and V4-V5). We observed differences between the primers and their represen-

tation of high-resolution taxonomic diversity (i.e., operational taxonomic units - OTUs), as well

as differences in sequence proportions of taxonomically unresolved groups (e.g., Marinimicrobia

and Chloroflexi). However, we also observed that throughout all tested habitats both primer sets

were highly similar in representing the total bacterial community composition. Overall we do

not endorse one primer set over the other but rather suggest that the decision should be made

based on the presented strengths and weaknesses of each primer set.

3.2 Introduction

Methodologies of microbial research in general and environmental microbiology in particular

went through significant changes in the last two decades with the improvements of molecular-

based technologies and the establishment of the gene for the small ribosomal subunit (16S

rRNA) as a molecular marker for microbial diversity (Pace et al., 2012). The revolution of

high-throughput sequencing technologies started a new era in microbiology, allowing large scale

microbial biodiversity studies through massive parallel sequencing (Medini et al., 2008; Reuter

et al., 2015; Morey et al., 2013). The two most commonly used DNA-based approaches in en-

vironmental microbiology are: (1) polymerase chain reaction (PCR) based sequencing ("tag-

sequencing"), which provides a taxonomic profile of the microbial community based on the phy-

logeny of the selected marker gene (e.g., 16S rRNA gene); and (2) shotgun sequencing of the

total extracted DNA ("metagenomics") which provides, in addition to the taxonomic profile, a

detailed functional information about the microorganisms within the community (Zinger et al.,

2012).

As each milliliter of seawater contains about one million microbial cells from different trophic

groups (Glöckner et al., 2012), these techniques allowed microbial oceanographers to investigate

the massive diversity of the microbial assemblages, inferring their function in the biogeochemical

cycles of the marine environment (Fuhrman and Steele, 2008; Rappé and Giovannoni, 2003;

Karl, 2007; DeLong and Karl, 2005; Cullen et al., 2007; Aristegui et al., 2009). The increased

awareness of global climate change and the deeper investigation of the global elemental cycles

led to the understanding that microbial communities, as well as other relevant environmental
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parameters should be monitored over time (Karl and Church, 2014). Time-series of microbial

communities allow the detection of trends and irregularities in their dynamics, and may provide

an insight into the main factors that control them (Fuhrman et al., 2015).

Current time-series oceanographic research aims to understand large scale processes, and at-

tempts to provide global estimates of the ongoing changes. For doing this, it is of uttermost

importance to synchronize and standardize the data sampling between long-term time-series

sites. The collection of samples in the open ocean is expensive and time consuming, which is

mainly due to the remote locations of the sampling sites. Thus, unfortunately microbial long-

term time-series studies in the framework of oceanographic observatories are rare, and are often

conducted on a small geographic scale in a near-shore environment (further discussed in chap-

ter 2). As a result, unlike other methodologies in long-term oceanographic observatories, the

high-throughput technologies of microbial oceanography lack standardization and coordination.

The studies are often dedicated to a specific research question, and apply a specific approach.

Such discrepancies challenge the comparability and integration of these studies and their in-

corporation into one large mechanistic system, even within the same geographic region (e.g.,

Fuhrman et al., 2015; Karl and Church, 2014; Giovannoni and Vergin, 2012).

Despite being the most rapidly changing marine environment on the planet (Vaughan et al.,

2013) the Arctic Ocean is undersampled (Wassmann et al., 2011), and until recently consisted

of only one long-term microbial time-series, of the HAUSGARTEN observatory in the Fram Strait

(Soltwedel et al., 2016, 2005). However, the recently established long-term Arctic open-ocean

infrastructure project FRAM (FRontiers in Arctic marine Monitoring; Soltwedel et al., 2013) set

the goal to conduct year-round time-series observations of the Arctic marine environment over

various sites in the Arctic Ocean. In the framework of the FRAM Molecular Observatory, we

are aiming to develop a standardized methodology for conducting long-term microbial observa-

tions, across the diverse microbiomes of the Arctic Ocean (e.g., sea ice, seawater and seafloor;

Boetius et al., 2015), which will be comparable between them and other time-series sites (e.g.,

HOT and BATS). Unlike other time-series sites the harsh conditions in Arctic Ocean are limiting

the accessibility of the sampling sites to the summer months. The sampling during the Arctic

winter (which is generally low in microbial biomass; e.g., Alonso-Sáez et al., 2008) is conducted

using autonomous samplers with limited sampling capacities (Soltwedel et al., 2013). These

unique conditions constrain, with currently available technologies, the year-round time-series

microbial observations to the PCR based approaches (i.e, "tag-sequencing"), which have lower

DNA concentration thresholds (Hassan et al., 2018; Thomas et al., 2012). The 16S/18S rRNA

gene sequencing taxonomic profiling is strongly supported by the existence of large curated tax-

onomic databases (e.g., SILVA Quast et al., 2013), and it has been shown using a metagenomic

approach that the functional capacity of a marine microbial community is strongly linked to its

taxonomic composition (Galand et al., 2018). Thus, despite the increasing use of metagenomics

in microbial oceanography, tag-sequencing remains a valuable tool for addressing traditional

community ecology questions.

One critical step step in 16S rRNA gene sequencing studies is the selection of PCR primers for

the DNA amplification (Armougom, 2009). Throughout the years, many primer sets were de-

signed for diversity studies of specific taxonomic groups, and in several attempts a universal 16S

rRNA gene primer set was seeked, which could cover the entire diversity of the bacterial and

archaeal communities (Wang and Qian, 2009). One of the most extensive primer evaluations
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was conducted by Klindworth and colleagues, where they tested 512 primer sets in-silico, using

the SILVA 16S rRNA gene non-redundant reference database (Klindworth et al., 2013). Their

evaluation resulted in the recommendation of using the 341F/785R (targeting the V3-V4 hype-

variable regions of the 16S rRNA gene) as the ’best available’ universal primer set for bacterial

diversity studies, suitable for amplicon sequencing on Illumina platforms. At around the same

time, the Earth Microbiome Project (EMP) was launched, aiming to catalog microbial diversity

from different habitats across the world, and to create a microbial database that could facilitate

global microbial community meta-analyses (Gilbert et al., 2014, 2010). To ease comparability

among the newly generated datasets, the EMP proposed standardized analysis protocols includ-

ing the use of another primer set, 515F/806R, targeting the V4 hypervariable region of the 16S

rRNA gene (Caporaso et al., 2012, 2011). Unlike the V3-V4, the V4 primer set was able to cap-

ture not only bacterial but also archaeal diversity. However, later use of the primer set on marine

microbiome samples revealed strong biases in the representation of dominant taxa in the water

column (Apprill et al., 2015; Parada et al., 2016). Therefore, an alternative primer set, 515F-

Y/926R (targeting the V4-V5 hypervariable regions) has been developed, and has since been

proven to resolve the biases of the marine taxa representation known from the EMP primer set

(Parada et al., 2016). Since then, the V4-V5 primer set has been considered the ’best available’

universal primer set for water column microbiome studies.

Both presented 16S rRNA gene primer sets, V3-V4 and V4-V5, are broadly used in current studies

of marine pelagic microbial communities, and were extensively tested using mock and natural

bacterial communities of temperate waters (e.g., Wear et al., 2018). However, until today there

were no systematic studies that tested the performance of these primer sets on the microbiome

of the Arctic Ocean. In an attempt to select the most suitable primer set for future time-series

microbial monitoring in the FRAM Molecular Observatory, we here present a performance com-

parison of the two 16S rRNA gene primer sets (V3-V4 and V4-V5) in representing the Arctic

Ocean bacterial communities. Using 44 field samples collected from various habitats of the Arc-

tic Ocean, we have conducted direct comparison of the taxonomic coverage and potential biases

of the primers. Furthermore, based on extensive cell counting in two surface water samples,

using CAtalyzed Reporter Deposition-Fluorescence In Situ Hybridization (CARD-FISH), we have

estimated the primer-sets performance in representing the absolute abundance of key taxonomic

groups in the Arctic microbiome.

3.3 Results and Discussion

3.3.1 The richness differs due to 16S rRNA gene sub-regions variability

rates

Aliquotes of 44 DNA samples from the different habitats of the Arctic Ocean (i.e., sea ice, seawa-

ter, and seafloor) were sequenced on an Illumina MiSeq platform using both V3-V4 and V4-V5

primers (Table 3.S1). All samples were subject to the same 16S rRNA gene tag-sequencing analy-

sis workflow, which consisted of quality control, operational taxonomic units (OTUs) clustering,

and taxonomic assignment (Almeida et al., 2018). Overall, both primers showed similar se-

quence reduction rates throughout the bioinformatic analysis, with slightly higher proportions
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of retained sequences in the V4-V5 dataset. After quality filtering, removal of singletons and tax-

onomic assignment, both datasets accounted for slightly more than 50% of the initial sequences

assigned to bacterial lineages. However, after the removal of sequences that were taxonomi-

cally assigned to chloroplast and mitochondria, only 35% of the initial sequences remained in

the V4-V5 dataset, in comparison to 50% in the V3-V4 dataset (Fig. 3.S1). This suggests that

the V4-V5 primer-set is less specific towards bacterial 16S rRNA gene sequences, and that large

fractions of the sequences in each library (i.e., sampling effort) are a product of chloroplast and

mitochondria rRNA amplification.
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In all samples the rarefaction curves did not reach a plateau, and extrapolation with the double

amount of sequences showed a further increase in richness ((Fig. 3.1) Chao and Jost, 2012;

Chao et al., 2014b), which suggests that additional OTUs are to be expected with larger se-

quencing effort. The observed richness (number of OTUs) in the V3-V4 dataset was significantly

higher in comparison to the V4-V5 dataset (t-test, p value < 0.05; Table 3.S1). However, the

Chao1 richness estimates, which take into account the sample size, revealed significantly higher

community coverage in the V4-V5 dataset (mean coverage 71% and 78%, respectively; t-test, p

value < 0.05). These observations suggest that the sensitivity of the V3-V4 primer set to bacte-

rial diversity is higher in comparison to the V4-V5 primer set, potentially as a result of stronger

hypervariability of the V3-V4 region of the 16S rRNA gene (Huse et al., 2008; Yang et al., 2016).

Thus, in comparison to the V4-V5 primer set a smaller fraction of the bacterial diversity is covered
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with the similar sampling depth (i.e., sampling effort). On the other hand, both Shannon and

Simpson diversity indeces, which are less affected by rare OTUs (with low sequence abundance;

Haegeman et al., 2013), did not show statistically significant differences between the datasets.

Altogether this suggests that the differences in richness are a result of a different representa-

tion of the rare biosphere, and the sequence abundant OTUs are represented in both datasets.

Moreover, the coverage-based rarefaction estimations (i.e., Good’s estimator) revealed that all

samples had a completeness of more than 95%, independent of the primer set (Table 3.S1; Kang

et al., 2016).
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3.3.2 Similar representation of bacterial communities - different represen-

tation of populations with poor taxonomic classification

Both primer sets revealed bacterial community composition in line with previous reports for

Arctic microbial diversity (Fig. 3.2). The sea ice and surface seawater communities were, in ac-

cordance with previously conducted studies, dominated by the classes Alphaproteobacteria, Bac-

teroidia, and Gammaproteobacteria (Boetius et al., 2015; Rapp et al., 2018; Wilson et al., 2017).

In the deep water column, a higher diversity was observed with increasing proportions of poorly
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described taxonomic groups, such as, Marinimicrobia and Dehalococcoidia (Wilson et al., 2017).

The highest diversity was observed in the deep-sea sediment bacterial communities (Table 3.S1),

with increasing number of low sequence abundance taxonomic classes, such as, Acidobacteria

(Bienhold et al., 2012; Rapp et al., 2018). Overall, on a class level, both primer sets showed

statistically significant (p value < 0.05) linear correlation in representation of the bacterial com-

munity composition (Fig. 3.S2), in consistency with previous observations (Wear et al., 2018).

In order to investigate the differences between the primers on higher taxonomic resolution, we

performed differential abundance tests for bacterial lineages at a family level, which were present

in both datasets (V3-V4 and V4-V5). The families which had an average of at least 100 reads,

a log2 change of absolute values higher than 1, and an adjusted p-value < 0.1 were defined

as differentially abundant (Fig. 3.3). Out of 427 total bacterial lineages at family level only 58

showed differential abundance between the primer sets. Among them 54 lineages had higher

representation in the V3-V4 dataset with absolute mean log2 fold change of 11.7, and only 4

lineages in the V4-V5 dataset with absolute mean log2 fold change of 8.2. The most abundant

(in terms of number of sequences in each dataset) bacterial lineages, which showed differential

abundance between the datasets, were members of taxonomic groups with poor classification,

such as, Deltaproteobacteria (SAR324 clade and NB1-j), Dehalococcoidia (SAR202 clade) and

Marinimicrobia (SAR406 clade). However, both primer sets were consistent in representing

the sequence proportion of the bacterial families with high taxonomic resolution and most of

the differentially abundant lineages were related to poorly classified taxonomic groups. The

Bacteroidia, which are predominant members of the sea-ice community and sequence-abundant

in the water column during the productive spring and summer months (Boetius et al., 2015;

Rapp et al., 2018; Wilson et al., 2017), did not show any differential abundance between the

primer sets. The Alphaproteobacteria consisted of 5 distinct lineages with a higher sequence

abundance in the V3-V4 dataset. Interestingly, despite the specific design of the V4-V5 primer

set for representation of the SAR11 clade (Parada et al., 2016), in our datatset there was one

lineage of SAR11 clade in the deep seawater communities, which even had higher sequence

abundance in the V3-V4 dataset.

3.3.3 High-throughput data provides semi-quantitative community com-

position

Due to the nature of PCR amplification, amplicon based sequencing may introduce biases into

the dataset (Laursen et al., 2017). Therefore, it is reasonable to assume that both primer sets

have certain biases in representing specific taxa (e.g., Wear et al., 2018), by either missing cer-

tain target groups or by misrepresenting their true abundance in the environment. In order to

evaluate the two primer sets performance in representing the absolute abundances of bacterial

taxa, we have conducted a comparison between the 16S rRNA gene community composition and

microscopic cell counts using CARD-FISH (Fig. 3.4). The microscopy counts were conducted on

two surface-water samples from the Fram Strait (Arctic Ocean). The taxonomic groups tar-

geted by the CARD-FISH counting were selected based on their presence in the 16S rRNA gene

dataset. The relative abundance of each targeted group was calculated based on total bacterial

cell counts, acquired using the EUB338I-III CARD-FISH probe mix.
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Overall the relative abundance in the CARD-FISH counts was lower than in the 16S rRNA gene

datasets. Fluorescence in situ hybridization techniques have the clear advantage to provide abso-

lute cell abundances that can be directly compared between samples, time-points, etc. However,

the method itself surely also has internal technical hardships, which include the effectiveness

to permeabilize the cell wall of the targeted organism, the high variability in the amount of

intracellular ribosomes in environmentally interesting community members, and the steric dif-

ferences for the accessibility of folded, double-stranded regions within the ribosome (Amann

and Fuchs, 2008). The slightly lower representation of taxa in the cell counts could therefore

be a consequence of these limitations, as well as the putative incomplete coverage of the target

group by the probe(s) used. Nevertheless, in accordance with previous studies, both primer sets

performed equally well in representing the patterns of absolute abundance in the selected tax-

onomic groups (e.g., Teeling et al., 2016). Moreover, there was a statistically significant linear

correlation between the sequence proportion in the 16S rRNA gene datasets and the relative

abundance in microscopic cell counts (p value < 0.05; Figure 3.S3).

Although not addressed in the scope of this study, the high-throughput molecular techniques,

such as 16S rRNA gene tag-sequencing, are limited in many other ways besides the primer bi-

ases, potentially in favor or against certain community members. Several other technical hard-

ships, such as, different sampling procedures (Padilla et al., 2015) or different DNA-extraction

methodologies (Fouhy et al., 2016; Starke et al., 2014; Kennedy et al., 2014) may impact the

observations. Furthermore, various bioinformatic tools and approaches may have different sen-

sitivities in sequence clustering into OTUs, which may also alter the observed patterns (Mahé
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et al., 2015; Almeida et al., 2018; Knight et al., 2018). Thus, all these different parameters should

be taken into account throughout the experimental design (Hugerth and Andersson, 2017), and

standardized in case of continuous observation (i.e., time-series).

3.4 Concluding remarks

To understand the ongoing processes in the Arctic Ocean, and to estimate the future of this re-

gion, there is a need in holistic observations of the entire Arctic marine ecosystem. In order to

conduct such observations, using a 16S rRNA gene tag-sequencing approach, a single primer

set should be selected, which can be applied to all habitats of the Arctic Ocean (sea ice, wa-

ter column, and deep-sea sediment). The most suitable primer set for 16S rRNA amplification

and sequencing from environmental samples should produce high-quality 16S rRNA gene se-

quence amplicon libraries, and cover the desired organisms with minimum biases in relative

abundance. We have found that both tested primer sets represent the major bacterial phyla

at overall comparable levels, which correlates with their proportional representation via mi-

croscopic cell counting. Given the demonstrated similarity, we suggest that both primer sets are

suitable for producing a high-quality overview of the bacterial communities in all tested habitats,

and we cannot conclusively endorse one primer set over the other.

Despite the overall similar performance, our results have also shown that the V3-V4 primer set

performs better in capturing the bacterial diversity on a higher taxonomic resolution. Such

characteristic might be important in studies which are focusing on a specific bacterial taxonomic

group and its diversity (e.g., oligotypes) or the rare biosphere. On the other hand, the V4-V5

primer has the clear advantage, which was not addressed in the scope of this study, of covering

not only the bacterial domain but also the Archaea. It has already been demonstrated elsewhere

that this domain may play an important ecological role in marine ecosystems, especially in the

deep ocean water column, but they remain so far largely understudied. Thus, we suggest that

the selection between these two primer sets should be done based on the aim of the study, and

the research question.

3.5 Materials and methods

3.5.1 Sample collection

The samples were collected during the Polarstern cruise PS99.2 to the Long-term ecological

research (LTER) site HAUSGARTEN in Fram Strait (June 24th – July 16th 2016), and Polarstern

cruise PS101 to the central Arctic Ocean (September 9th – October 23rd 2016).

• The sea-ice cores were collected using an ice corer (9 cm diameter; Kovacs Enterprise,

Roseburg, OR, United States), cut into two equal sections and melted in plastic containers

(previously rinsed with ethanol and ultrapure water). The melting of the sea ice took

around 24 hours and the samples were immediately filtered on 0.22 μm Sterivex© as soon

as the last piece of sea ice melted.
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• The water sampling was carried out using 12 L Niskin bottles mounted on a CTD rosette

(Sea-Bird Electronics Inc. SBE 911 plus probe), and also filtered on 0.22 μm Sterivex©

membranes.

• The deep-sea sediment cores were retrieved by a TV-guided multicorer and subsamples

of the uppermost centimeter of the core was collected with syringes. All Sterivex© mem-

branes and deep-sea samples were stored at −20° C until further processing.

3.5.2 DNA isolation and 16S amplicon sequencing

Genomic DNA was isolated in a combined chemical and mechanical procedure using the Pow-

erWater DNA Isolation Kit for sea ice and water samples, and PowerSoil DNA Isolation Kit for

sediment samples (MO BIO Laboratories, Inc., Carlsbad, CA, USA). Prior to DNA isolation, the

0.22 μm Sterivex© membrane cartridges of the seawater and sea ice samples were cracked open

in order to place the filters into the kit-supplied bead beating tubes. The isolation was con-

tinued according to the manufacturer’s instructions, and DNA was stored at −20° C. Library

preparation was performed according to the standard instructions of the 16S Metagenomic Se-

quencing Library Preparation protocol (Illumina, Inc., San Diego, CA, USA). Two different hy-

pervariable regions of the bacterial 16S rRNA gene were amplified using aliquots of the isolated

DNA from each sample. The V3-V4 region was amplified using the S-D-Bact-0341-b-S-17 (5‘-

CCTACGGGNGGCWGCAG-3‘) and the S-D-Bact-0785-a-A-21 (5‘-GACTACHVGGGTATCTAATCC-

3‘) primer set (Klindworth et al., 2013). And the V4-V5 regions was amplified using the 515F-Y

(5‘-GTGYCAGCMGCCGCGGTAA-3‘) and the 926R (5‘-CCGYCAATTYMTTTRAGTTT-3‘) primer set

(Parada et al., 2016). Sequences were obtained on the Illumina MiSeq platform in a 2 × 300

bp paired-end run (CeBiTec Bielefeld, Germany), following the standard instructions of the 16S

Metagenomic Sequencing Library Preparation protocol (Illumina, Inc., San Diego, CA, USA).

3.5.3 Bioinformatics and statistical analyses

The raw paired-end reads were primer-trimmed using cutadapt (Martin, 2011), quality trimmed

using trimmomatic v0.32 with a sliding window of 4 bases and a minimum average quality of

15 (Bolger et al., 2014), and merged using PEAR v0.9.5 (Bolger et al., 2014). Clustering into

OTUs was done with Swarm v.2.0 algorithm using default parameters (Mahé et al., 2015). One

representative sequence per OTU was taxonomically classified against Silva reference database

(release 132; Quast et al., 2013) using SINA v1.2.11 (SILVA Incremental Aligner), at a minimum

alignment similarity of 0.9, and a last common ancestor consensus of 0.7 (Pruesse et al., 2012).

All OTUs that occurred with only a single sequence in the whole dataset (singleton), or were

not taxonomically assigned to Bacteria were excluded from the analysis. Furthermore, the OTUs

which were taxonomically assigned to mitochondria and chloroplast were removed from the

datasets as well.

All the statistical analyses were conducted using R v3.4.1 (http://www.Rproject.org/) in RStudio

v1.0.153 (RStudio Team, 2015). Sample data matrices were managed using the R package

‘phyloseq’ v1.20.0 (McMurdie and Holmes, 2013) and plots were generated using the R package

‘ggplot2’ v2.2.1 (Gómez-Rubio, 2017). All alpha diversity parameters and curves were obtained



3.5. MATERIALS AND METHODS 49

using the R package ‘iNEXT’ v2.0.12 (Hsieh et al., 2018). A prevalence threshold of 5% (2

samples) was applied to the OTU table prior to downstream analysis (i.e., in how many samples

did a taxon appear at least once; Callahan et al., 2016).

3.5.4 CAtalyzed reporter deposition Fluorescence In Situ Hybridization

(CARD-FISH)

Water samples were filtered onto 0.2 μm polycarbonate Nucleopore Track-Etched filters (What-

man, Buckinghamshire, UK), and stored at -20°C. CARD-FISH was performed according to Pern-

thaler et al. (2002). Briefly, filters were embedded in 0.2% low-gelling-point agarose, treated

with lysozyme (10 mg/mL in 0.05 M EDTA, pH 8.0, and 0.1 M Tris-HCl, pH 8.0; Sigma-Aldrich

Chemie GmbH, Hamburg, Germany) for 1 hour at 37°C. After the inactivation of endogenous

peroxidases with 0.15% H2O2 in methanol for 30 min filters were hybridized at 46°C with

horseradish-peroxidase (HRP)-labelled oligonucleotide probes (biomers.net GmbH, Ulm, Ger-

many), at 0.2 ng/ml final concentration of each probe, and the corresponding formamide con-

centration in the hybridization buffer (Table 3.S2). After washing at 48°C for 10 min the tyra-

mide signal was amplified for 45 min at 46°C. Afterwards, the cells were counterstained with the

nucleic acid dye 4,6-diamidino-2-phenylindole DAPI (Thermo Fisher Scientific GmbH, Bremen,

Germany) at 1 μg/mL final concentration in water for 10 min at 46°C, followed by embedding

the filter in 4:1 Citifluor (Citifluor Ltd, London, United Kingdom) and Vectashield (Vector Labo-

ratories, Inc., Burlingame, United States), and freezing at -20°C.

3.5.5 Automated image acquisition and cell counting

CARD-FISH filters were evaluated microscopically using a Zeiss Axio Imager.Z2 stand (Carl Zeiss

MicroImaging GmbH, Jena, Germany), which is equipped with a multipurpose fully automated

microscope imaging system (MPISYS), a Colibri LED Light source illumination system (LED emit-

ting 365 ± 4.5 nm for DAPI excitation, 470 ± 14 nm for Alexa Fluor 488 excitation, and 590 ±
17.5 nm for Alexa Fluor 594 excitation), and a multi-filter set 62HE (Carl Zeiss MicroImaging

GmbH, Jena, Germany) to allow the passing of all desired wavelengths without physical rotation

during recording. Pictures were taken via a cooled charged-coupled-device (CCD) camera (Ax-

ioCam MRm; Carl Zeiss AG, Oberkochen, Germany) coupled to the AxioVision Rel.4.8 software

(Carl Zeiss AG, Oberkochen, Germany) After manual inspection of the filters, exposure times

were adjusted in the AxioVision Rel.4.8 software to fit the DAPI and CARD-FISH signals. The

filter pieces were located on the slides with the SamLoc 1.7 tool (Zeder et al. 2011), and 55

fields of view (FOV) with a minimum distance of 0.25 mm and in z-stack via autofocus were

imaged per filter piece (Zeder and Pernthaler 2009) using a 63x oil objective with a numerical

aperture of 1.4 (Carl Zeiss AG, Oberkochen, Germany), and a pixel size of 0.1016 μm/pixel.

Automated cell detection and counting was performed in the software Automated Cell Measuring

and Enumeration Tool ACMEtool3 (2014; M. Zeder, Technobiology GmbH, Buchrain, Switzer-

land), where objects were counted in DAPI or FISH channels according to parameter thresholds

set manually.
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4.1 Abstract

Climate models project that the Arctic Ocean may experience ice-free summers already in the

second half of this century. This may have severe repercussions on phytoplankton bloom dynam-

ics and the associated cycling of carbon in surface waters. We currently lack baseline knowledge

of the seasonal dynamics of Arctic microbial communities, which is needed in order to better

estimate the effects of such changes on ecosystem functioning. Here we present a comparative

study of polar summer microbial communities in the ice-free (eastern) and ice-covered (west-

ern) hydrographic regimes at the LTER HAUSGARTEN in Fram Strait, the main gateway between

the Arctic and North Atlantic Oceans. Based on measured and modeled biogeochemical parame-

ters, we tentatively identified two different ecosystem states (i.e., different phytoplankton bloom

stages) in the distinct regions. Using Illumina tag-sequencing, we determined the community

composition of both free-living and particle-associated bacteria as well as microbial eukaryotes

in the photic layer. Despite substantial horizontal mixing by eddies in Fram Strait, pelagic micro-

bial communities showed distinct differences between the two regimes, with a proposed early

spring (pre-bloom) community in the ice-covered western regime (with higher representation

of SAR11, SAR202, SAR406 and eukaryotic MALVs) and a community indicative of late summer

conditions (post-bloom) in the ice-free eastern regime (with higher representation of Flavobacte-

ria, Gammaproteobacteria and eukaryotic heterotrophs). Co-occurrence networks revealed spe-

cific taxon-taxon associations between bacterial and eukaryotic taxa in the two regions. Our

results suggest that the predicted changes in sea-ice cover and phytoplankton bloom dynamics

will have a strong impact on bacterial community dynamics and potentially on biogeochemical

cycles in this region.

4.2 Introduction

In recent decades, Arctic warming has resulted in remarkable environmental changes in the

Arctic Ocean, and the region is warming much faster than the global mean rate(Dobricic et al.,

2016; Sun et al., 2016). Arctic sea-ice has been declining by approximately 50% since the late

1950s, and its extent is shrinking at approximately 10% per decade since the late 1990s (Kwok

and Rothrock, 2009; Peng and Meier, 2017). Current predictions indicate that the Arctic Ocean

may experience ice-free summers by the second half of this century (Polyakov et al., 2017).

In addition, recent observations suggest increasing temperatures of the Atlantic water inflow

(Walczowski et al., 2017). The combination of these environmental changes results in weakened

stratification of the water column and increased vertical mixing of the deep Atlantic core water,

a process also termed ‘Atlantification’ (Polyakov et al., 2017). Based on these observations, the

general agreement is that the Arctic Ocean is currently in a transitional phase towards warmer

conditions (Dmitrenko et al., 2008; Polyakov et al., 2017, 2005).

The 450 km wide Fram Strait is the only deep gateway to the Arctic Ocean, and has two distinct

hydrographic regimes. In the eastern part of Fram Strait, the northward flowing West Spitsber-

gen Current (WSC), transports relatively warm and saline Atlantic water into the Arctic Ocean

(Beszczynska-Moller et al., 2012; von Appen et al., 2015). The East Greenland Current (EGC)

flows southwards along the Greenland shelf, transporting cold polar water and exporting ap-
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proximately 90% of the Arctic sea-ice to the North Atlantic (de Steur et al., 2009). These distinct

water masses are separated by the East Greenland Polar Front system (Paquette et al., 1985).

However, recent ocean simulation analyses show substantial horizontal mixing and exchange

by eddies (Wekerle et al., 2017a). Repeated summer sampling in the water column and at the

seafloor of the Fram Strait, as part of the Long Term Ecological Research (LTER) site HAUS-

GARTEN, have revealed major ecological variations associated with anomalies of Atlantic Water

inflow (Soltwedel et al., 2016). Examples for such variations were a slow increase in phytoplank-

ton biomass and shifts in microbial eukaryotic species composition which followed the Atlantic

Water warming event in 2005-2007 (Nöthig et al., 2015). This included a transition from diatom

to flagellate (e.g., Phaeocystis) dominated communities during the summer months (Engel et al.,

2017; Nöthig et al., 2015). Recent model predictions showed substantial differences in carbon

export following diatom- or flagellate- dominated phytoplankton blooms (Vernet et al., 2017;

Wollenburg et al., 2018). Depending on timing, flagellate dominated blooms may result in in-

creasing abundance of microzooplankton (e.g., ciliates) and a more active microbial loop, or a

more rapid export in connection with sea-ice formed mineral precipitation. Furthermore, a year

round study of physical and biogeochemical hydrography in the WSC suggested that the ongo-

ing ‘Atlantification’ in the region is leading to increased pelagic primary productivity (Randelhoff

et al., 2018). However, the harsh climatic conditions in the open Arctic Ocean during winter typi-

cally limit sampling opportunities to the Arctic summer season, so that seasonal dynamics within

the pelagic ecosystem, especially in ice-covered parts of the Arctic, remain understudied (Nöthig

et al., 2015; Soltwedel et al., 2016). Phytoplankton bloom dynamics may, to some extent, be

monitored using remote sensing of chlorophyll a (chl a) by satellites in ice-free ocean areas, with

substantial limits due to Arctic fog and the dark season (Perrette et al., 2011). However, mon-

itoring the dynamics of heterotrophic microorganisms requires physical sampling. Wilson and

colleagues (2017) were the first to describe changes of bacterial community composition in the

eastern Fram Strait throughout a polar year. In accordance with observations from other polar

regions (Alonso-Sáez et al., 2008; Ghiglione et al., 2012; Iversen and Seuthe, 2011; Williams

et al., 2012), their results showed that the extreme seasonality of polar marine ecosystems, with

ice-covered dark winter conditions and extended irradiance in summer, leads to pronounced

seasonal differences in heterotrophic bacterial communities. Winter-time bacterial communities

in the upper water column showed higher phylogenetic and functional diversity compared to

the summertime, with increased importance of chemolithotrophic processes (e.g., Alonso-Sáez

et al., 2014; Müller et al., 2018). During late spring, the increasing irradiance and decreasing

sea-ice cover initiate large phytoplankton blooms, which can lead to major shifts in heterotrophic

bacterial community composition.

Biological interactions among microbes are important drivers of the dynamics in pelagic mi-

crobial communities (Fuhrman et al., 2015). Specific interactions between phytoplankton and

heterotrophic bacteria have been documented, many of which are based on the exchange of en-

ergy sources, metabolites, including various forms of chemical signaling (Cole, 1982; Grossart

et al., 2006a; Grossart and Simon, 2007; Ramanan et al., 2016). Analyses of bacterial com-

munities co-occurring with diatoms, using advanced molecular approaches, revealed complex

interspecies signaling (Amin et al., 2012). While a full characterization of such interactions re-

quires targeted experiments under laboratory conditions, currently available molecular methods

in combination with network analyses allow us to identify potential interactions directly from
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environmental samples (e.g., Chafee et al., 2018; Gilbert et al., 2012; Lima-Mendez et al., 2015;

Milici et al., 2016; Peura et al., 2015).

One such interaction with relevance to the proportion of pelagic recycling versus carbon export

is the mechanical association of bacteria with plankton detritus. Pelagic bacteria have different

strategies to tap into the detritus pool, free-living in the water column or associated with partic-

ulate matter (Stocker and Seymour, 2012). Previous studies of microbial associations revealed

strong differences between potential associations of free-living (FL) and particle-associated (PA)

bacteria with microbial eukaryotes (Lima-Mendez et al., 2015; Milici et al., 2016). While the FL

fraction is often dominated by cosmopolitan oligotrophic bacteria that rely on the availability of

organic matter in the dissolved fraction (Giovannoni et al., 2014; Morris et al., 2012), the PA

fraction is usually represented by copiotrophic motile bacteria which colonize living or decaying

microbial eukaryotes, fecal pellets, gel-like particles or other forms of particulate organic matter

(Busch et al., 2017; Herndl and Reinthaler, 2013; Simon et al., 2002).

Microbiological studies of the photic layer of Fram Strait have so far focused on eukaryotic plank-

ton (Kilias et al., 2013; Metfies et al., 2016; Nöthig et al., 2015), and biogeochemical recycling of

detritus by bacteria (Piontek et al., 2014, 2015). Very little is known about the composition and

dynamics of bacterial communities in this region. Bacteria are key players in the biogeochemical

cycling of carbon and nutrients in the water column (Azam and Malfatti, 2007; Falkowski et al.,

2008), and baseline knowledge about these communities and their main drivers is needed, in

order to project future changes in the pelagic ecosystem of Fram Strait, such as warming and

acidification. Using a set of measured and modeled environmental parameters and sequence-

based assessments of microbial community composition, the objectives of the study were: (1)

to identify differences in bacterial community composition in the two hydrographic regimes of

Fram Strait in relation to hydrographical and biogeochemical parameters; (2) to test whether

these differences are related to specific productivity phases of the Arctic pelagic ecosystem; (3)

to assess whether and to what extent these differences are reflected in specific taxon-taxon as-

sociations between bacterial and eukaryotic community members.

4.3 Results

4.3.1 Phytoplankton bloom dynamics across Fram Strait

Based on previously defined physical characteristics of the two main currents of Fram Strait

(Rudels et al., 2013), we identified two origins of our sample sets: (1) the eastern Fram Strait

with warmer and more saline Atlantic Water of the WSC; (2) the western Fram Strait with

colder and less saline Polar Water of the EGC (Figure 4.1). The two regions had distinct sea-ice

conditions at the time of sampling, with an ice-covered regime in EGC and an ice-free regime in

WSC (Figure 4.1). Furthermore, measured chl a concentrations showed higher concentrations

in the WSC, and chl a was present down to water depths of more than 100 m in this region

(Figure 4.1).

In WSC all measured inorganic nutrients (silicate - SiO3, nitrate - NO3 and phosphate - PO4)

showed lower concentrations near the surface compared to deeper water layers below the py-

cnocline (roughly below 50 m). Contrary, in EGC there were only small differences in nutrient
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concentrations throughout all measured depths. In addition, while measurements of SiO3 and

PO4 concentrations in deeper water layers were similar between the regions, NO3 concentra-

tions were lower in EGC (Figure 4.S1). The depth of the water column pycnocline represents the

mixed layer depth during the last winter (Rudels et al., 1996). Generally only the nutrients above

the pycnocline within the photic zone (upper 50 m) are consumed by phytoplankton. There-

fore, the calculated differences in nutrient concentrations (Δ) below and above the seasonal

pycnocline provide a proxy estimation for phytoplankton productivity in the different regions,

since the beginning of the seasonal bloom (Table 4.1). The estimated productivity (since the

beginning of the seasonal bloom) based on the stoichiometry of consumed nutrients (see Mate-

rial and Methods), as well as the integrated chl a and phytoplankton carbon biomass all showed

higher values in WSC. Furthermore, based on a ratio 1:1 of NO3:SiO3 we estimated that the

contribution of diatoms to the total productivity was roughly 30% in both regions. However,

biomass estimates of diatoms showed a much larger fraction (50%) of the total phytoplankton

biomass in EGC at the time of sampling.
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To verify that these differences in biogeochemical parameters represent different ecosystem

states, we used surface chl a dynamics of the biogeochemical model FESOM-REcoM2 set to

the studied dates, to estimate the phytoplankton bloom stages in the two regions. Because of

the lack of remote sensing measurements of chl a for the ice-covered regions, we could only use

the ice-free region for calibration (Figure 4.S9). In the model, a strong relationship between the
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estimates of chl a and the shifting sea-ice edge was observed (Figure 4.2). In the beginning of

June, surface chl a concentrations were elevated in the whole ice-free area of WSC, while they

remained very low in the ice-covered EGC (Figure 4.2). In the second half of June 2014, with the

ice thinning and the sea-ice edge shifting westwards, an increase in surface chl a concentrations

was observed also in EGC (Figure 4.2).
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4.3.2 Differences in microbial community composition between the east-

ern and western regions of Fram Strait

Using Illumina 16S rRNA amplicon sequencing of the V3-V4 hypervariable region, we obtained

a final dataset of 2,462,994 reads (amplicons) in 63 samples, which were assigned to 7,167

OTUs associated with 406 bacterial taxonomic lineages. The OTUs which were taxonomically

assigned to chloroplasts or mitochondria were excluded from further analysis. The rarefaction

curves did not reach a plateau in any of the samples, and on overage the samples covered 60%

of the bacterial community richness (Figure 4.S2 and Table 4.S1). However, coverage-based

rarefaction estimations (i.e., Good’s estimator), revealed a sample completeness higher than 98%

in all samples (autoreffig:ps85-supp-fig2; Chao and Jost, 2012; Chao et al., 2014b). This suggests

that although additional OTUs could be expected with additional sequencing, our sequencing

depth was satisfactory to represent most of the diversity within the bacterial communities.
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Comparison of bacterial community composition between the different regions and fractions was

conducted based on the presence/absence of OTU (Figure 4.3). A total of 974 OTUs (13% of the

total OTUs) were shared throughout the entire dataset, and represented more than 75% of all

sequences. Especially the FL communities of both regions were similar. Hence, differences be-
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tween the bacterial communities mainly resulted from variations in the proportional abundance

of these taxa (Figure 4.4).

In order to further investigate the differences in community composition between the different

regions, we performed differential abundance tests for all shared OTUs from both the FL and PA

fractions using ‘DESeq2’. The OTU which had a fold change of absolute values higher than 1 and

an adjusted p-value<0.05 were defined as ‘differentially abundant OTU’ – daOTU. Furthermore,

using ‘GAGE’ we tested for the enrichment of bacterial groups at a lower taxonomic resolution,

i.e., that of bacterial families. Only bacterial families in which all OTUs were enriched in only

one region and showed statistical significance (adjusted p value < 0.05), were considered to be

enriched.
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A total of 757 (10% of all OTUs) and 869 (12% of all OTUs) daOTU were identified in the

FL and PA fractions, respectively (Figure 4.S3). For both fractions, the EGC region was repre-

sented by a higher proportion of daOTU compared to the WSC (60% and 65% for FL and PA,
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respectively), as well as by a higher number of sequence-enriched bacterial families (Figure 4.5).

The WSC was characterized, in both fractions, by few significantly enriched families in various

taxonomic groups, such as Alphaproteobacteria (Rhodobacteraceae), Gammaproteobacteria (Pis-

cirickettsiaceae, Porticoccaceae). Furthermore, Flavobacteria (Cryomorphaceae) and Gammapro-

teobacteria (OM182 clade) were significantly enriched in the FL fraction of WSC. Enriched taxa

in the EGC were distributed across a broader taxonomic range, with large differences also be-

tween the fractions. In the FL fraction the significantly enriched families were associated with

the poorly classified Chloroflexi (SAR202), Marinimicrobia (SAR406) and Deltaproteobacteria

(SAR324, Bdellovibrionaceae), as well as members of Alphaproteobacteria (SAR11, Rhodospir-

illaceae) and Gammaproteobacteria (Colwelliaceae, Pseudoalteromonadaceae and JTB255). In

the PA fraction significantly enriched families were associated mainly with Deltaproteobacte-

ria (Bdellovibrionaceae, Bradymonadales, Oligoflexaceae, NB1-j) and Gammaproteobacteria (Pseu-

doalteromonadaceae, Shewanellaceae and JTB255).

A similar workflow was applied to investigate microbial eukaryotic communities. Using Illumina

18S rRNA amplicon sequencing of the V4 hypervariable region, we obtained a final dataset of

2,396,433 reads (amplicons) in 33 samples, which were assigned to 4,419 OTUs associated with

173 eukaryotic taxonomic lineages. The eukaryotic OTUs which were taxonomically assigned to

metazoa were excluded from further analysis. Rarefaction curves did not reach a plateau in any

of the samples, and on overage the samples covered 75% of the eukaryotic community richness

(Figure 4.S2 and Table 4.S1). Nevertheless, coverage-based rarefaction estimations (i.e., Good’s

estimator), revealed a sample completeness higher than 98% in all samples (autoreffig:ps85-

supp-fig2; Chao and Jost, 2012; Chao et al., 2014b). This suggests that although additional

OTUs could be expected with additional sequencing, our sequencing depth was satisfactory to

represent most of the diversity within the eukaryotic communities.

A corresponding OTU presence/absence analysis between eukaryotic communities in each re-

gion revealed that 2,502 OTUs (56% of the total OTUs) were shared between the regions (Fig-

ure 4.S4), comprising more than 80% of the sequences in all eukaryotic samples (Figure 4.6).

Hence, the relatively high proportion of region-specific OTUs showed very low relative sequence

abundances. Furthermore, the taxonomic groups Syndiniales, Dinophyceae (dinoflagellates) and

Diatomea showed larger number of daOTU in EGC (Figure 4.S5). In the WSC on the other hand,

the largest taxonomic group (in terms of number of daOTU) was the heterotrophic Thecofilosea

(Cercozoa).

4.3.3 Environmental drivers of microbial communities in Fram Strait

Bacterial cell densities and production estimates based on leucine incorporation showed statis-

tically significant differences between the two regions (t-test, p < 0.001; Figure 4.5 and Ta-

ble 4.S2). The results show almost one order of magnitude higher bacterial cell densities in

WSC compared to EGC, as well as higher ratios between high nucleic acid (HNA) and low nu-

cleic acid (LNA) cells. Total bacterial productivity was higher in the WSC compared to the EGC

region, while cell specific productivity (total productivity divided by cell concentration) did not

show strong differences between the regions. Moreover, a principal coordinate analysis (PCoA)

of bacterial community composition revealed significant differences between samples accord-

ing to their geographic origin, in addition to clear differences in the community structure of FL
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and PA fractions (Figure 4.7). Samples from different depths showed no clear clustering. The

separation of samples according to their bacterial community structure was confirmed using a

permutational multivariate analysis of variance. Similar differences between the regions were

observed for the microbial eukaryotic community, with higher phytoplankton estimated biomass

in the WSC (Table 4.1), and community composition clustering according to regions, although

to a lesser extent than bacterial communities (Figure 4.S6).
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To compare the explanatory power of a range of environmental variables in structuring bacte-

rial communities, we performed redundancy analysis (RDA) and constrained the ordination by

the following environmental parameters: temperature, salinity, chl a, and consumed nutrients

(ΔNO3, ΔSiO3 and ΔPO4). Due to the different environmental conditions in EGC and WSC

regions, we selected these parameters to account for the combined effect of the different wa-

ter masses (temperature and salinity) and different ecosystem states (chl a and nutrients). The

analysis was performed separately for FL and PA bacterial communities, as the fractions may

be influenced by different environmental factors (Figure 4.8). In accordance with the PCoA

ordination (Figure 4.7), both FL and PA fractions exhibited a strong separation of bacterial com-
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munities between EGC and WSC (mainly along RDA axis 1, which explained roughly 80% of the

variance). Using a stepwise model selection test (‘ordistep’ algorithm in ‘vegan’ package), we

identified that temperature, salinity and chl a were the strongest explanatory variables in the

FL fraction, explaining 66% of the total variance. Community variation in the PA fraction was

mainly explained by temperature, salinity, chl a and consumed nitrate (ΔNO3), which explained

63% of the total variance. A similar stepwise model selection test for the microbial eukaryotic

community revealed that community variation was mainly explained by temperature, salinity,

consumed silicate (ΔSiO3) and nitrate (ΔNO3), adding up to 38% of the total explained vari-

ance (Figure 4.S6).
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4.3.4 Associations between bacteria and eukaryotic microbes - based on

co-occurrence networks

Two separate networks were constructed to examine potential associations between free-living

bacteria and microbial eukaryotes (‘FL network’) and between particle-associated bacteria and

microbial eukaryotes (‘PA network’) at the chl a max. depth. In the FL network 85% of potential

associations were positive, in the sense that sequence-richer taxa of bacteria were associated with
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sequence-richer taxa of eukaryotes. The PA network consisted of a larger number of total poten-

tial associations, but only 71% of them were positive (Table 4.S3). An overview of both positive

and negative associations (Figure 4.9) revealed two taxonomic groups that showed highest num-

bers of associations in both fractions together, the eukaryotic order Syndiniales (Alveolata) and

the bacterial order Flavobacteriales (Flavobacteriia). In addition, high number of potential associ-

ations was associated with Gammaproteobacteria, such as Alteromonadales, and Oceanospirillales

(Figure 4.9). Among the microbial eukaryotes, two groups showed relatively high numbers of

associations: Diatomea and Dinophyceae (Dinoflagellata; Figure 4.9).
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In order to identify regionally specific associations of microbial eukaryotes with bacterial taxa,

we generated for each fraction a sub-network of positive associations between eukaryotic OTUs

and previously identified bacterial daOTU for the EGC and WSC, respectively (Table 4.S3). The

sub-network topologies showed different patterns in the FL and the PA networks. Overall, the

FL network consisted of 159 nodes of daOTU, out of a total 363 bacterial OTUs in the network

(81 daOTU in EGC and 78 in WSC). In the PA network there were 226 nodes of daOTU, out
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of a total 363 bacterial OTUs in the network (197 daOTU in EGC and 30 daOTU in WSC).

Subsequently, the sub-networks were clustered into metanodes, each incorporating OTUs of a

specific taxonomic group (Figure 4.10). The clustered sub-networks of both fractions revealed

strong differences between the regions, with larger number of taxon-taxon associations in the

EGC. The strongest associations, based on the number of connecting edges, in all sub-networks,

were related to co-occurrences of Syndiniales (Alveolata) with various bacterial orders such as

Flavobacteriales and Oceanospirillales.
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4.4 Discussion

4.4.1 Pelagic ecosystem state - in situ and in silico observations

In our study we investigated the summer dynamics of pelagic bacterial communities from the

photic zone of Fram Strait (top 60 m). Using measurements of physical and biogeochemical

parameters, combined with sea-ice coverage, we separated the Strait into two main pelagic

ecosystem regions (Figure 4.1). These different regions were directly related to the distinct
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current systems in the Strait; one transporting Atlantic Water to the Arctic Ocean (WSC) and the

other one exporting Polar Water and sea ice (EGC; Beszczynska-Möller et al., 2011). These dis-

tinct current systems differed not only in physical characteristics of the water (temperature and

salinity) but also in their nutrient concentrations (Table 4.1 and Figure 4.S1). The different geo-

chemical and sea-ice conditions potentially affect biological processes in these distinct regions

(e.g., nutrient and light limitation of the phytoplankton bloom). We thus used a combination of

measured and modeled biogeochemical variables to further investigate the ecosystem states in

the two regions.

The high phytoplankton biomass and production estimates (Table 4.1), as well as elevated bac-

terial cell densities in the WSC compared to the EGC (Figure 4.7), are likely related to the decay-

ing phytoplankton bloom (Alonso-Sáez et al., 2008; Buchan et al., 2014; Pinhassi and Hagström,

2000; Riemann et al., 2000). Further evidence for such a relationship has been detected by a

previous study in Fram Strait, which showed correlations of bacterial activity with concentra-

tions of amino acids and carbohydrates in the water (Piontek et al., 2014). In the WSC region

maximum integrated chl a values during seasonal blooms reach up to 100 mg/m3 (Nöthig et al.,

2015). Thus based on the chl a concentrations, fully depleted nutrients above the pycnocline and

low pCO2 (Table 4.1 and Figure 4.S7), we conclude that we had sampled a post-phytoplankton

bloom situation. In the EGC, the low nutrient depletion in surface waters, the low chl a con-

centration and the high pCO2 rather suggest a pre-phytoplankton bloom stage. Moreover, the

stoichiometry-based estimate of new production in both regions was in a comparable range to

previous estimates of Nöthig and colleagues in Fram Strait (Nöthig et al., 2015), as well as to es-

timates in other regions of the Arctic Ocean (Arrigo et al., 2008; Boetius et al., 2013; Wassmann

et al., 2010). The generally high ratio between NO3 and PO4 concentrations in the EGC indicate

a Pacific origin of the sampled Polar Water (Wilson and Wallace, 1990), and PO4 may be one of

the limiting factors for the development of a phytoplankton bloom in this region (Taylor et al.,

1992).

In order to test whether the biogeochemical differences between the sampled regimes represent

different ecosystem states, or simply represent hydrographical differences between Polar Water

and Atlantic Water, we used surface chlorophyll a dynamics obtained from the coupled FESOM-

REcoM2model (Figure 4.2 and Supplementary Material; Schourup-Kristensen et al., 2014). In

June 2014, when the sea-ice cover, hydrographical and nutrient conditions fit well with obser-

vations (Figure 4.S8 and Figure 4.S9), the annual dynamics produced by the model showed an

increase in surface chl a concentration in EGC in the second half of June, associated with the

seasonal thinning of the sea-ice in the region (Leu et al., 2011; Nöthig et al., 2015). Moreover,

in the WSC the model showed a decline in surface chl a concentration throughout the month.

In summary, our observations and the model results support the hypothesis that during the time

of sampling early phytoplankton bloom conditions prevailed in the ice-covered EGC (first half

of June), and that the phytoplankton bloom of the ice-free WSC was already in decline (second

half of June).
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4.4.2 Functional and regional differences in microbial communities across

Fram Strait

Both WSC and EGC regions exhibited a large number of OTUs, which were unique to one of

the regions (Figure 4.3). However, these OTUs represented only a small proportion of the total

sequence abundance of the bacterial community, and consisted of taxa, which were previously

identified as rare bacterial community members in the Arctic Ocean (Galand et al., 2009a). The

vast majority of the sequence proportion was related to OTUs which were shared between the

regions and fractions (Figure 4.4). Moreover, bacterial community variations in the FL and PA

fractions were explained by the same environmental parameters, suggesting that both fractions

are subject to similar environmental drivers (Hanson et al., 2012). Hence, we hypothesized that

community variation was mostly driven by environmental factors such as bloom stage, selecting

for different sequence proportions of shared OTUs. It is important to note that size-fractionated

filtration may lead to different observations compared to bulk filtration (Padilla et al., 2015).

In this study we did not observe a clogging of filters, but cannot exclude effects on FL and PA

fractions.

In order to investigate differences in the relative contributions of the shared OTUs to the com-

munities in WSC and EGC, we identified differentially abundant OTUs (daOTU) in both the FL

and PA fractions (Figure 4.S3). Flavobacteria and Gammaproteobacteria were the two main het-

erotrophic bacterial taxa which showed high numbers of daOTU and numerous enriched taxa

in both fractions (Figure 4.5 and Figure 4.S3). For both fractions combined, the WSC consisted

of almost twice the number of flavobacterial daOTU compared to EGC (176 and 107 daOTU,

respectively), suggesting an enrichment of this taxonomic group by post-bloom conditions in

this region. The Flavobacteria specialize on targeting complex organic biopolymers and were

previously described to respond to phytoplankton blooms in high latitudes (Chafee et al., 2018;

Simon et al., 1999; Williams, 2013; Teeling et al., 2012). Moreover, Cryomorphaceae, a signif-

icantly enriched flavobacterial family in the FL fraction of WSC (Figure 4.5), was previously

identified as one of the main taxa responding to a flagellate bloom in mesocosm experiments

(Pinhassi et al., 2004).

Additionally, in both fractions, there was a large number of daOTU and several significantly

enriched families related to Gammaproteobacteria (Figure 4.5 and Figure 4.S3). These oppor-

tunistic copiotrophs, which have previously been described from both FL and PA fractions, are

highly diverse and specialized in adapting to a wide range of carbon sources, also responding to

different stages of phytoplankton blooms (Alonso-Sáez et al., 2008; Nikrad et al., 2014; Teeling

et al., 2012). Interestingly, the genus Balneatrix (Oceanospirillales) which was previously identi-

fied to strongly correlate with phytoplankton bloom presence in the North Sea (Wemheuer et al.,

2014), accounted for 30 daOTU in the WSC and only 5 daOTU in the EGC, which may be linked

to the different phytoplankton bloom conditions in the region. Furthermore, the order Pseudoal-

teromonadales which consisted of several significantly enriched families in both fractions in EGC

(Figure 4.5), contains several psychrophilic genera which were previously found in sea-ice (Bow-

man et al., 1997; Brinkmeyer et al., 2003; Brown, 2001; Collins et al., 2010; Yu et al., 2015), and

their enrichment in the EGC may thus be partly a result of their release from sea-ice communi-

ties. An interesting observation was provided by two outlier samples. Although they originated

from the WSC, the proximity of station 1W and HG9 to the sea-ice edge (Figure 4.1), potentially
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resulted in bacterial communities more similar to stations from the EGC (Figure 4.7). This may

indicate that the effect of the seasonal phytoplankton bloom extends into the zone where both

water masses mix, e.g., by eddies (Wekerle et al., 2017a).

Several cryptic taxonomic groups, such as Chloroflexi (SAR202), Marinimicrobia (SAR406) and

various members of Deltaproteobacteria, were significantly enriched in EGC (Figure 4.5), and also

consisted of a large number of unique OTUs in this region. These enriched taxonomic groups

in the ice-covered EGC were previously reported from surface waters in the western Svalbard

region (WSC) during the Arctic winter (Wilson et al., 2017). Therefore, our results support and

strengthen the hypothesis of Wilson and colleagues (2017) that bacterial community dynamics

in Fram Strait are to a large extent affected by seasonal variability (e.g., availability of light under

changing sea-ice conditions), rather than hydrographic differences between water masses.

Enriched eukaryotic taxa differed strongly between the EGC and WSC regions (Figure 4.S5),

with the taxonomic groups being consistent with previously reported seasonal dynamics in the

Arctic Ocean (Lovejoy, 2014). In the EGC region all enriched taxa were related to previously

identified, dominant members of pelagic Arctic winter communities (e.g., Syndiniales; Guillou

et al., 2008; Jephcott et al., 2016; Marquardt et al., 2016). Two different taxonomic groups of

phytoplankton were enriched in the WSC: the class of green algae Prasinophytae abundant photo-

synthetic organisms in late summer-autumn seasons in the Arctic (Joli et al., 2017; Lovejoy et al.,

2007b; Marquardt et al., 2016; Metfies et al., 2016; Vader et al., 2015). Furthermore, several

heterotrophic eukaryotic taxa (e.g., Thecofilosea) were enriched in the WSC. These organisms

are mainly grazers and depend on the presence of phytoplankton and bacteria (Monier et al.,

2014); their higher representation may thus be linked to the declining phytoplankton bloom

in the WSC. Microbial eukaryotic community composition clearly differed between the two re-

gions (Figure 4.S6). Interestingly, stations 10W and 8.5W showed some similarity to the WSC

region, which may be related to a coastal phytoplankton bloom east of Greenland (Figure 4.S8).

However, overall our observations of the microbial eukaryotic community further support our

classification of early bloom conditions in the EGC and late bloom conditions in WSC.

4.4.3 Co-occurrence networks reveal potential candidates for cross-

domain interactions

Numerous studies have described shifts in bacterial community composition during phytoplank-

ton blooms (Chafee et al., 2018; Teeling et al., 2012; Wemheuer et al., 2014), but very little

is known about specific biotic interactions between bacteria and phytoplankton during blooms

(Amin et al., 2012; Hartmann et al., 2013; Lima-Mendez et al., 2015; Töpper et al., 2010). Our

results revealed an enrichment of specific bacterial taxa in the different regions, which we sug-

gest to be related to the seasonal development of the phytoplankton bloom. Using network

co-occurrence analyses (Faust and Raes, 2012), we therefore tested whether these enriched taxa

exhibit potential associations with eukaryotic microbes in the chl a max. communities.

Both FL and PA networks consisted of a large number of edges (Figure 4.9 and Table 4.S3),

which may indicate potential ecological interactions between taxa. Among the bacterial taxa in

the FL network, a large number of associations was related to the typically free-living SAR11

clade (Giovannoni, 2017). In the PA network, on the other hand, large numbers of associa-
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tions were related to typical particle-associated Gammaproteobacteria, such as Alteromonadales

(Crespo et al., 2013; Fontanez et al., 2015). In both fractions, Flavobacteria and Syndiniales out-

numbered all other taxonomic orders in terms of the number of associations. These observations

are in line with a previous report from the global plankton interactome study conducted as part

of the global Tara Oceans expedition (Lima-Mendez et al., 2015), which did, however, not cover

the Arctic Ocean.

Roughly 30% to 40% of bacterial nodes in the networks consisted of daOTU associated with one

or more eukaryotic taxa. Interestingly, “regional” (WSC vs. EGC) sub-networks displayed strong

differences between both regimes in the PA fraction, with a much higher number of associations

in the EGC (Figure 4.10). Little is known about the lifestyle and physiology of many of the

organisms identified in the networks, especially for the bacterial fraction, and the translation

of observed associations into biological traits is thus extremely limited (Ramanan et al., 2016).

Furthermore, in many cases the association may represent a common response of taxonomic

groups to environmental conditions, rather than direct interaction between them (Weiss et al.,

2016). Nevertheless, the observed cross-domain associations showed clear differences between

the regions with different phytoplankton bloom conditions, resulting in the enrichment of spe-

cific bacterial taxa and the development of distinct ecological networks. It has been previously

proposed that shifts in the timing and composition of phytoplankton blooms, as well as tempo-

ral mismatches with grazers resulting in an altered food web, are among the main impacts of

climate change in the Arctic (Soltwedel et al., 2016; Engel et al., 2017). Our observations of spe-

cific associations between eukaryotes and bacteria in the plankton suggest that such ecological

shifts may be accompanied by substantial changes in the microbial community structure.

4.5 Conclusions

Our study revealed strong differences in pelagic microbial community activity and structure in

the photic layers of the ice-free eastern (WSC) and ice-covered western (EGC) Fram Strait during

summer 2014. Measured and modeled biogeochemical parameters suggested distinct ecosystem

states in the two regions, namely different stages of the summer phytoplankton bloom, as a result

of differences in sea-ice cover and irradiance. Although it is challenging to conclusively decou-

ple effects of water masses, seasonally driven biogeochemistry and biotic associations, our study

shows that differences in bacterial communities between the regions could be explained by en-

vironmental parameters associated with phytoplankton bloom dynamics. This includes a strong

increase in bacterial cell densities and activity in response to a declining phytoplankton bloom

in the WSC, with an enrichment of phytoplankton bloom associated bacterial taxa commonly

known to degrade phytoplankton products, such as Flavobacteria. In contrast, the EGC region

showed high relative sequence proportions of bacterial taxa that have been associated with Arc-

tic winter conditions (e.g., SAR202 clade, Marinimicrobia and Deltaproteobacteria). Moreover,

co-occurrence networks provided evidence for a high variety of potential interactions between

bacteria and microbial eukaryotes in the early bloom conditions, and their potential specializa-

tion with the advancement of the phytoplankton bloom. In times of a rapidly changing Arctic

Ocean, our results highlight the potential impact of future ice-free summers on the structure

and function of Arctic Ocean pelagic microbial communities. Additional sampling throughout
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the year will help to better resolve seasonally driven microbial community dynamics and contrast

them to long-term shifts.

4.6 Materials and methods

Field sampling

Samples were collected in Fram Strait during the Polarstern cruise PS85 (June 6th – July 3rd

2014) from the eastern Greenland shelf to the west coast of Spitsbergen (Figure 4.S2 and Ta-

ble 4.S1). Sampling was carried out with 12 L Niskin bottles mounted on a CTD rosette (Sea-Bird

Electronics Inc. SBE 911 plus probe) equipped with double temperature and conductivity sen-

sors, a pressure sensor, altimeter, chlorophyll fluorometer, and transmissometer. The chlorophyll

maximum depth (chl a max) was determined based on chl a fluorescence during the down-

cast, while the water samples were collected during the upcast. Along the transect samples

were collected from surface water (5-10 m), the chl a max (10-30 m) and below the chl a max

(30-60 m, Table 4.S1). Hydrographic data of the seawater including temperature and salinity

were retrieved from the PANGAEA database (doi:10.1594/PANGAEA.837425). Water masses

were identified based on their hydrographic characteristics, according to Rudels and colleagues

(2013).

Sampling for bacterial communities

For assessing bacterial community composition, 2 L of water were filtered through successive

membrane filters of 3 μm (Whatman Nucleopore, 47 mm polycarbonate), and 0.22 μm (Milli-

pore Sterivex filters) using a peristaltic pump (Masterflex; Cole Parmer). All samples were stored

at -20°C until DNA isolation.

Sampling for eukaryotic microbial communities

For assessing eukaryotic community composition, 2 L subsamples were taken in PVC bottles from

the Niskin water samplers. Eukaryotic microbial cells were collected by sequential filtration using

a Millipore Sterifil filtration system (Millipore, USA). Each water sample was filtered through

three different mesh sizes (10, 3, and 0.4 μm) on 45 mm diameter Isopore Membrane Filters at

200 mbar. All samples were stored at -20°C until DNA isolation.

DNA isolation and amplicon sequencing

Bacteria

Genomic bacterial DNA was isolated from the 3 μm and the 0.22 μm filter membranes to ana-

lyze the particle-associated (PA) and the free-living (FL) community, respectively, in a combined

chemical and mechanical procedure using the PowerWater DNA Isolation Kit (MO BIO Labo-

ratories, Inc., Carlsbad, CA, USA). Prior to DNA isolation the sterivex cartridges of the 0.22
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μm membranes were cracked open in order to place the filters in the kit-supplied bead beating

tubes. The isolation was continued according to the manufacturer’s instructions, and DNA was

stored at -20°C. Library preparation was performed according to the standard instructions of

the 16S Metagenomic Sequencing Library Preparation protocol (Illumina, Inc., San Diego, CA,

USA). The hypervariable V3-V4 region of the bacterial 16S rRNA gene was amplified using bacte-

rial primers S-D-Bact-0341-b-S-17 (5‘-CCTACGGGNGGCWGCAG-3‘) and S-D-Bact-0785-a-A-21

(5‘-GACTACHVGGGTATCTAATCC-3‘; Klindworth et al., 2013). Sequences were obtained on the

Illumina MiSeq platform in a 2 × 300 bp paired-end run (CeBiTec Bielefeld, Germany), follow-

ing the standard instructions of the 16S Metagenomic Sequencing Library Preparation protocol

(Illumina, Inc., San Diego, CA, USA).

Eukaryotic microbes

Genomic eukaryotic DNA was isolated from the 10 μm, 3 μm, and 0.4 μm filter membranes

using the NucleoSpin Plant Kit (Machery-Nagel, Germany), following the manufacturer proto-

col. The resulting DNA-extracts were stored at -20 °C. DNA concentrations were determined

using the Quantus Fluorometer (Promega, USA) according to the manufacturer’s protocol, and

equal volumes of the isolated genomic DNA from the three different filter fractions were pulled

together. Library preparation was performed according to the standard instructions of the 16S

Metagenomic Sequencing Library Preparation protocol (Illumina, Inc., San Diego, CA, USA).

The hypervariable V4 region of the eukaryotic 18S rRNA gene was amplified using 528iF (5‘-

GCGGTAATTCCAGCTCCAA-3‘) and 964iR (5‘-ACTTTCGTTCTTGATYRR-3‘) primers. All PCRs

had a final volume of 25 μL and contained 12.5 μl of KAPA HIFI Mix (Kapa Biosystems, Roche,

Germany), 5 μl of each primer 1 μmol L-1 and 2.5 μl DNA-template 5 ng. The DNA-template

was a mix of equal volumes of genomic DNA isolated from the three different filter fractions, i.e.,

10 μm, 3 μm and 0.4 μm. PCR amplification was performed in a thermal cycler (Eppendorf, Ger-

many) with an initial denaturation (95°C, 3 min) followed by 25 cycles of denaturation (95°C,

30 sec), annealing (55°C, 30 sec), and extension (72°C, 30 sec) with a single final extension

(72°C, 5 min). The PCR products were purified from an agarose gel 1% w/v with the AMPure

XP PCR purification kit (Beckman Coulter, Ing., USA) according to the manufacturer’s protocol.

Subsequent to purification DNA concentrations in the samples were determined using the Quan-

tus Fluorometer (Promega, USA). Subsequently, indices and sequencing adapters of the Nextera

XT Index Kit (Illumina, USA) were attached in the course of the Index PCR. All PCRs had a final

volume of 50 μL and contained 25 μl of KAPA HIFI Mix (Kapa Biosystems, Roche, Germany), 5

μl of each Nextera XT Index Primer 1 μmol L-1, 5 μl DNA-template 5 ng and 10 μl PCR grade

water. PCR amplification was performed in a thermal cycler (Eppendorf, Germany) with an ini-

tial denaturation (95°C, 3 min) followed by 8 cycles of denaturation (95°C, 30 sec), annealing

(55°C, 30 sec), and extension (72°C, 30 sec) with a single final extension (72°C, 5 min). Prior to

quantification of the amplification products with the Quantus Fluorometer (Promega, USA) for

sequencing the final library was cleaned up using the AMPure XP PCR purification kit (Beckman

Coulter, Ing., USA). Sequences were obtained on the Illumina MiSeq platform in a 2 × 300 bp

paired-end run (AWI Bremerhaven, Germany), following the standard instructions of the 16S

Metagenomic Sequencing Library Preparation protocol (Illumina, Inc., San Diego, CA, USA).
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Bioinformatics and statistical analyses

Both bacterial and eukaryotic libraries were subject to similar bioinformatic pipelines. The raw

paired-end reads were primer-trimmed using ‘cutadapt’ (Martin, 2011), quality trimmed using

‘trimmomatic’ with a sliding window of four bases and a minimum average quality of 15 (v0.32;

Bolger et al., 2014).The reads were merged using PEAR (v0.9.5; Zhang et al., 2014), and all

merged reads below 350 bp or above 450 bp were removed from the dataset. Clustering into

OTUs was done with the ‘swarm’ algorithm using default parameters (v2.0; Mahé et al., 2015).

Chimeric sequences were identified and removed using ‘uchime’ function in VSEARCH (v1.9.7;

Rognes et al., 2016). One representative sequence per OTU was taxonomically classified using

‘SINA’ (SILVA Incremental Aligner; v1.2.11; Silva reference database release 128) at a minimum

alignment similarity of 0.9, and a last common ancestor consensus of 0.7 (Pruesse et al., 2012).

The OTUs which were not taxonomically assigned to Bacteria/Eukarya or occurred with only

a single sequence in the whole dataset (‘singletons’) were excluded from further analysis. Fur-

thermore, OTUs in the bacterial dataset which were taxonomically assigned to chloroplast or

mitochondria were excluded from further analysis, and OTUs in the eukaryotic dataset which

were taxonomically assigned to metazoa were excluded as well.

All statistical analyses were conducted using R (v3.4.1; http://www.Rproject.org/) in RStudio

(v1.0.153; RStudio Team, 2015). Sample data matrices were managed using the R package

‘phyloseq’ (v1.20.0; McMurdie and Holmes, 2013) and plots were generated using the R package

‘ggplot2’ (v2.2.1; Gómez-Rubio, 2017). A prevalence threshold (i.e., in how many samples did

a taxon appear at least once) of 5% was applied to the OTU table prior to downstream analysis

following (Callahan et al., 2016). All alpha diversity parameters and curves were obtained using

R package ‘iNEXT’ (v2.0.12; Hsieh et al., 2018). The rarefaction curves for each sample were

generated based on 40 equaly spaced rarefied sample sizes with 100 iterations.

Principal coordinate analysis (PCoA) was conducted on variance stabilized OTU abundance ma-

trices (McMurdie and Holmes, 2014). The significance of the clustering was tested using the

‘ADONIS’ function in the R package ‘vegan’ (v2.4-5; Oksanen, 2016). To determine which envi-

ronmental variables were significantly correlated with the community composition, a stepwise

ordination significance test was performed using the ‘ordistep’ function in the R package ‘vegan’

(v2.4-5; Oksanen, 2016). The fold-change in abundance of each OTU between the regions was

calculated using the R package ‘DEseq2’ (v1.16.1; Love et al., 2014). The method applies a gen-

eralized exact binomial test on variance stabilized OTU abundance. The taxonomic enrichment

test was performed using the generally applicable gene-set enrichment (GAGE) method in the

R package ‘GAGE’ (v2.26.3; Luo et al., 2009). The results were filtered by significance, after

correction for multiple-testing according to Benjamini and Hochberg (1995) with an adjusted p-

value <0.05. The shared OTUs calculations and visualization were conducted using R packages

‘UpSetR’ (v1.3.3; Conway et al., 2017) and ‘VennDiagram’ (v1.6.18; Chen and Boutros, 2011).

Co-Occurrence Network Analysis

The network analysis was conducted separately using the chl a max. FL and PA bacterial com-

munities. The cross-domain co-occurrence networks between bacteria and eukaryotes were con-

structed using CoNet (v1.1.1beta; Faust and Raes, 2016), as described in Lima-Mendez and col-
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leagues (2015). The measure-specific p-values were merged using Brown’s method (Brown,

1975) and correction for multiple-testing was performed according to Benjamini and Hochberg

(1995). Edges with an adjusted p-value above 0.05 were discarded. The constructed networks

were further analyzed and visualized using the R package ‘igraph’ (v1.1.2; Csardi and Nepusz,

2006).

Calculation of consumed inorganic nutrients

The raw nutrient concentration measurements were retrieved from PANGAEA (10.1594/PAN-

GAEA.882217). The nutrient consumption (Δ) at each station was calculated by subtracting the

mean value of all collected measurements above 50 m from the mean value of all collected mea-

surements between 50 and 100 m (below the seasonal pycnocline). The integrated chlorophyll

a and inorganic nutrient values were calculated according to (Boss and Behrenfeld, 2010). The

productivity estimates were calculated using the Redfield ratio 106 C: 16 N : 1 P, and for diatom

contribution the ratio of 1:1 N:Si was assumed.

Bacterial abundance and productivity

Bacterial abundance was determined by flow cytometry (FACSCalibur, Becton Dickinson). Sam-

ples were fixed with glutaraldehyde at 1% final concentration and stored at -20°C. Prior to anal-

ysis, samples were stained with the fluorescent dye SybrGreen I (Invitrogen) that binds to DNA.

Bacterial cell numbers were estimated after visual inspection and manual gating of the bacterial

population in the cytogram of side scatter vs. green fluorescence. Fluorescent latex beads (Poly-

science, Becton Dickinson) were used to normalize the counted events to volume (Gasol et al.,

2000).

The incorporation of 3H-leucine (specific activity 100 Ci mmol-1) was determined to estimate

bacterial production (BP). The radiotracer was added at a saturating final concentration of 20

nmol L-1 before three replicate samples were incubated for 4-6 hours in the dark close to in situ

temperature at 0-2°C. Incubations were stopped by the addition of trichloroacetic acid (TCA)

at a final concentration of 5%. Samples were then processed by the centrifugation method

according to Smith and Azam (1992). Briefly, samples were centrifuged at 14,000×g to obtain

a cell pellet that was washed twice with 5% TCA. Incorporation into the TCA-insoluble fraction

was measured by liquid scintillation counting after resuspension of the cell pellet in scintillation

cocktail (Ultima Gold AB, Perkin Elmer).

Chlorophyll a measurements

The concentration of chlorophyll a (chl a) was determined from 0.5-2 L of seawater filtered onto

glass fiber filters (Whatman GF/F) under low vacuum pressure (<200 mbar); the filters were

stored at -20 °C before analysis. Pigments were extracted with 10 ml of 90% acetone. The filters

were treated with an ultrasonic device in an ice bath for less than a minute, and then further

extracted in the refrigerator for 2 h. Subsequently they were centrifuged for 10 minutes at 5000

rpm at 4°C prior to measurement. The concentration was determined fluorometrically (Turner
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Designs), together with total phaeophytin concentration after acidification (HCl, 0.1 N) based

on methods described in Edler, 1979 and Evans, 1980, respectively. The standard deviation of

replicate test samples was < 10%.

The biogeochemical model FESOM-REcoM2

To estimate biological productivity in areas and time periods that were not covered by sampling,

we used the biogeochemical model REcoM2 coupled to the Finite Element Sea-ice Ocean Model

(FESOM; Schourup-Kristensen et al., 2014). The model runs in a global setup and describes

the ocean, sea-ice and marine biogeochemistry, thus making it possible for us to estimate the

phytoplankton bloom development stage in both the western, ice-covered part of Fram Strait

and the eastern ice-free part (see Supplementary Information).

Data Accession Numbers and Analyses Repository

Data are accessible via the Data Publisher for Earth & Environmental Science PANGAEA

(www.pangaea.de): chlorophyll a measurements - 10.1594/PANGAEA.887840; bacterial counts

and productivity - 10.1594/PANGAEA.887881. Raw paired-end sequence, primer-trimmed

reads were deposited in the European Nucleotide Archive (ENA; Silvester et al., 2018) under

accession number PRJEB28027, or PRJEB26163 for Bacteria and PRJEB26288 for Microbial eu-

karyotes. The data were archived using the brokerage service of the German Federation for

Biological Data (GFBio; Diepenbroek et al., 2014). Scripts for processing data can be accessed

at https://github.com/edfadeev/Bact-comm-PS85.
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4.7 Supplementary material
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Biogeochemical model FESOM-REcoM2

Description of the model

The biogeochemical model REcoM2 is a ratio model, in which stoichiometry is allowed to vary

within set limits. The nutrients included in the model are nitrogen, silicon and iron, which

describe the entire carbon cycle. The incoming photosynthetically available radiation (PAR) is

prescribed by the JRA-55 reanalysis dataset (Kobayashi et al., 2015), and thus varies in time

and space. The amount of PAR reaching the ocean surface at a given time and location is scaled

to the ice concentration in each point of the surface grid. PAR decreases exponentially with

depth and is further reduced by the presence of chlorophyll in the water. The growth rate of

the model’s two phytoplankton classes, nano-phytoplankton (e.g., flagellates) and diatoms is

affected by light and nutrient availability. Degradation occurs through zooplankton grazing and

bacterial activity, the latter of which is parameterized.

The biogeochemical tracers of REcoM2 are transported by ocean currents and mixing, which are

provided by the ocean general circulation model FESOM (Wang et al., 2014a). FESOM is charac-

terized by a triangulated surface grid, making it possible to have increased resolution in selected

areas. The current run is carried out in a global setup with a resolution of 4.5km north of 60°N

(Wekerle et al., 2017b). After spin-up of the ocean model, the coupled model was started in 1980

and run until 2015. The modeled biogeochemistry of 2010 to 2015 has been comprehensively

described and assessed against available data, showing that the model describes well the Arctic

marine biogeochemistry (Schourup-Kristensen et al., 2018). Moreover, in order to evaluate the

modeled surface chlorophyll a trends, the modeled values in WSC (ice-free) were compared to

remote sensing surface chlorophyll a measurements (Figure 4.S9). However, it is important to

keep in mind that no model will perfectly catch the complexity of the biological systems; rather,

the model results provide an insight into the biological processes and help us to look beyond the

location and timing of in situ measurements.

Comparison of model output to satellite-based estimates of surface chlorophyll

To demonstrate the skill of the model we have plotted the monthly mean of surface chloro-

phyll a concentration from model output and from satellite-based estimates of chlorophyll

(http://globcolor.com) for the year 2014 (Figure 4.S8). We compare to the satellite-based es-

timates as they provide a large-scale view of the development of the bloom in the area. Note

that the satellite-based estimates use a specific algorithm for ocean color data (e.g., Maritorena

et al., 2010). The satellite-based estimates should thus be regarded as another type of model.

Agreement in the spatial and temporal distribution between the output from FESOM-REcoM2

and the satellite-based estimates indicates that they provide realistic results. For discussions of

satellite-based estimates of productivity in the Arctic region, see e.g., Lee et al. (2016).

In FESOM-REcoM2, the bloom starts in the warm and nutrient-rich water of the Norwegian

Atlantic Current in April and in the coastal waters of Iceland (Figure 4.S8). This fits well with

the satellite-based estimates. In May, the surface bloom covers the whole ice free area of the

Nordic Seas in FESOM-REcoM2. This is also the case in the satellite-based estimates, but here

the bloom is somewhat weaker compared to FESOM-REcoM2. The relatively strong bloom can



4.7. SUPPLEMENTARY MATERIAL 87

be attributed to a low concentration of grazers early in the growth season, allowing the modeled

bloom to develop to higher chlorophyll concentrations than in the ocean. From June onwards,

the modeled chlorophyll a in the ice-free part of the Nordic Seas has a very good fit with the

satellite-based estimates. In the ice-covered region, the bloom begins as the ice concentration

decreases in June, allowing PAR to reach the water column and initialize the bloom here. To

summarize, the productivity is at a post-bloom stage in the ice-free part of the Fram Strait in

June for both FESOM-REcoM2 and satellite-based estimates. In the ice-covered part, the bloom

begins during the month of June in the model results.

Comparison between modeled and in situ measured parameters in a section across the

Fram Strait

For the cruise transect across the Fram Strait from Greenland to Svalbard at 78textdegreeN,

we have plotted the vertical section of the mean June model results for temperature, salinity,

chlorophyll and dissolved inorganic nitrogen (DIN). The model sections have been overlaid with

the in situ measurements from the cruise (Figure 4.S9). The division between warm and salty

Atlantic Water (AW) in the eastern Fram Strait and cold and fresher Arctic water in the western

Fram Strait is clear in both the modeled results and the in situ measurements. In FESOM-

REcoM2, the AW brings DIN to the Fram Strait from the south. In the surface layer, where PAR

allows for productivity to take place, the DIN has been drawn down below concentrations that

allow for phytoplankton growth, and consequently, productivity takes place deeper in the water

column at the depth of the nitracline in the modeled eastern Fram Strait. This feature is a so-

called chlorophyll maximum (chl a max, Figure 4.S9). West of 5textdegreeE, where productivity

starts later due to ice coverage, the nitracline is close enough to the surface that productivity can

still take place in the uppermost part of the water column. In the in situ measurements, the

nitracline is deeper in the eastern Fram Strait compared to FESOM-REcoM2, and the chl a max

is thus also located deeper in the water column (Figure 4.S9). The process behind the chl a max,

namely the downwards movement of the nutricline due to biological uptake, is, however, the

same in the model results and the in situ measurements, and indicates a later stage of the bloom

in the eastern Fram Strait as compared to the western.
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5.1 Abstract

The Arctic Ocean is characterized by a single seasonal phytoplankton bloom in late spring (May-

June) to which the grazers are tuned. The bloom is terminated both by nutrient depletion, and by

strong grazing pressure. A substantial export of matter follows, including decaying phytoplank-

ton, fecal pellets and gels forming sinking aggregates. These aggregates are colonized at the

surface by diverse particle-associating microbes, however little is known about their succession

during the descent to deep waters. By combining in situ measurements with Lagrangian model-

ing we reconstructed sinking trajectories of marine aggregates in ice-free and ice-covered regions

of the Fram Strait (0-2500 m water depth), and showed that ice-covered regions were char-

acterized by larger (1-2 mm diameter) and faster-sinking (40-80 m/d) aggregates, composed

mainly from diatoms. Using high-throughput sequencing of the 16S rRNA gene, we investigated

the changes in particle-associated (>5 μm) and free-living (0.2-5 μm) microbial communities

throughout the water column. We showed that aggregates were colonized mainly in the sur-

face waters by heterotrophic bacteria (e.g., Flavobacteria), which were traceable using microbial

source tracking in the deep ocean particle-associated communities (up to 4000 m depth). This

vertical connectivity of microbial communities was especially strong in regions covered by sea

ice, where almost half of the particle-associated communities at 1000 m depth were linked to

surface-derived microbes. Our study reveals the magnitude at which surface-derived microbes

may be transported to the deep ocean via large sinking aggregates. Highlighting that further

sea-ice loss in the Arctic Ocean may impact this microbial connectivity, altering the current bio-

geochemical cycling in the Arctic.

5.2 Introduction

Global warming and climate change is currently affecting the Arctic Ocean at an unprecedented

rate, causing warming at rates much faster than any other ocean (Dobricic et al., 2016; Sun

et al., 2016). Arctic sea ice has declined by approximately 50% since the late 1950s (Kwok and

Rothrock, 2009; Peng and Meier, 2017), and current projections suggest that the Arctic Ocean

may experience sea-ice free summers by the second half of this century (Notz and Stroeve, 2016;

Overland and Wang, 2013; Polyakov et al., 2017). These remarkable environmental changes

are likely to increase primary production in the water column (Arrigo and van Dijken, 2015;

Randelhoff et al., 2018; Tremblay et al., 2015), and change the phytoplankton communities,

grazers and the biological carbon pump (Boetius et al., 2013; Li et al., 2009). Shift from diatom

to flagellate (e.g., Phaeocystis spp.) dominated phytoplankton communities has been already

observed after the record Arctic sea-ice minimum of 2006 (Engel et al., 2017; Nöthig et al.,

2015; Lasternas and Agustí, 2010).

The organic matter produced by phytoplankton in surface ocean is exported to the deep ocean

through formation and gravitational settling of marine aggregates (Ducklow et al., 2001). Ag-

gregates formed by Phaeocystis spp. are more buoyant and sink slowly in comparison to diatom

aggregates, remaining longer in the surface ocean, and allowing more recycling in the upper wa-

ter column (Iversen and Ploug, 2010; Ploug et al., 2008a,b). This is supported by recent model

predictions that suggest that an ice-free Arctic Ocean will have a more active microbial loop in
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surface waters and less carbon export to the deep ocean (Vernet et al., 2017; Wollenburg et al.,

2018), where the availability of organic matter is usually extremely low (Aristegui et al., 2009;

Herndl and Reinthaler, 2013).

Marine aggregates are subject to colonization by microorganisms and are hotspots of microbial

activity in the ocean (Azam and Long, 2001; Azam and Malfatti, 2007). The microbes play

key roles in the recycling of particulate organic matter in the aggregates by hydrolytic enzy-

matic activity and the release of dissolved organic matter and nutrients into the water (Arnosti,

2011; Grossart et al., 2007, 2006a; Karner and Herndl, 1992). There are strong experimental

evidences showing that the PA communities are result of colonization by pioneers, followed by

internal succession and continuous taxonomic exchange with the ambient FL microbial commu-

nities (Kiørboe et al., 2003; Grossart et al., 2003, 2006b; Datta et al., 2016; Simon et al., 2002;

Kiørboe et al., 2002; Stocker, 2012). From surface down to the bathypelagic waters (0-4000 m

depth), particle-attached (PA) microbial communities have been shown to differ in composition

from the surrounding free-living (FL) communities (Mestre et al., 2017a; Salazar et al., 2015).

Furthermore, phylogenetic analyses showed that in the deep ocean the FL and PA communi-

ties are phylogenetically distant and cases of microbes being present in both fractions are rare

(Salazar et al., 2015). It has been also demonstrated, using a wide range of size-fractionated

FL and PA communities, that sinking aggregates may act as vertical dispersal vectors between

surface and deep ocean microbial communities, in tropical and subtropical waters (Mestre et al.,

2018).

Unlike in other open ocean environments, surface and deep waters of the Arctic Ocean both

maintain similar near freezing point temperatures (Rudels et al., 2013), which may allow sur-

face waters particle-attached microbes to survive in the deep ocean despite the increasing hy-

drostatic pressure (Tamburini et al., 2013). An evidence for potential connectivity of microbial

communities from sea ice, water column and the seafloor in central Arctic was provided by iden-

tification of roughly 20% taxonomic overlap at the level of operational taxonomic units (OTUs)

of total microbial communities between these environments (Rapp et al., 2018). In contrast, in

the Pacific Ocean only 12% of the OTUs were shared between the water column and the deep-sea

sediment (Walsh et al., 2016). However, in order to further understand the relevance of sinking

particles to vertical connectivity of microbial communities in the Arctic Ocean, characterization

of particle-associated microbes and identification of their sources is required.

Here, we characterized and compared sinking particles dynamics in sea-ice free and sea-ice influ-

enced (partially or entirely covered by sea ice, further referred to as ‘ice-covered’) regions at the

Long Term Ecological Research Observatory HAUSGARTEN in the Fram Strait (Soltwedel et al.,

2016), the only deep water gateway to the Arctic Ocean. Vertical profiles of particle abundance

and size-distribution were obtained from the Underwater Vision Profiler (UVP; Picheral et al.,

2010). Aggregates were collected in situ with Marine Snow Catcher and measurements of their

sizes and sinking velocities were made in a vertical flow chamber (Ploug et al., 2010; Ploug and

Jørgensen, 1999), and determined their composition microscopically. By combining the direct

measurements of in situ particle distribution and size-specific sinking velocities, a Lagrangian

modeling approach was developed to construct back-trajectories of the sinking aggregates from

the deep ocean to their origin in the surface waters. We collected water samples from 4 distinct

water layers down to 4500 m depth at 10 different sites within the LTER Observatory HAUS-

GARTEN. The water samples were divided into two size fractions: 0.2-5 μm (FL) and >5 μm
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(PA) in order to distinguish between free-living and particle-associated communities. Based on

high-throughput sequencing of the 16S rRNA gene, we targeted archaeal and bacterial commu-

nities (further referred to as ‘microbes’) within each size-fraction, and used a Bayesian microbial

source tracking algorithm (SourceTracker; Knights et al., 2011) to assess the potential connec-

tivity between surface and deep Arctic Ocean microbial communities through association with

particles.

5.3 Results and Discussion

5.3.1 The Fram Strait has two main distinct oceanographic regimes

Based on temperature and salinity characteristics, our sampling included four distinct wa-

ter masses in the Fram Strait: the epipelagic - Polar water (PW) and Atlantic Water (AW),

mesopelagic - mixed Atlantic Water (MAW) and bathypelagic - Eurasian Basin Deep Water

(EBDW; Rudels et al., 2005). In the epipelagic waters (0-200 m), two oceanographic regions

across the Strait were also defined based on the physical characteristics, geographical location

and sea-ice conditions (Figure 5.1): (i) the ice-covered region, which is mostly associated with

the East Greenland Current (EGC) that flows southwards and transports PW as well as 90% of

the Arctic sea ice (the ‘EG’ and ‘N’ stations; de Steur et al., 2009); (ii) ice-free region, which

includes the West Spitsbergen Current (WSC) which flows northward and transports AW into

the Central Arctic basin (the ‘HG’ stations; Beszczynska-Moller et al., 2012). These distinct sea

ice and oceanography regimes have been previously shown to have different dynamics in the de-

velopment of the seasonal phytoplankton bloom (chapter 4 and Nöthig et al., 2015). However,

at the time of the sampling during the PS99.2 expedition, the integrated chlorophyll a concen-

trations values suggest advanced phytoplankton bloom conditions in both regions, with highest

values in the frontal boundary between the two sea-ice regimes (Figure 5.S2). The deeper lay-

ers of the Fram Strait are more homogeneous - the mesopelagic layer (200-1000 m) consists

of mixed Atlantic Water (MAW), which transitions into Eurasian Basin Deep Water (EBDW) at

bathypelagic depths (>1000 m; von Appen et al., 2015).

5.3.2 Marine aggregates in different regions of the Fram Strait differ in

their size distribution, velocities and sinking trajectories

In all stations of both ice-free and ice-covered regions, the particulate matter concentration pro-

files, acquired using the UVP, showed maxima at the upper 100 m of the water column (i.e., the

photic layer; Figure 5.2). Both regions exhibited similar distribution of both small (64-512 μm)

and large (0.512-10.3 mm) the particulate matter within the upper 100 m, with no statistically

significant differences between the regions (Mann-Whitney-Wilcoxon Test, p > 0.05). However,

deeper (100-1500 m), there was a significantly higher concentration of both small and large the

particulate matter in the ice-free region (Mann-Whitney-Wilcoxon Test, p < 0.01). This poten-

tially suggests that the particulate matter which was formed in the sea-ice covered waters was

rapidly exported to the deep ocean.
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The combination of size, structure (e.g., porosity and density) and composition (e.g., diatoms

with silica frustule as ballast mineral versus flagellate without any ballast minerals) of an aggre-

gate determine its sinking velocity (Iversen and Ploug, 2010; Ploug et al., 2008a). Intact marine

aggregates were collected with a Marine Snow Catcher (MSC) below the sub-surface chl a maxi-

mum (60 m) in both ice-free (n= 23 aggregates) and ice-covered (n= 36 aggregates) regions of

the Fram Strait. The size measurement of these aggregates revealed that on average in the ice-

covered region aggregates were significantly larger (Mann-Whitney-Wilcoxon Test, p < 0.001;

Table 5.1). According to microscopic analyses, more than half (12 out of 23) of the aggregates

collected in ice-free region were smaller than 512 μm and composed primarily of flagellates,

especially the Prymnesiophyte Phaeocystis spp. (Figure 5.3). On the other hand almost all (33

out of 36) collected aggregates in the ice-covered region were large aggregates (> 512 μm )

and were dominated by diatoms (Figure 5.3), of both pelagic and sea ice origin (Arrigo, 2014;

Boetius et al., 2015). Due to the high abundance of silica-rich diatom frustules within aggre-

gates at the ice-covered region; on average we observed significantly (Mann-Whitney-Wilcoxon

Test, p < 0.05) higher sinking velocities for those aggregates (52.77±7.75 m/d) compared to

the non-ballasted flagellate aggregates collected in the ice-free region (29.5±3.65 m/d; Table

2), which is in accordance with previous observations (Ploug et al., 2008b; Iversen and Ploug,

2010; Reigstad and Wassmann, 2007; Wolf et al., 2016).
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Interestingly, small aggregates (64-512 μm) of Phaeocystis spp. were also observed in the ice-

covered region, where they exhibited significantly (Mann-Whitney-Wilcoxon Test, p < 0.05)

higher sinking velocities (42.68±8.14 m/d) in comparison to the small aggregates in the ice-free

region (23.37±3.98 m/d). Supporting recent observations which suggest that Phaeocystis spp.

in ice-covered regions incorporates cryogenic gypsum resulting in its higher sinking velocities

(Wollenburg et al., 2018). Altogether our results support the recently observed dominance of

flagellated phytoplankton over diatoms in the ice-free water column (Engel et al., 2017), and

suggest stronger retention rates of sinking aggregates throughout the water column in ice-free

regions.

Using a Lagrangian particle tracking algorithm (SI Materials and Methods), we combined the

measured on board sinking velocities of aggregates, with horizontal ocean velocities from an

ocean-sea ice model FESOM, into statistical funnels which describe the sinking trajectories of

aggregates from the surface ocean to the deep ocean (Wekerle et al., 2015). The sinking trajec-

tories were constructed based on the mean sinking velocities in each of the three sampled areas

of the Fram Strait (Figure 5.1), the two ice-covered regions (EG and N), and the ice-free region

(HG; Table 5.S1). The results revealed relatively similar catchment areas (i.e., area of potential
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origin in surface waters) in the different regions (Figure 5.4), with lower values in comparison

to previous simulations in other oceanic regions (Siegel et al., 2008; Waniek et al., 2000; Roullier

et al., 2014). Moreover, due to slower sinking velocities in the ice-free region, the dispersal of

sinking trajectories was much higher in comparison to the ice-covered regions.

It is important to note that the reconstructed sinking trajectories rely on constant sinking velocity,

and do not take into account the time of formation of the aggregate (De La Rocha and Passow,

2007), or changing characteristics of the aggregate as it descends through the water column (e.g.,

as a result of microbial degradation; McDonnell et al., 2015). Slower sinking velocities may result

in stronger horizontal displacement of the aggregate at depth. However, our measurements of

sinking velocities were similar to those measured in situ at 1000 m from August 2016 to March

2017 using the Bio-Optical Platform (unpublished data). Combined with the well resolved meso-

scale variability of the model (Wekerle et al., 2017b,a), we therefore assume that there is little

increase in horizontal displacement of the aggregates as they sink. Thus, our results suggest that

aggregates formed in the surface water in ice-free regions are not laterally transported to the

deep waters of ice-covered regions, and vice versa (Figure 5.4).
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5.3.3 The pelagic microbial communities in Fram Strait show strong asso-

ciation with depth

The particle-associated (>5μm; PA) and the free-living (0.2-5μm; FL) microbial communi-

ties were sampled in the water column of the predefined regions across Fram Strait (Fig-

ure 5.1).Using Illumina 16S rRNA gene sequencing of the V4-V5 hypervariable region, we ob-

tained a final dataset of 3,421,862 sequences (amplicons) in 66 samples (Table 5.S2), which

were assigned to 17,868 operational taxonomic units (OTUs) associated with bacterial and ar-

chaeal lineages. All OTUs which were taxonomically assigned to chloroplasts or mitochondria

were excluded from further analysis. In the FL fraction the sequences were affiliated to a total

of 12,796 OTUs (12,293 bacterial and 503 archaeal OTUs), with a mean number of 1,901±108

OTUs per sample. In the PA fraction the sequences were affiliated to a total number of 10,604

OTUs (10,334 bacterial and 270 archaeal OTUs), with a mean number of 1,244±170 OTUs per

sample. The rarefaction curves did not reach a plateau in any of the samples, suggesting that

additional OTUs could be expected with additional sequencing (Figure 5.S1). Based on Chao1

richness estimator on overage the samples covered 71% of the bacterial and archaeal community

(Table 5.S3; Chao et al., 2014a; Hsieh et al., 2016), with no statistically significant differences

in coverage between the fractions.

The mean Chao1 richness estimator showed statistically significant differences with depth in

both FL and PA fractions (‘ANOVA’, F3,62 = 17.24, p < 0.001; Figure 5.S3). Throughout the

entire water column the PA communities exhibited a generally lower richness in comparison to

the FL communities (‘ANOVA’, F1,64= 20.607, p< 0.001), which is in concert with observations

of other oceanic regions (Salazar et al., 2015). The Pielou’s evenness index (J’) showed similar

patterns to the richness estimates, with a statistically significant increase of evenness with depth

in both fractions (‘ANOVA’, F3,62 = 22.772, p < 0.001; Figure 5.S3), indicating that OTUs were

more evenly distributed in deep ocean communities. The deep waters of the Arctic Ocean are

less affected by the frequent ecological perturbations typical for the surface waters (e.g., sea-ice

dynamics and/or phytoplankton blooms; chapter 4), thus our results support previously sug-

gested observations that high evenness is linked to functional stability in microbial ecosystems

(Frank et al., 2016; Wittebolle et al., 2009).

The microbial communities in the surface (20 m depth) and the epipelagic (100 m depth) wa-

ters were dominated by sequences of typically phytoplankton bloom associated heterotrophic

bacteria (Figure 5.5), such as Gammaproteobacteria and Bacteroidia (Bunse and Pinhassi, 2017;

Buchan et al., 2014). Previous study of the epipelagic microbial communities across the Fram

Strait in 2014, showed that in summer the differences between the ice-covered and ice-free re-

gions are closely related to the advancement of the seasonal phytoplankton bloom (chapter 4;

Nöthig et al., 2015). However, at the time of the sampling during the PS99.2 expedition, no sta-

tistically significant (‘ADONIS’, p > 0.05) differences in composition of the epipelagic microbial

communities were observed, likely due to the late seasonal sampling in this study.

The microbial communities of meso- and the bathypelagic waters showed strong diversity in-

crease, in comparison to the surface communities (Figure 5.5 and Table 5.S3). Large fraction

of the sequences in these communities was related to globally present deep water bacterial taxa

(Salazar et al., 2016), such as Deltaproteobacteria (Swan et al., 2011), Dehalococcoidia (Mehr-

shad et al., 2018; Landry et al., 2017), Marinimicrobia (Bertagnolli et al., 2017; Hawley et al.,
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2017) and Planctomycetes (both Phycisphaerae and Planctomycetacia classes; Kuypers et al., 2003;

Strous et al., 2006). Furthermore, the archaeal class Nitrososphaeria (i.e., Thaumarchaeota;

Doxey et al., 2015) consisted of up to 15% of the sequences in both mesopelagic and bathy-

pelagic waters. Although the knowledge regarding these taxa is limited, the referenced genomic

evidences suggest their potential importance in the deep ocean nutrient cycling.
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Overall, the communities of both FL and PA fractions showed statistically significant (‘ADONIS’,

F3,62 = 15.187, R2 = 0.375, p < 0.001; Figure 5.6) association with the distinct pelagic layers

of the Fram Strait (surface 20 m, epipelagic - 100 m, mesopelagic - 1000 m and bathypelagic

- >1000 m). However, the FL communities had significantly higher dissimilarity between the

distinct pelagic layers in comparison to the PA communities (pairwise t-test, p < 0.001; Fig-

ure 5.S4). In all pelagic layers the FL and the PA fractions exhibited differences in the community

composition with statistically significant increase in dissimilarity in depth (pairwise t-test, p <
0.001; Figure 5.S4). Taken together, these observations suggest that the high distinction of the

suspended FL communities is a result of a well stratified water column (Marnela et al., 2016),

while the more similar PA communities are potential result of vertical transport of surface waters

microbes on sinking aggregates, as was previously demonstrated by Mestre et al. (2018).
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5.3.4 Particle associated communities go through internal succession

throughout the water column

Sinking aggregates originate mostly, and are initially colonized, in the epipelagic waters (Mestre

et al., 2018; Thiele et al., 2015). Thereafter, it is a matter of debate to what extent the attached

bacteria undergo a succession during sinking, pick up more free-living microbes from surround-

ing water depths, and what factors influence this process (Datta et al., 2016; Stocker, 2012;

Yawata et al., 2014). In order to test which taxonomic groups prevail on marine aggregates we

have conducted enrichment tests of OTUs between the particle-associated communities between

the different pelagic layers in consecutive order (i.e., surface-epipelagic, epipelagic-mesopelagic,

mesopelagic-bathypelagic). The OTUs which had a fold-2 change (in their sequence abundance)

of absolute value higher than 1 and an adjusted p-value < 0.1 were defined as enriched (Fig-

ure 5.7).

Our results revealed that altogether 749 OTUs showed significant enrichment with depth in

the PA communities (176 OTUs between surface and epipelagic waters; 377 OTUs between

epipelagic and mesopelagic waters; 196 OTUs between mesopelagic and bathypelagic waters).

Throughout the entire water column the PA communities were enriched with OTUs of various

‘master recycles’ (Buchan et al., 2014), members of the Gammaproteobacteria (93 OTUs) and

Bacteroidia (84 OTUs; Figure 5.7). These taxonomic groups are known for possessing a wide

range of carbohydrate-active enzymes to decompose algal-derived OM (Buchan et al., 2014;

Chow et al., 2013; Teeling et al., 2012, 2016), were previously described as associated with phy-

toplankton blooms, and identified as potential candidates for downward propagation of temporal

changes to the deep ocean (Cram et al., 2015b,a).

However, the largest number of enriched OTUs with depth was associated with various classes

within the phylum Planctomycetes (233 OTUs) and the class Deltaproteobacteria (171 OTUs;

Figure 5.7). It has been suggested that the high oxygen consumption by OM degrading bacteria

(e.g., Gammaproteobacteria or Bacteroidia) creates anoxic and nutrient-enriched patches within

the marine aggregates (Woebken et al., 2007). These microniches then filled by organisms with

anaerobic oxidation capabilities, such as anaerobic oxidation of ammonium by Planctomycetes

(Kuypers et al., 2003; Strous et al., 2006) or sulfate-reduction by Deltaproteobacteria (Jones et al.,

2017; Muyzer and Stams, 2008). Thus, our results suggest that, despite the long sinking process

to the deep ocean, the aggregates are still actively degraded by bacterial heterotrophs, which

were potentially transported on the aggregates from the surface waters.

5.3.5 Sinking aggregates as potential vectors for the transport of surface-

derived microbial taxa to the deep Arctic Ocean

In order to estimate whether the observed PA community dynamics are a result of internal suc-

cession within the sinking aggregates or a result of further colonization by surrounding microbes,

we implemented a microbial source tracking (MST) Bayesian approach (SourceTracker; Knights

et al., 2011). This approach has been previously applied to identify contamination between mi-

crobial communities in coastal waters and lakes (e.g., Henry et al., 2016; Neave et al., 2014),

and it is based on the assumption that the diversity in various ‘source’ communities (i.e., FL)
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and corresponding ‘sink’ communities (i.e., PA) will allow the identification of statistically prob-

able links between them. To our knowledge this approach has been so far applied only once in

microbial oceanography to correlate microbial communities and water mass advections in the

Southern Ocean (Wilkins et al., 2013).

We used a model validation approach called ‘leave-one-out’ which tests the predictive accuracy

across samples in the training dataset (i.e., the sources), that were each hidden, in turn, from

the model when it was trained (Friedman et al., 2001). The assessed performance of the model

showed that the predicted water mass of each FL community matched its actual origin with a

statistical significance (‘ADONIS‘, R2 = 0.80, p < 0.001; Figure 5.8). Indicating that the signal

in this dataset is strong. The MST model identified that the FL microbial communities were

closely associated with the distinct water masses of Fram Strait (Figure 5.1), with no evidences of

vertical mixing between the FL communities. Furthermore, in the epipelagic boundary between

the regions (stations HG4 and HG9) the model identified mixed communities of PW and AW

water masses, supporting recent ocean simulations which showed horizontal mixing and water

exchange by eddies in this boundary region (Wekerle et al., 2017a).

The MST model showed that PA communities of the epipelagic waters were statistically associ-

ated with the FL communities (Figure 5.8). The contribution of different sources to deep ocean

PA communities was less resolved, potentially due to the high diversity of the community, which

consist of large number of rare OTUs (Figure 5.S3). Nevertheless the epipelagic FL communities

contributed, as sources, up to <50% and <20% of the PA communities in meso- and bathy-

pelagic waters, respectively. There was very little contribution of the deep ocean FL microbes to

the PA communities, supporting previous observations of rare transitions between the lifestyles

at depth (Thiele et al., 2015; Salazar et al., 2015).

It is important to note that the use of only two size fractions clusters all particles larger than 5

μm into one pool (Mestre et al., 2017b,a). Consequently, our estimates represent an integration

of large sinking aggregates as well as small buoyant particles. Such integration may influence

our observations, especially in the deep ocean where large sinking aggregates are rare and small

buoyant particles become more abundant (Baltar et al., 2009; Herndl and Reinthaler, 2013).

Thus, we suggest that considerable part of the estimated contribution of the bathypelagic FL

communities to the PA fraction (i.e., colonization) represents small buoyant deep ocean particles,

or alternatively resuspended particles of the nepheloid layer (Wells and Deming, 2003).

Deep-water PA communities of the sea-ice covered region contained more than twice as many

surface-borne bacterial types compared to the ice-free region (Figure 5.8), suggesting that those

communities retain an increased contribution of epipelagic community members. The presence

of sea ice has already been considered a major factor influencing POC fluxes in the Arctic Ocean

(Soltwedel et al., 2016; Leu et al., 2011), not only by controlling pelagic primary production

in ice-melting regions, but also due to extensive primary production occurring underneath the

sea ice, which produces rapidly sinking organic matter (Rapp et al., 2018; Boetius et al., 2013).

In our study, we also observed significantly larger, faster-sinking particles in ice-covered regions

formed by sea-ice diatoms, which evidently reach the seafloor rapidly. This was independently

recorded by high-resolution seafloor imaging conducted during the same expedition, encoun-

tering large phytoplankton aggregates on the seafloor of the ice-covered region, but not of the

ice-free region (Bergmann and Schewe, 2017). Taken together with our community turnover
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projections, we conclude that sea ice promotes the formation of mainly diatom aggregates with

a higher sinking velocity, leading to decreased retention times of the particles in the different

water layers on their way down, ultimately shortening the time of re-colonization by the FL

community. The attenuated turnover of communities, in turn, retains larger proportions of sur-

face community members in these particles, and promotes a stronger connectivity between the

surface and the deep ocean.
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5.4 Conclusions

The impact of current decline of sea ice in the Arctic Ocean on the microbial communities in

the water column remains largely unknown. Here we focused on the vertical connectivity be-

tween surface and deep oceans in ice-covered and ice-free regions. Our data suggests that the

vertical flux of sinking particles during the Arctic summer is strongly associated with the sea-ice

conditions, as the sea ice impacts the composition of the sinking aggregates (e.g., type of phy-

toplankton) as well as their sinking velocity and associated microbial community. The variation

in size and composition influences sinking velocities between the regions of different sea-ice

regimes, with larger and faster-sinking particles in ice-covered regions. The analysis of the mi-

crobial communities associated with the sinking particles showed increasing dissimilarity with

depth between the particle-associated communities and the ambient free-living microbes. How-
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ever, large number of taxa was shared between size-fractions at each depth, suggesting taxo-

nomic exchange between them. Our approach of applying microbial source tracking to identify

particle colonization and vertical connectivity patterns between surface and deep Arctic Ocean

showed that surface water free-living microbes had a stronger contribution to the deep ocean

particle-associated communities in ice-covered regions than in ice-free regions. Considering the

similarities of conditions between the surface ice-covered waters and the deep ocean waters (e.g.,

temperature, oligotrophy), these surface-derived microbes may prevail and play an important

role in the function of the deep waters communities. Ice-free regions produced smaller, more

buoyant particles that exhibited a higher turnover of communities between the size-fractions.

Due to lower sinking velocities, the particles in ice-free regions have longer time for community

exchanges with ambient free-living microbes of the different water layers, allowing for more

extensive re-colonization of the particles on their way down.

In conclusion, we suggest that vertical connectivity between the surface and deep waters mi-

crobial communities of the Arctic Ocean is effectively mediated by large, rapidly sinking marine

particles, as found in sea-ice associated waters. In contrast, ice-free waters mediate a substan-

tially weaker connectivity, lessening the influence of surface communities to carbon cycling in

the deep waters of the Arctic Ocean. These scenarios can be directly projected to the future

warmer ice-free summers in the Arctic Ocean, suggesting strong impact on the biogeochemical

cycles in the water column and benthos of the Arctic Ocean basin.

5.5 Materials and methods

Sampling and metadata collection

Sampling was performed during the Polarstern cruise PS99.2 in HAUSGARTEN observatory in

the Fram Strait (June 24th- July 16th 2016). Hydrographic data of the seawater including tem-

perature and salinity were retrieved at PANGAEA (Tippenhauer et al., 2017), as well as chloro-

phyll a concentrations in the water column (Nöthig et al., 2018). The sea-ice concentration was

retrieved from http://data.seaiceportal.de (Grosfeld et al., 2016). Sea surface temperature was

obtained from NOAA NCEP real-time analysis (http://polar.ncep.noaa.gov/sst/). To investigate

the vertical structure and connectivity of free-living and particle-associated microbial communi-

ties, water samples (4-8 Liter) were collected from 4 distinct water layers throughout the entire

water column (Table 5.S2).

In situ measured marine particle size distribution

The in situ profiling of marine particles was carried out using Underwater Vision Profiler 5hd

(UVP; Hydroptic, France) mounted to the water sampler rosette (Picheral et al., 2010). The

UVP acquires images of particles within a measured volume of water, and the analyses of the

images provide quantitative information on sizes of particles throughout the water column. For

the purpose of this publication the particles were classified into two size classes, small particles

with equivalent spherical diameter 60-512 μm, and large particles 0.512-10.3 mm. The particles



5.5. MATERIALS AND METHODS 111

size is converted to biovolume assuming spherical structure. The concentrations are presented

as biovolume / water volume (ppm). (further described in SI Materials and Methods).

On board characterization of marine aggregates and sinking velocity mea-

surements

Using a marine snow catcher (MSC) we sampled intact aggregates, below the sub-surface chl

a maxima (60 m depth). The aggregates were measured on board for their size, composition,

and sinking velocities. Detailed information on the procedures can be found in SI Materials and

Methods.

Modeled particles sinking trajectories

We use a Lagrangian particle tracking algorithm to track back sinking particles from the sampling

depth to the surface. The backward particle computation is done by reversing the flow field, i.e.,

particles are treated as if they were rising from the sampling depth to the surface with a neg-

ative sinking speed, being horizontally displaced with the reversed horizontal velocity (further

described in SI Materials and Methods and Wekerle et al., 2015).

Microbial community analyses

Genomic bacterial and archaeal DNA was isolated in a combined chemical and mechanical pro-

cedure using the PowerWater DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA).

The hyper variable V4–V5 region of the 16S rRNA gene was amplified using 515F-Y and 926R

primers (SI Materials and Methods; Parada et al., 2016). The amplicons sequencing proce-

dure on Illumina MiSeq platform was conducted following the standard instructions of the 16S

Metagenomic Sequencing Library Preparation protocol (Illumina, Inc., San Diego, CA, USA). Af-

ter quality control and merging the amplicons were clustered into OTU with Swarm (v2.0; Mahé

et al., 2015), and taxonomically classified using SINA v1.2.11 (SILVA Incremental Aligner; Silva

reference database release 132). All the statistical analyses were conducted using R (v3.4.1;

http://www.Rproject.org/) in RStudio (v1.0.153; RStudio Team, 2015). Detailed information

on the bioinformatics procedures can be found in SI Materials and Methods.

Microbial source tracking

To determine potential colonization of marine particles by free-living microbes, and their export

from surface water to the deep ocean, we used the R package ‘SourceTracker‘ (v1.0; Knights

et al., 2011). Based on the assumption that the particles-associated microbial communities (i.e.,

‘sink’ communities) are result of various events of colonization of particles by free-living microbes

(i.e., ‘source’ communities), the ‘SourceTracker’ Bayesian model provided estimated proportions

of each of the different ‘source’ communities within the ‘sink’ community. In case the ‘sink’

community contains mixture of taxa which do not match any of the ‘source’ communities, they

are assigned to an ‘unknown source’ (further described in SI Materials and Methods).



112 CHAPTER 5. VERTICAL CONNECTIVITY IN THE ARCTIC OCEAN

Data availability

Data are accessible via the Data Publisher for Earth & Environmental Science PANGAEA

(www.pangaea.de): Raw paired-end sequence, primer-trimmed reads were deposited in the

European Nucleotide Archive (ENA; Silvester et al., 2018) under accession number XXX.

The data were archived using the brokerage service of the German Federation for Biologi-

cal Data (GFBio; Diepenbroek et al., 2014). Scripts for processing data can be accessed at

https://github.com/edfadeev/XXX.
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5.6 Supplementary material

In situ measured marine particle size distribution

The in situ profiling of marine particles was carried out using Underwater Vision Profiler 5hd

(UVP; Hydroptic, France) mounted to the water sampler rosette (Picheral et al., 2010). The

UVP5hd was operated in autonomous pressure mode (Picheral et al., 2010), whereas acquisition

was limited to the downcast. Maximum acquisition frequency was 20 Hz and the sampling

volume was approximately 1L. The acquired images were analyzed using Zooprocess software

(Picheral, 2008), and the particle size distribution was based on 26 size classes of equivalent

spherical diameter sorted in a logarithmic scale from 64 μm to 26.79 mm. For the purpose of

this publication the particles were classified into two size classes, small particles with equivalent

spherical diameter 64-512 μm, and large particles 0.512-10.3 mm.

On board characterization of marine aggregates and sinking velocity mea-

surements

Using a marine snow catcher (MSC) we sampled intact aggregates of both ice-free and ice-

covered regions, and measured on board their size, composition, and sinking velocities. The

aggregates were individually transferred to a vertical flow chamber (Ploug et al., 2010; Ploug

and Jørgensen, 1999) that was filled with GF/F filtered seawater collected from the same MSC

and kept at in situ temperature. The x-,y-, and z-axis of each aggregate was measured in the

vertical flow system using a horizontal dissection microscope and an ocular. The volume was

thereafter calculated assuming an ellipsoid form, which was used to calculate the equivalent

spherical diameter (ESD). The sinking velocity was measured by placing the aggregate in the

middle of the flow chamber and increasing the upward flow until the aggregate was floating

one diameter above the net. The sinking velocity was thereafter calculated by determining the

flow speed three times, and dividing the average of these measurements by the area of the flow

chamber. The composition of the aggregates was determined with an inverted light microscope

using Utermöhl chambers.

Water sampling

Carried out with 12 L Niskin bottles mounted on a CTD rosette (Sea-Bird Electronics Inc. SBE

911 plus probe) equipped with double temperature and conductivity sensors, a pressure sensor,

altimeter, chlorophyll fluorometer, and transmissometer. The chlorophyll maximum depth (chl

a max) was determined based on chlorophyll a fluorescence during the downcast, while the

water samples were collected during the upcast. At all stations, samples were collected from

sub-surface chl a max (10 - 30 m), 100 m, 1000 m and 50 m above the seafloor. For assessing

bacterial community composition 4L in epipelagic and 8-12L in meso- and bathypelagic waters

were filtered with peristaltic pump (Masterflex; Cole Parmer) through successive membrane

filters of 5 μm (Whatman Nucleopore, 47 mm polycarbonate), and 0.22 μm (Millipore Sterivex

filters). All samples were collected in duplicates and stored at -20°C until DNA isolation.
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DNA isolation and 16S amplicon sequencing. Genomic bacterial and archaeal DNA was iso-

lated from the 5 μm- and the 0.22 μm- filter membranes to analyze the particle-associated

(PA) and the free-living (FL) community, respectively, in a combined chemical and mechani-

cal procedure using the PowerWater DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad,

CA, USA). Prior to DNA isolation the sterivex cartridges of the 0.22 μm Sterivex membranes

were cracked open in order to place the filters in the kit-supplied bead beating tubes. The isola-

tion was continued according to the manufacturer’s instructions, and DNA was stored at - 20°C.

Library preparation was performed according to the standard instructions of the 16S Metage-

nomic Sequencing Library Preparation protocol (Illumina, Inc., San Diego, CA, USA). The hy-

per variable V4–V5 region of the 16S rRNA gene was amplified using bacterial primers 515F-Y

(5‘-GTGYCAGCMGCCGCGGTAA-3‘) and 926R (5‘-CCGYCAATTYMTTTRAGTTT-3‘’ Parada et al.,

2016). Sequences were obtained on the Illumina MiSeq platform in a 2 × 300 bp paired-end

run (CeBiTec Bielefeld, Germany), following the standard instructions of the 16S Metagenomic

Sequencing Library Preparation protocol (Illumina, Inc., San Diego, CA, USA).

Bioinformatics and statistical analyses

The raw paired-end reads were primer-trimmed using cutadapt (Martin, 2011), quality trimmed

using trimmomatic with sliding window of 4 bases and a minimum average quality of 15 (v0.32;

Bolger et al., 2014) and merged using PEAR (v0.9.5; Zhang et al., 2014). Clustering into OTUs

was done with Swarm algorithm using default parameters (v2.0; Mahé et al., 2015). One repre-

sentative sequence per OTU was taxonomically classified using SINA (SILVA Incremental Aligner;

v1.2.11; Silva reference database release 132) at a minimum alignment similarity of 0.9, and

a last common ancestor consensus of 0.7 (Pruesse et al., 2012). The OTUs which were not

taxonomically assigned to Bacteria/Archaea (based on the data set) or occurred with only a sin-

gle sequence in the whole data set were excluded from further analysis. Furthermore, all OTU

which were taxonomically assigned to mitochondria and chloroplast were removed from the

dataset. All the statistical analyses were conducted using R (v3.4.1; http://www.Rproject.org/)
in RStudio (v1.0.153; RStudio Team, 2015). Sample data matrices were managed using the

R package ‘phyloseq’ (v1.20.0; McMurdie and Holmes, 2013) and plots were generated using

R package ‘ggplot2’ (v2.2.1; Gómez-Rubio, 2017). The samples coverage and alpha diversity

was estimated using R package ‘iNEXT’ (v2.0.12; Hsieh et al., 2018). The rarefaction curves for

each sample were generated based on 40 equally spaced rarefied sample sizes with 100 itera-

tions. A prevalence threshold (i.e., in how many samples did a taxon appear at least once) of

5% was applied to the OTU table prior to downstream analysis following (Callahan et al., 2016).

Differences between FL and PA for richness and evenness were tested using t-test. Principal com-

ponent analysis (PCA) was conducted on variance stabilized OTUs abundance matrix (McMurdie

and Holmes, 2014). The significance of the clustering was tested using ADONIS function in R

package ‘vegan’ (Permutational Multivariate Analysis of Variance Using Distance Matrices). The

fold-change in abundance of each OTU between the regions was calculated using the R package

‘DEseq2’ (v1.16.1; Love et al., 2014). The method applies a generalized exact binomial test on

variance stabilized OTU abundance.
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Modeled particles sinking trajectories

We use a Lagrangian particle tracking algorithm to track back particles from the sampling depth

to the surface. The backward particle computation is done by reversing the flow field, i.e. par-

ticles are treated as if they were rising from the sampling depth to the surface with a nega-

tive sinking speed, being horizontally displaced with the reversed horizontal velocity. Particles

were advected with daily averaged horizontal model velocities from the ocean general circula-

tion model FESOM, whereas a constant sinking speed is used as vertical velocity. FESOM is an

ocean-sea ice model based on unstructured meshes (Danilov et al., 2015; Wang et al., 2014b)).

In this study, we use a FESOM configuration that was optimized for the Fram Strait, applying a

mesh resolution of 1 km in this area (Wekerle et al., 2017b). A more detailed description of the

Lagrangian particle tracking approach, applied to study the catchment area of sediment traps

deployed in the Fram Strait, is presented in the study by Wekerle et al. (2015).

The backward trajectory calculation was performed for all three sampled regions (ice free - HG

, and ice covered – EG and N), using the measured on board sinking velocities. The duration

of trajectories released at 2600 m depth (the seafloor) were thus 40 days. Trajectories were

computed once per day during the time period March – July 2016. A time step of 1 hour was

used for the trajectory calculation, and thus hourly positions and corresponding temperature and

salinity values were stored. To quantify the vertical distribution of particles, particle positions

are binned into a grid with bin size of 25 m depth x 0.05° Longitude/Latitude and then divided

by the total number of particles to determine the fraction of particles originating from each grid

box.
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Chapter 6

General discussion

The Fram Strait is the Atlantic-Arctic boundary zone, and provides the main gateway for water

exchange between the Arctic and the global oceans. The Fram Strait is the source of, by far, the

largest inflow of water into the Arctic Ocean (Beszczynska-Möller et al., 2011), which has already

been shown to have a major impact on the entire Arctic Ocean (Polyakov et al., 2017). Through

the unique oceanography of the Strait, which includes both the Atlantic inflow and the Arctic

outflow, associated with summer sea-ice free and sea-ice covered regimes (respectively), obser-

vations in this region provide an important insight into an Arctic marine ecosystem (Soltwedel

et al., 2005, 2013, 2016). In times of a rapidly changing Arctic marine ecosystem, as a result

of sea-ice cover decline at unprecedented rates (Overland and Wang, 2013), and increasing im-

pact of the Atlantic inflow (Polyakov et al., 2017), an understanding of the main drivers of this

ecosystem is urgently needed.

Despite being the sentinel region for the "Atlantification" processes of the Arctic Ocean, prior to

this thesis, there were only two molecular studies of bacterial and archaeal communities in this

region, Wilson et al. (2017), and Müller et al. (2018). Both these studies were limited to the first

1000 m of the sea-ice free eastern Fram Strait (the West Spitsbergen Current). Remaining unre-

solved the microbial communities of the sea-ice covered western Fram Strait (the East Greenland

Current) and the deep ocean (> 1000 m). Furthermore, important ecological processes, such as,

the impact of sea ice conditions on surface and deep waters microbial communities, remained

unaddressed.

The results in this thesis provide the first comprehensive overview of pelagic bacterial and ar-

chaeal distribution in the Fram Strait. These communities revealed high taxonomic similarity

between the Fram Strait and the central Arctic Ocean, both in the surface and in the deep ocean

(Figure 6.1; Boetius et al., 2015; Rapp et al., 2018; Balmonte et al., 2018). Thus, suggesting

that the observed pelagic microbial dynamics in the Fram Strait can be, to some extent, extrap-

olated to the central Arctic Ocean. Moreover, it is reasonable to assume that the biogeochemical

changes in the Fram Strait may foreshadow the future of the central Arctic Ocean.

In the following sections, I will discuss the importance of time-series microbial observations,

propose a sampling strategy for observing seasonal dynamics in the Fram Strait, and underline

the importance of a global integration of these observations. I will address the ecological research
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124 CHAPTER 6. GENERAL DISCUSSION

questions of this thesis, and together with the results obtained here, will discuss the far-reaching

contribution to our understanding of the bacterial and archaeal community dynamics in the

Fram Strait. I will link them to the dynamics of sea ice and primary production in the region,

and based on the acquired knowledge will propose a scenario for the future of Arctic Ocean

microbial communities.

������ ��	
 �������� ��	
���� �

������ ���������� �� ��������� ������� 
���� ��� ����
������ �� ��� ��� ���� ����� �� �
�����  !�" �# ��� ����  �""$�""" �# %����� �� �������
������ &���� ��� ��� '��� ������( )�� ������� ����
��� �� ���� ���������� ��� �
�����
������
�� �� ������� *(

6.1 Towards integrated microbial observations of the Arctic

Ocean

The long-term goal of the Ocean Observing System FRAM is to improve our understanding of

the impact changes in ocean circulation, water mass properties, and sea ice conditions, have

on the Arctic marine ecosystem. The results in this thesis, as well as, other research projects

within the FRAM Molecular Observatory (MolObs; e.g., Metfies et al., 2017; Nöthig et al., 2015;

Wolf et al., 2016; Hardge et al., 2017; Engel et al., 2017; Rapp et al., 2018), are already ex-

panding our knowledge of the Arctic marine ecosystem and its functioning. Most of currently

existing knowledge regarding microbial communities in the Arctic Ocean in general, and the

Fram Strait in particular, is derived from community composition analyses using 16S/18S rRNA

gene sequencing. While this valuable knowledge provides an important baseline for answering

the basic ecological question "who is out there?", often it is not sufficient for functional charac-

terization of the community (i.e., "what are they doing?"). Therefore, an introduction of ‘omics’

methodologies (e.g., metagenomics, metatranscriptomics and metaproteomics) into studying

the microbial communities will give the opportunity to look into their functional capacity, and

potentially link specific phyla to a specific ecological function (e.g., Colatriano et al., 2018).

Similar to other disciplines of oceanography, long-term microbial observations in the Arctic

Ocean should be conducted based on well defined parameters, such as the Essential Ocean
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Variables (EOVs; Constable et al., 2016; Muller-Karger et al., 2018). Through synthesis of the

knowledge established in this thesis, and other studies within the FRAM MolObs (e.g., Metfies

et al., 2017; Nöthig et al., 2015; Wolf et al., 2016; Hardge et al., 2017; Engel et al., 2017), a set of

microbial indicators (MIs; chapter 2) for environmental changes in the Arctic marine ecosystem

should be established (e.g., Flavobacteria as an indicator for the seasonal phytoplankton bloom

state). These MIs should be well defined, and have a standardized monitoring methodology

(e.g., 16S rRNA gene primer set; chapter 3). Then, through a coordination and data integration

among research institutions that are conducting molecular studies in the Arctic Ocean, integrated

pan-Arctic microbial observations could be achieved.

Due to its structure, and its oceanography, the Arctic Ocean is strongly influenced by water input

from the North Atlantic Ocean. This exchange is relevant for physical (Polyakov et al., 2017)

and chemical (Torres-Valdés et al., 2013) dynamics between the oceans. However, it is also

possible that this water exchange has a direct impact on the microbial communities, as microor-

ganisms may be associated with specific water masses (e.g., Wilkins et al., 2013; Galand et al.,

2010; Agogué et al., 2011). In order to identify such transport of microorganisms and to un-

derstand its impact, the FRAM MolObs needs also to interact and exchange data with MolObs

of the North Atlantic Ocean. One possible platform for such interaction is provided by the Inte-

grated Atlantic Ocean Observing Systems (AtlantOS) project that aims to establish a coordinated

network of oceanographic observatories, and associated ocean information systems around the

Atlantic Ocean.

6.2 Observing seasonal dynamics in the Fram Strait using au-

tonomous sampling

Surveying the microbial communities with high-throughput methodologies in annual summer

expeditions provides an important insight into the spatial dynamics of the microbial communi-

ties in the Fram Strait. However, such sampling effort has a limited contribution to our under-

standing of the natural microbial community variability, and potential identification of the global

climate change effects on them (Karl and Church, 2014). Highly resolved temporal dynamics of

microbial communities in other oceanographic time-series (e.g., Teeling et al., 2016; Karl and

Church, 2014; Cram et al., 2015a) revealed that natural temporal variability of microbial com-

munities in the ocean may occur on a wide range of timescales: from hours - when observing a

response to a phytoplankton bloom, up to years - when observing the impact of global oscillations

(Ducklow et al., 2009; Fuhrman et al., 2015).

Several existing comparisons of winter-to-summer bacterial and archaeal communities in the

Arctic Ocean suggest a strong seasonal variation (Iversen and Seuthe, 2011; Alonso-Sáez et al.,

2008; Wilson et al., 2017). That corresponds to the extremely different environmental condi-

tions between the seasons. In the summer, surface water microbial communities are strongly

shaped by the availability of organic matter (OM), and are dominated by phytoplankton bloom

associated taxonomic groups, such as, Flavobacteria, and Gammaproteobacteria (Alonso-Sáez

et al., 2008; Wilson et al., 2017). In the dark winter, the communities are characterized by a

higher diversity, and a higher presence of chemolithotrophes (Ladau et al., 2013; Nikrad et al.,
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2012; Connelly et al., 2014; Alonso-Sáez et al., 2014; Wilson et al., 2017). These bulk obser-

vations provide an important insight into the seasonal differences, however, they do not fully

reveal the impact of the strong temporal gradients in environmental conditions on the microbial

communities. Thus, microbial seasonal dynamics in the Arctic Ocean remain largely unknown.

One of the main reasons for such scarce availability of winter microbial observations in the

Arctic Ocean is the harsh climatic conditions, which limit the accessibility of the sampling sites.

In order to overcome this limitation, the innovative McLane Research Laboratories® Remote

Access water Sampler (RAS), and the Phytoplankton Sampler (PPS), were introduced to the

fixed oceanographic and biogeochemichal mooring system in the HAUSGARTEN observatory, in

the framework of the FRAM infrastructure project. These devices allow targeted autonomous

water sampling throughout the entire polar year. Due to the limited number of such devices,

and the expensive maintenance, their deployment should be carried out according to a well

developed sampling strategy which consists of both spatial and temporal aspects:

• Where to deploy the samplers? There are clear differences in the development of a

seasonal phytoplankton bloom between the West Spitsbergen Current (WSC; ice-free in

summer), and the East Greenland Current (EGC; ice-covered in summer), regions of Fram

Strait (chapter 4). Simultaneous sampling of both regions may provide an important in-

sight into the seasonal drivers of the microbial communities, through a direct comparison

between the regions.

• At which depth to collect the samples? Based on the results presented in this thesis,

and previous observations from the eastern Fram Strait (Wilson et al., 2017; Metfies et al.,

2016), the seasonality is pronounced mainly in the surface waters. However, deployment

too close to the surface may put the sampler at risk of collision with sea-ice floats, which

may reach a thickness of ~5 m (Bourke and Garrett, 1987). Taking into account that there

are no strong differences between summer microbial communities of the surface waters

(5-10 m) and the chlorophyll a maximum layer (~20 m; chapter 4), the recommended

sampling depth would be between 10-20 m.

• When to collect the samples? One of the limiting factors in autonomous sampling is the

amount of samples that can be collected between a deployment and a recovery. Based on

the rapid development of phytoplankton blooms in the Arctic Ocean, and previous obser-

vations of changes in bacterial activity throughout a season (Alonso-Sáez et al., 2008), it

is reasonable to believe that in summertime the processes within the microbial commu-

nities occur much faster. Furthermore, the bacterial and the archaeal cell densities (i.e.,

biomass) in winter are one order of magnitude lower in comparison to the summer (105

and 106 cells ml-1, respectively). Thus, a winter sampling may require a larger seawater

volume, and a less frequent sampling event, than a summer. Based on these observations,

and considering the capacity of 48 water samples by the RAS sampler, the recommended

sampling frequency would be one sample per week in a summertime (April - September),

and one sample every two weeks during a winter (October - March). The PPS, which con-

sists of 24 samples, may be applied with half of the sampling frequency in comparison to

the RAS.

• For how long may the samples remain under water? Collected samples are due to stay

under the water for at least one year, and in some cases even longer, depending on a ship
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time availability. Such long storage requires an efficient fixation, and preservation of the

sample. This technical topic is not addressed in the scope of this discussion, however, is

crucial of such seasonal observations.

The analysis of an autonomously collected sample is challenging. Throughout a year the micro-

bial biomass in the surface waters is strongly fluctuating (Alonso-Sáez et al., 2008), which might

make it impossible to extract sufficient amount of DNA for a metagenomic analysis. Therefore,

phylogenetic profiling using 16S rRNA gene is a more suitable approach, due to its lower DNA

concentration thresholds (Hassan et al., 2018; Thomas et al., 2012). Heterotrophic bacterial

communities clearly dominate Arctic surface waters during spring and summer (chapter 5 and

Wilson et al., 2017), associated with the ongoing seasonal phytoplankton bloom (chapter 5). It

has been previously shown that the succession of a bacterial community during a bloom is tightly

coupled to the phytoplankton bloom dynamics (Teeling et al., 2012). Thus, the abundance, and

diversity, of specific bacterial taxonomic groups may serve as a microbial indicator (MI) for differ-

ent stages of the phytoplankton bloom. The results in this thesis suggest that taxonomic groups,

such as the SAR324 clade (Deltaproteobacteria) or the SAR202 clade (Dehalococcoidia), are MIs

for winter and a pre-bloom conditions in the water column (chapter 4). In contrast, taxonomic

groups such as the Rhodobacterales (Alphaproteobacteria) or the Flavobacteriia (Bacteroidetes),

are MIs for a well developed phytoplankton bloom (chapter 4). However, in some cases the

succession may occur on a much higher taxonomic resolution (e.g., different strains of the same

bacterial genus; Teeling et al., 2016; Chafee et al., 2018), which may have a strong impact on

the functional capacity of the observed taxon (Xing et al., 2015). Based on the conducted per-

formance comparison (chapter 3), the higher phylogenetic sensitivity of the V3-V4 primer set,

makes it a more suitable choice for 16S rRNA gene monitoring of specific MIs.

The results of this thesis (chapter 5), and previous observations, also suggest that not only Bac-

teria but also Archaea may play an important ecological role in the Arctic water column (Galand

et al., 2009b; Bano et al., 2004; Alonso-Saez et al., 2012). Furthermore, in previous observations

in the Fram Strait during the Arctic winter, the Archaea, and especially the Thaumarchaeota,

comprised a considerable fraction of sequences in surface waters communities (Wilson et al.,

2017; Müller et al., 2018). Thus, suggesting that Archaea should be included in the long-term

time-series monitoring of the FRAM MolObs. Altogether, based on the conducted performance

comparison between the 16S rRNA gene primer sets (chapter 3), and the defined requirements

of the monitoring scheme, I suggest that the V4-V5 primer set (Parada et al., 2016) will be more

suitable for observing the bulk annual dynamics within the surface water bacterial and archaeal

communities.

It is also possible that in some cases the collected biomass will not be sufficient even for such sen-

sitive molecular methods as 16S rRNA gene tag-sequencing. In such a case, alternative method-

ologies may be applied for gathering important insights into the microbial seasonal dynamics.

For example, the samples from the PPS, which are collected directly on filter membranes, can be

used for targeted Fluorescence In Situ Hybridization (FISH) monitoring of MIs. Furthermore,

the RAS samples consist of fixed 500 ml of seawater. These water samples may also be used

for FISH, however they can be also analyzed using flow-cytometry (e.g., high:low nucleic acid

cell ratio as a biomarker for a phytoplankton bloom; Zubkov and Tarran, 2008; Piontek et al.,

2014). Single-cell techniques such as FISH, FISH-flow cytometry (Sekar et al., 2004), and a

direct-geneFISH (Barrero-Canosa et al., 2017) have the clear power to greatly expanding the
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information acquired via bulk community sequencing efforts. Using these methods it is possible

to visualize and enumerate specific sub-groups in a microbial community, demonstrate their ac-

tivity instead of their mere presence, and to preserve further information about life stages and

possible interactions of the investigated microbial community members in their natural habi-

tats (Amann and Fuchs, 2008). Such techniques are very tedious and are very time consuming,

therefore, they should be applied on a small subset of key taxonomic groups (i.e., MIs) in the

seasonal dynamics of the Arctic marine ecosystem.

6.3 Surface bacterial communities are driven by the seasonal

phytoplankton bloom

The seasonal shift from a winter to a summer bacterial and archaeal community in the surface

ocean follows a development of a seasonal phytoplankton bloom (Bunse and Pinhassi, 2017). Al-

though very little is known regarding the relationship between phytoplankton and the associated

microbial communities, the phytoplankton blooms are usually coupled with an increase in the

rate of a bacterial growth and production (Tada et al., 2011; Riemann et al., 2000). The main tax-

onomic groups which are responding to the bloom are members of the classes Bacteroidetes and

Gammaproteobacteria, and the Roseobacter clade within the class Alphaproteobacteria (Buchan

et al., 2014). A time-series study of the spring phytoplankton blooms in the German Bight (North

Sea) has shown that various members of these taxonomic groups are blooming consecutively

(Teeling et al., 2016; Chafee et al., 2018). These reoccurring succession patterns of bacterial

taxa suggest that changes, over the course of the seasonal bloom, in the availability and com-

position of OM, are among the main forces that shape the bacterial community (Teeling et al.,

2012; Sperling et al., 2017).

Recent observations by Wilson et al. (2017) in the surrounding waters of Svalbard (WSC) sug-

gested that the bacterial communities are associated with the seasonal presence of sea ice, and

chlorophyll a concentrations. During a summer, the surface communities are dominated by

phytoplankton-bloom associated copiotrophs, such as Gammaproteobacteria and Flavobacteriia

(Wilson et al., 2017). These highly active heterotrophs may play a key role in the seasonal phy-

toplankton bloom, as they rapidly turn over the nutrients and make them once again available

for further primary production (Azam and Malfatti, 2007). The results presented in this thesis

further support these observations, and expand them through a comparison between the pelagic

ecosystem of the Atlantic Water (AW) of the WSC, and the Polar Surface Water (PSW) of the

EGC. We were able to show, that the diversity of the surface bacterial communities is driven by

the succession of the seasonal phytoplankton bloom, which is controlled by a coupled impact of

distinct water masses and distinct sea ice conditions (chapter 4).

The distinct water masses in the Fram Strait differ not only in their physical characteristics

(Rudels et al., 2005), but also in their nutrient budgets (Falck et al., 2005), both of which may

have an impact on the phytoplankton bloom (e.g., Tamminen and Andersen, 2007). Based on

the nutrient consumption estimates in the water column, we were able to show that phytoplank-

ton biomass in the sea-ice covered EGC consisted of a much larger fraction of diatoms compared

to the sea-ice free waters of the WSC (chapter 4). The Arctic Ocean is a net exporter of silicate
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that is exported by the EGC through the Fram Strait in to the North Atlantic (Torres-Valdés et al.,

2013). These general differences in silicate budgets between the water masses may potentially

favor the conditions for siliceous diatoms in the EGC waters (Nöthig et al., 2015; Krause et al.,

2018). However, during the short time period of a seasonal phytoplankton bloom, these differ-

ences may be further altered through the horizontal mixing, and a water exchange by meso-scale

eddies (Wekerle et al., 2017a,b).

The sea ice may affect the primary production by the phytoplankton through various processes.

The seasonal sea-ice retreat increases the solar radiation that penetrates into the water column

that results in a stronger phytoplankton bloom in the ice-free water column (Cherkasheva et al.,

2014; Rysgaard et al., 1999). In addition, sea ice itself provides a habitat for the sea-ice algae that

may be trapped within or hanging below the sea ice (Arrigo, 2014; Boetius et al., 2015). These

sea-ice associated algae may contribute a major fraction of the seasonal primary production,

and as they detach from the sea ice or when the sea ice melts, may have a strong impact on the

availability of OM in the water column. This tight relationship between the primary production

and the sea ice is of a special importance for comparisons between the pelagic ecosystems of the

EGC and WSC.

Overall, our observations suggest that a combination of the distinct physicochemical conditions,

and the distinct sea-ice regimes in each region, drives the composition of surface waters bacte-

rial communities, mainly through control of the seasonal phytoplankton bloom (Figure 6.2A). All

these drivers are closely related, and estimating the individual contribution of each one of them

is challenging. However, it is reasonable to assume that in addition to the impact of the phyto-

plankton bloom, each water mass (e.g., AW or PSW) encompasses endemic taxonomic groups

(e.g., Agogué et al., 2011), however, in our dataset we were not able to conclusively identify

such taxa.

6.4 Sea ice promotes vertical connectivity of microbial com-

munities

The deep ocean is the largest habitat in the biosphere that hosts the largest microbial diversity

among the aquatic systems (Whitman et al., 1998). This realm is strongly differs from the surface

ocean (< 200 m) by its high pressure, high inorganic nutrient concentrations, and absence of

solar radiation. Due to lack of primary production (as a result of insufficient light availability)

the deep ocean microbial communities are strongly dependent on the exported organic carbon

from the surface (Aristegui et al., 2009). Nevertheless, the deep ocean is considered to be the

largest reservoir of organic carbon in the biosphere, and plays an important role in the global

biogeochemical cycles (Aristegui et al., 2009; Herndl and Reinthaler, 2013).

The vertical export of OM (i.e., organic carbon) from surface to the deep ocean, by sinking ag-

gregates, is considered to be the major input of OM to the deep ocean (Ducklow et al., 2001;

Herndl and Reinthaler, 2013). These sinking aggregates of phytoplankton cells and fecal pellets

are subject to colonization by microorganisms, and are hotspots of microbial activity (Azam and

Malfatti, 2007; Azam and Long, 2001). The colonized aggregates act not only as vectors for OM

transport, but also as vertical dispersal vectors between surface and deep ocean microbial com-
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munities (Mestre et al., 2018). Furthermore, it has been shown that in the deep ocean bacterial

association with aggregates is a phylogenetically conserved trait, and a transition between free-

living and particle-associated lifestyles is rare (Salazar et al., 2015). These observations suggests

that most of the aggregate colonization occurs in the surface ocean.

This thesis provides the first observations from deep waters (>1000 m) of the Fram Strait, and

includes one of the few studies characterizing deep ocean communities in the Arctic Ocean. The

results presented here (chapter 5) revealed that the deep ocean communities are composed of

several cosmopolitan taxonomic groups, such as, Gammaproteobacteria and Thaumarchaeota,

and an increasing abundance of poorly characterized taxonomic groups, often addressed as the

’microbial dark matter’ (e.g., SAR202 clade, Marinimicrobia (SAR406) and SAR324; Rinke et al.,

2013). This matches observations of a recent molecular survey of bacterial and archaeal commu-

nities in the deep waters of sub-tropical and temperate oceans (Salazar et al., 2016), suggesting

that despite physicochemical and biogeographical differences, there may be similar drivers of

bacterial and archaeal diversity in deep waters of the global ocean.

The results of this thesis also further expand recent observations from the central Arctic Ocean,

where excessive primary production by sea-ice associated algae was shown to provide a strong

connectivity vector between sea ice and seafloor microbial communities (Rapp et al., 2018).

Through a comparison of marine aggregate characteristics, and microbial communities in sea-

ice free and sea-ice covered waters of the Fram Strait, we showed that the vertical connectivity

between bacterial and archaeal communities in the sea-ice covered water column is stronger.

Sea ice promotes large, fast-sinking aggregates enriched with diatom cells that provide an ex-

port vector to the deep ocean for the "master recyclers", such as, Flavobacteriales and Rhodobac-

terales (Buchan et al., 2014), where based on bacterial activity measurements in the central

Arctic Ocean, they may play an active role in the degradation of OM (Tamelander, 2013; Bal-

monte et al., 2018). This important observation suggests that despite the strong stratification of

the Arctic Ocean water column, seasonal dynamics of microbial communities in surface waters

(which are strongly driven by sea ice conditions), may propagate downwards to the deep ocean

in a short period of time (Figure 6.2B).

6.5 Future scenario for Arctic Ocean pelagic microbial com-

munities

The shift towards warmer conditions in the Arctic Ocean may have a strong impact on the Arctic

marine ecosystem, and its functioning (Wassmann, 2015; Hollowed et al., 2018; Wassmann and

Reigstad, 2011). One of the main expected changes is in the magnitude of the seasonal primary

production (i.e., amount of fixed carbon) that will have a cascading impact on the entire ma-

rine ecosystem. The continued thinning of the Arctic sea ice will increase the light transmission,

resulting in earlier growth of the sea-ice associated algae (which have a large contribution to

the primary production in the Arctic Ocean, e.g., Fernández-Méndez et al., 2015). However, a

stronger light transmission, and warmer waters, will also lead to an earlier breakout of the sea

ice, and a stronger pelagic primary production by phytoplankton. Thus, due to the strong in-

terdependencies between various environmental factors, which drive the sea-ice algae and the
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phytoplankton blooms, the direction of the change in the primary production is not clear (Ar-

rigo et al., 2012; Arrigo and van Dijken, 2015; Leu et al., 2011). The changing conditions may

have an impact not only on the magnitude of the primary production but also on the community

composition of the phytoplankton (Mock et al., 2016). Such changes are already reported from

the Arctic Ocean with shifting communities from diatom- to flagellate- dominant phytoplankton

bloom communities (e.g., Degerlund and Eilertsen, 2010; Metfies et al., 2016; Li et al., 2009;

Nöthig et al., 2015). These changes in phytoplankton community composition may potentially

shape the co-occurring heterotrophic bacterial communities through the interactions between

them, many of which are based on exchange of metabolites and energy sources (Teeling et al.,

2012; Bertrand et al., 2015; Grossart and Simon, 2007; Ramanan et al., 2016; Amin et al., 2012;

Grossart, 1999; Lima-Mendez et al., 2015; Aharonovich and Sher, 2016). Although understand-

ing these interactions is of a high importance for deciphering energy fluxes and biogeochemical

cycles in the ocean, the underlying mechanisms are largely unknown. However, a comparison of

bacterial communities associated with blooming diatoms and flagellates revealed that the differ-

ent blooming phytoplankton is associated with different bacterial communities (Pinhassi et al.,

2004).

Overall, it has been shown that bacterial communities correlate strongly with the abundance

and the diversity of diatoms rather than other groups of phytoplankton (Rooney-Varga et al.,

2005). An extensive research of interaction mechanisms between diatoms and heterotrophic

bacteria revealed that they tend to co-occur with specific bacterial groups, such as, Marinobac-

ter, Roseobacter and Sulfitobacter (Grossart et al., 2005; Sapp et al., 2007b,a; Schafer et al.,

2002). It has also been suggested that co-occurring Sulfitobacter, Colwellia and Pibocella, pro-

tect the diatoms from oxidative stress, by catalyzing hydrogen peroxide that is produced by the

phytoplankton (Hünken et al., 2008). Furthermore, it has been shown that diatom-associated

Sulfitobacter cells promote their cell-devision through secretion of the hormone indole-3-acetic

acid (Amin et al., 2015). However, not all interactions may be beneficial for the diatoms, and it

has also been shown that transparent exopolymer particles (TEP), which are produced by het-

erotrophic bacteria, increase the aggregation of diatoms and enhance their sinking to the deep

ocean (Gärdes et al., 2011).

On the other hand, less is known regarding associations between bacteria and flagellated phy-

toplankton. There is evidence for a key function of bacteria in blooms of the coccolithophorid

algae Emiliania huxleyi, which can be both enhanced (Segev et al., 2016), and inhibited (Har-

vey et al., 2016; Barak-Gavish et al., 2018) by the co-occurring bacteria. Co-occurrence has

also been observed between the Prymnesiophyte Phaeocystis spp. and bacterial lineages, such

as, Polaribacter (Flavobacteriia) and Oceanospirillum (Gammaproteobacteria; e.g., Williams et al.,

2016; Ducklow et al., 1999; Becquevort et al., 1998; Delmont et al., 2014). Furthermore, it has

been shown that the associated Bacteria may inhibit the growth of Phaeocystis spp. colonies

through solubilization of the algal mucus (i.e., the TEP; Davidson and Marchant, 1987). In re-

cent years the Fram Strait phytoplankton blooms are dominated by colony forming Phaeocystis

spp. that are strongly associated with a high abundance of TEP (Engel et al., 2017). These

polysaccharides have been shown to be an important factor in determining bacterial diversity

during a phytoplankton bloom, and are selecting towards TEP utilizing taxa, such as, Flavobacte-

riales and Rhodobacterales (Taylor et al., 2014). Thus, a combination of these observations with

the results of this thesis (chapter 4) suggest that potential dominance of flagellated phytoplank-
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ton over diatoms in the future ice-free summers in the Arctic marine ecosystem, will most likely

have an impact on the phytoplankton-bloom associated bacterial communities (Figure 6.2C).

It is important to note that the suggested changes in the phytoplankton-bloom associated com-

munities may not be apparent through a taxonomic profiling using 16S rRNA gene sequenc-

ing. It is possible that the different composition of the phytoplankton community will result

in the shift of distinct gene function repertoires within the heterotrophic community, as a re-

sult of specialization. A potential functional group of genes in which such changes may occur

is the carbohydrate-active enzymes (CAZymes; Cantarel et al., 2009) that are responsible for

the degradation of OM during a bloom. It has been shown that while there are differences of

substrate preferences between broad taxonomic groups (Teeling et al., 2012), in some cases spe-

cialization for distinct polysaccharides may occur within the same taxon (e.g., Polaribacter; Xing

et al., 2015). Thus, in parallel to further monitoring of the microbial communities 16S rRNA

gene tag sequencing, it is vital to conduct further investigations using metagenomics in order to

establish a deeper understanding of the functional capacities, and identify functional changes

withing these communities (Galand et al., 2018).

The shift in the phytoplankton communities may not be confined to the surface waters, and may

propagate to the deep ocean microbial communities. Current model predictions suggest that in

the future the Arctic Ocean will have a more active microbial loop in the surface waters, and less

OM will be exported to the deep ocean (Vernet et al., 2017). However, reduced availability of OM

will not be the only impact on the deep water communities. There is increasing evidence for the

importance of vertical connectivity between microbial communities through sinking particles

(Frank et al., 2016; Mestre et al., 2018; Duret et al., 2018). The results of this thesis further
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extend these observations to the Arctic Ocean, and show for the first time, that sea ice enhances

vertical taxonomic connectivity between the surface and the deep oceans (chapter 5). Altogether,

this suggests that in future ice-free summers in the Arctic Ocean there may be a weakened genetic

and taxonomic flow from the surface to the deep ocean communities (Figure 6.2D).



Perspectives

This thesis significantly contributes to our understanding of the microbial community dynamics

in an Arctic marine ecosystem. It gives an extensive overview of the distinct pelagic bacterial and

archaeal communities which dominate the surface waters, and their close association with the

phytoplankton community. It further describes the key role of sea ice in driving the microbial

diversity and in propagating dynamics of surface microbes into the deep waters of the Arctic

Ocean. However, these observations, that were made based on taxonomic composition of the

microbial communities, only provide a limited information regarding their functional capacity

and activity. Building on the results of this thesis, an implementation of ‘omics’, such as, metage-

nomics and metaproteomics, is required to extend our understanding of the microbial dynamics

in the Arctic marine ecosystem. These methodologies will allow to characterize the functional

capabilities of the microbial communities as a whole, as well as link specific functions to spe-

cific taxonomic groups. Consequently, this will allow us to link the microbial communities to the

biogeochemichal cycles, and to infer metabolic processes present in the Arctic marine ecosystem.

Episodic summer snapshot observations, such as the ones conducted in this thesis, are insufficient

to fully understand the microbial dynamics in the Arctic Ocean. The Arctic marine ecosystem is

characterized by an extreme seasonal variability, with an entirely phototrophically driven food

web during the summer, and a heterotrophic, potentially also chemoautotrophic, food web dur-

ing the winter. Revealing the succession dynamics of the microbial communities between these

two fundamentally different ecosystem states will provide an important insight into the func-

tional capacities of various microbial taxa and their role in the Arctic biogeochemichal cycles.

However, due to the extreme conditions during the Arctic winter, this season is heavily under-

sampled compared to the summer, and almost nothing is known regarding the winter microbial

communities in the Arctic marine ecosystem. For a two years now, we were able to overcome the

sampling limitations during the harsh winter conditions through the deployment of advanced

autonomous sampling platforms. Soon, the analysis of these and other samples will provide a

unique opportunity to observe, for the first time in high temporal resolution, the seasonality of

the Arctic microbial communities.

The bigger challenge, however, is to monitor processes associated with the changing climate

of the Arctic Ocean. Only long-term observations that are well-designed with a standardized

sampling scheme and with reasonable sampling reiterations, e.g., a varying sampling frequency

according to seasonal variations throughout a year, will allow to effectively monitor ecological

patterns. Over time, this might potentially allow to differentiate between the natural seasonal

ecosystem variations, and the emerging impacts of climate change. Such observations should

not be confined to a single location (e.g., the Fram Strait) and require a world-wide scientific

134
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effort. It is of high importance that the methods development and standardization proceedings,

that are developed in the framework of the FRAM Molecular Observatory, will be communicated

across the entire Arctic research community in the near future, in order to achieve a standardized

pan-Arctic monitoring of the microbial communities.
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M., Mircheva G., Montagna M., Moritz C., Mulk V., Naumoski A., Navodaru I., Padisák J., Páls-
son S., Panksep K., Penev L., Petrusek A., Pfannkuchen M., Primmer C., Rinkevich B., Rotter
A., Schmidt-Kloiber A., Segurado P., Speksnijder A., Stoev P., Strand M., Šulčius S., Sundberg
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