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Abstract
The Siberian boreal forest is the largest continuous forest region on Earth and plays a crucial role in
regulating global climate. However, the distribution and environmental processes behind this
ecosystem are still not well understood. Here, we first develop Sentinel-2-based classified maps to
show forest-type distribution in five regions along a southwest-northeast transect in eastern
Siberia. Then, we constrain the environmental factors of the forest-type distribution based on a
multivariate analysis of bioclimatic variables, topography, and ground-surface temperatur at the
local and regional scales. Furthermore, we identify potential versus realized forest-type niches and
their applicability to other sites. Our results show that mean annual temperature and mean
summer and winter temperatures are the most influential predictors of forest-type distribution.
Furthermore, we show that topography, specifically slope, provides an additional but smaller
impact at the local scale. We find that the filling of climatic environmental niches by forest types
decreases with geographic distance, but that the filling of topographic niches varies from one site to
another. Our findings suggest that boreal forests in eastern Siberia are driven by current climate
and topographical factors, but that there remains a portion of the variability that cannot be fully
accounted for by these factors alone. While we hypothesize that this unexplained variance may be
linked to legacies of the Late Glacial, further evidence is needed to substantiate this claim. Such
results are crucial to understanding and predicting the response of boreal forests to ongoing
climate change and rising temperatures.

1. Introduction

The boreal forest, one of the largest biomes on Earth
representing roughly one-third of the world’s total
forested area, plays a key role in providing essential
ecosystem services [1–4]. While evergreen conifer-
ous trees dominate boreal forests of North America
and western Eurasia, deciduous conifer forests of
larch species prevail in eastern Eurasia [5]. This
distribution is observed despite the similarity of
climatic conditions across the boreal areas of the

Northern Hemisphere, where environmental niches
overlap [6]. The Siberian boreal forest is the largest
continuous forested region on Earth and features
ecosystem services that differ markedly from ever-
green forests (e.g. carbon stocks) [6–8]. Larch spe-
cies and permafrost form a unique eco-climate sys-
tem, wherein permafrost provides water to the tree’s
roots, while larches regulate permafrost thawing [9].
Despite being a major ecosystem, the detailed distri-
bution and the environmental drivers of boreal forest
types in eastern Siberia remain poorly understood
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[10, 11]. Therefore, the potential alteration to boreal
ecosystems in the future is uncertain, which is a mat-
ter of local to global concern.

Research shows that the distribution of major
plant functional types on global and continental
scales has generally been assumed to be influenced
by contemporary climate [12, 13]. Specifically, tem-
perature has been shown to drive Holocene boreal
forest dynamics at the regional scale [14]. Other
studies propose that the historical constraints of the
Late Glacial, or that the latter combined with con-
temporary climate greatly impact present-day boreal
forest composition [5, 15]. Topographical variables,
which can be used as proxies for hydrological pro-
cesses and incoming radiation at the local scale, are
a key control of plant community distribution [16–
20] and possibly of the abundance of Siberian larch
(Larix) [21]. Furthermore, topographic factors sig-
nificantly affect soil moisture and nutrient availab-
ility impacting the productivity and carbon storage
of boreal forests [22], and influence the recovery
and succession of boreal forests following disturb-
ances like wildfires [23]. A gap exists in understand-
ing how various factors such as climate and topo-
graphy influence forest-type distribution across spa-
tial scales, ranging from local (meters) to regional
(kilometers) scale. Disentangling the influence of
topographic and climatic variables in boreal forests is
needed to predict how these ecosystems may respond
to climate change, develop effective conservation
strategies, and assess the forest types’ environmental
niches.

Gaining a predictive understanding of how the
eastern Siberian boreal forest will respond to climate
change requires a comprehensive grasp of its spa-
tial arrangement and the key factors controlling it
across local and regional scales [24]. Potential niche
is defined as the range of distribution that would be
achieved if all dispersal constraints were overcome,
while realized niche refers to the actual niche occu-
pied by a species or forest type [15, 25]. Identifying
realized and potential forest-type niches helps under-
stand species distribution ranges and highlight poten-
tial limiting factors. Uncertainties arise regarding
whether one forest type’s niches can be transferred
to another, and whether the environmental space
could support different species. For instance, ever-
green forests have expanded into larch refugia [26,
27], yet the availability of potential evergreen niches
in eastern Siberia remains unsure. Such knowledge is
crucial with progressing climate change, where spe-
cies range and population size could shift under chan-
ging environmental conditions [28, 29]. It remains
unclear whether and how the climatic and topo-
graphic factors of boreal forest types vary between
central and northeast Siberia, and how the forest-type
niches apply.

Satellite remote sensing is a valuable tool for
understanding boreal forests, enabling various
applications such as monitoring, mapping, and bio-
mass estimations [30–33]. The growing accessibil-
ity of publicly available global multispectral satel-
lite imagery, such as Sentinel-2 (S2) or Landsat
missions, has expanded the horizon of broad-scale
forest ecology studies [34–37]. S2’s efficacy in forest
mapping has been well-demonstrated in numerous
studies with its multiple red edge and near-infrared
(NIR) bands allowing the capture of detailed veget-
ation reflectance [38–40]. International programs
provide global landcover maps [41, 42] of multiple
forest types at a spatial resolution ranging from 100
to 300 m [41, 43]. Despite these advances, many
applications in forest ecology demand finer detail
than the currently available maps offer, particularly
when attempting to elucidate the intricate drivers
of forest types in boreal ecosystems, or estimating
forest growing stock volumes [22, 44–46]. Currently,
there is no high-resolution map focusing on mixed
evergreen-summergreen boreal forests in eastern
Siberia [47] which would highlight the overlapping
niches between forest types.

To improve our understanding of the eastern
Siberian boreal forest’s spatial distribution and envir-
onmental factors, we first aim to provide the spa-
tial distribution of summergreen and evergreen
needleleaf forest types in eastern Siberia based on a
remote sensing classification using late summer S2
imagery and training data from the field. Peak sum-
mertime series are commonly used to classify forests
with optical satellite imagery, covering the maximum
greenness foliage period [48–51]. In this study, we
use the late summer reflectance to differentiate sum-
mergreen needleleaf from evergreen needleleaf forest
types. The vegetation coloring period in late summer
is particularly suited for differentiating forest types
in Siberia as larch forest will turn into fall colors
while evergreen will remain green. Secondly, we aim
to identify the main drivers, considering topography
and climate at the local and regional scale, govern-
ing the distribution of forest types with a multivari-
ate modeling approach. Specifically, we use general-
ized linear models (GLM) to disentangle the import-
ance of each driver. Finally, we explore the applic-
ability of the identified environmental niches and
assess their relevance in different areas, highlighting
potential versus realized niche-filling using predic-
tions. We hypothesize that climatic variables on a
regional scale are more influential than local topo-
graphy in shaping forest-type distribution in eastern
Siberia, such as summergreen versus evergreen. We
demonstrate our approach in five regions of eastern
Siberia, where fieldworkwas conducted between 2018
and 2021 along a southwest-to-northeast (SW-NE)
transect.
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2. Materials andmethods

2.1. Study areas
This study focuses on boreal forests in Siberia cov-
ering a substantial geographical range between lat-
itudes 59◦ N–68◦ N and longitudes 110◦E–170◦E.
This SW-NE transect marks the transition from ever-
green forest (Picea, Pinus) in western Yakutia to
larch-dominated forest (Larix) in central and eastern
Yakutia, and to taiga-tundra transition in the moun-
tainous landscape of northern Chukotka. Our study
encompasses five regions: Khamra (KH), Western
Yakutia (WY), Central Yakutia (CY), Oymyakon
region (OY), andChukotka (CH)with forest plot data
collected in 2018 and 2021 from across eastern Siberia
(figure 1) [52–54].

Eastern Siberia is marked by one of the most
extreme continental climates on Earth, with severe
cold winters, warm summers, and short growing
seasons [55]. Freezing temperatures occur for 6–
8 months and snow can last several months [56].
Maximum temperatures reach+30 ◦Candminimum
temperatures −50 ◦C. Precipitation is low (mean
annual precipitation 340 mm) [57] with a max-
imum in July and minimum in February [58]. The
boreal forest thus experiences very dry conditions
[59–61].

Larches are deciduous needleleaf trees that mostly
grow on continuous permafrost [62]. The growing
season starts May/June, while the needles usually
begin to senesce at the end of August to September
depending on the location [63]. Eastern Siberia’s
topography varies greatly from low rocky plateaus
and the central Yakutian lowlands in the west, via the
Verkhoyansk Mountain Range peaking at 2400 m to
the Chukotka mountain range in the east.

2.2. Forest-type mapping
2.2.1. Sentinel-2 mosaic and datasets for training and
validation
Mapping forest types first required gathering and
preparing suitable S-2 satellite data for classification.
S2 atmospherically corrected late summer data were
collected with a 30 km buffer around each plot of
our study using the cloud-based platform Google
Earth Engine (GEE) [64]. We selected a late-summer
time series ranging from September 1st to October
15th, from 2018 to 2022. This time frame covers
the field survey years [52, 53] and the fall color-
ing period emphasizing the differences between ever-
green versus summergreen needleleaf trees. S2 images
were pre-processed to produce mosaics for the sub-
regions and generate training and validation data-
sets. These datasets are based on the forest surveys
and assigned to seven forest-type classes (table 1,
appendix A1.2).

2.2.2. Classification of forest types
Random Forest (RF) is a widely used machine-
learning algorithm for vegetation mapping [39, 65–
69], and was used as a classifier to predict the forest
types. It had the best results when trained using
100 trees and a dataset split of 60/40% for train-
ing and validation, respectively (appendix A1.3). The
quantitative accuracies reported in this paper rely on
the independent validation set constituted by this
reserved portion of the training data. Qualitative
assessments of the classified regions of eastern Siberia
are based on expert knowledge from field expedi-
tions. Our forest-type maps of the subregions were
qualitatively compared with pre-existing landcover
maps—ESA World Cover and Copernicus Global
Land Cover [70, 71]. A minimum mapping unit of
10 m was used, as it corresponds to the highest
S2 band resolution. Figure 2 displays the processing
workflow.

2.3. Identifying controlling factors for forest-type
distribution
2.3.1. Climate and topographic controls
Identifying the controls over forest-type distribu-
tion at two different scales is necessary to under-
stand forest-type distribution and realized niches
better. Our approach aims to distinguish which
climate variables are drivers at the regional scale
(30 × 30 km), and which topographic variables at
the local scale (3× 3 km). Bioclimatic variables from
WorldClim version 2.1 are 1 km resolution inter-
polated climate data averaged over 1970–2000 [57].
Bioclimatic variables are derived from theWorldClim
monthly temperature and precipitation values to
generate biologically meaningful variables The most
relevant and least correlated bioclimatic variables
were selected using a Principal Component Analysis
(PCA), namely: Annual Mean Temperature (bio1),
Temperature Annual Range (bio7),Mean Temperature
of Warmest Quarter (bio10), Mean Temperature of
Coldest Quarter (bio11), and Precipitation of Driest
Quarter (bio17) (figure 3 and appendix A1.4).
These selected variables represent a range of annual
trends, seasonality, and extreme and limiting envir-
onmental factors. Additionally, the mean Ground
Surface Temperature (GST) was used at 1 km res-
olution from 2018 to 2021 [72], corresponding to
the years of fieldwork in eastern Siberia. Copernicus
Global 30 m TanDEM-X resolution Digital Elevation
Model (DEM) was employed to identify the local
topographic controls over forest-type distribution,
and accessed through GEE [73]. Topographic metrics
that are considered proxies for hydrological processes
and illumination from the DEMwere derived, such as
elevation (m), slope (◦), Topographic Position Index
(TPI) [74], and aspect (◦) (appendix A1.5).
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Figure 1. Area of study and location of field sites. 35 plots were visited in 2018 [52], mainly located in Chukotka and Western
Yakutia. 44 plots were visited in 2021 [53], focusing on Central Yakutia and the Verkhoyansk mountains. We identified 24
additional vegetation plots through image interpretation of Sentinel-2 satellite imagery and Google Earth ®. Map data:
© OpenStreetMap contributors, STRM.

Table 1. Total number of visited and image interpretation plots, number of pixels pixels, associated detailed class names and class labels
[54].

Detailed class name Class label Expedition plot Image interpretation Total polygons

Larix woodland Sparse Larch 19 0 19
Open Larix forest Medium Larch 12 0 12
Closed Larix forest Dense Larch 16 0 16
Needleleaf Evergreen forest Evergreen 9 18 27
Mixed broadleaf and needleleaf
Summergreen forest

Mixed Summergreen 12 0 12

Mixed broadleaf and needle leaf
Summergreen and Evergreen
forest

Mixed Summergreen-Evergreen 3 6 9

Burned or bare Burned or bare 8 0 8
Total polygons — 79 24 103
Total pixels — 2,844 864 3,708

2.3.2. Multivariate analysis
A common regression method to identify important
predictor variables is GLM [75–80]. We predicted the
forest-type presence or absence in the environment
by applying GLMs with a binomial distribution and a
logistic link function (appendix A1.6).

Themodels were developed for the three classes of
main interest and best classification accuracy: Sparse
Larch, Dense Larch, and Evergreen. Acknowledging
regional differences in the biophysical drivers and
related spatial autocorrelation, one model per class
per subregion was set (figure 4) for the regional and
the local scale, i.e. 30 fitted GLMs. The statistical ana-
lyses were performed using R statistical software [81],
and the GLMs created using the glm function in the
lme4 package [82]. Model fitness was assessed using
the DHARMa package [83]. The pseudo-R-squared
(pR2) valueswere computed using the pR2 function in

the pscl package to account for the variance explained
by the models [84].

For the regional models, the forest-type, bio1,
bio7, bio10, bio11, bio17, and GST were extracted
with a 1 × 1 km grid over the entire subregion
area, i.e. the 30 km buffer around each plot. For
each regional model, the predicted variable is forest
type, which was binarized such that the pixel is equal
to 0 if the class is absent and 1 if present, with a
dataset for each class. The predictor variables are
the above-mentioned bioclimatic variables and GST
which have been identified as potentially important
regional drivers of forest-type distribution. For the
local models, elevation, slope, TPI, and aspect were
used with a 0.1 × 0.1 km grid over a 3 km grid
around each plot. This choice of reducing the size
and resolution of the grid is to help understand the
local effects of topographic variables. As Sato and
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Figure 2. Classification schematic. We combined S2 late summer surface reflectance (2018–2022) with in-situ and UAV-based
forest plot data, and image interpretation to define the training and validation datasets. We implemented a Random Forest
regression to obtain classified maps of different forest-type categories. Red Green Blue satellite image is from the Copernicus
Sentinel Data [2023].

Kobayashi suggest [21], topographic properties at the
100m scale were used as a proxy for local hydrological
conditions. For each local model, the predicted vari-
able is forest type, binarized, and the predictor vari-
ables are the topographic variables. For both model
setups, the predictor variables were centered by sub-
tracting themean before being included in themodels
due to the different ranges of values of the predict-
ors, which improves the interpretation of the estim-
ates and numerical stability. We evaluated the res-
ults by looking at the estimated values and associated
p-values.

2.3.3. Potential versus realized niches predictions
The previousGLManalysis focused on identifying the
realized forest types’ niches based on abiotic factors
(topography and climate). Subsequently, we determ-
ined whether the realized abiotic forest-type niches
are relevant from one region to another along the
SW-NE transect. If the correlation between the pre-
dicted and realized niches is low, other phenomena
like biotic interactions could substantially drive the
forest types [85].

To identify if the predicted versus realized envir-
onmental niches match, the potential niche of each
class was predicted using the dataset of each of the
five subregions with every fitted GLM. We call the
predicted niche the output of the predicted model,

and the realized niche the classified maps previously
obtained. The R predict function and the Pearson cor-
relation coefficient were used to evaluate the com-
patibility of the predicted and realized environmental
niches across all sites.

3. Results

3.1. Estimation of forest-type distribution
Five major forest-type regional maps were produced,
built with 30 km buffers around individual forest
plots that were clustered in the five subregions.
An overall accuracy of approximately 78% and f-
scores varying between 35% and 92% for individual
classes were obtained (table 2). Our results show that
Medium Larch is the most frequent forest type within
the entire mapped area (excludingmasked areas) rep-
resenting 20.8% of the area. The Evergreen class rep-
resents 19.3% of the mapped area and is especially
dominant in the southwest of the study area and
along the Lena River. Dense Larch constitutes 17.5%
of the regional maps and dominates central and
western Yakutia, followed by Mixed Summergreen-
Evergreen covering 12.8% and mainly situated in the
Khamra region. Finally, Mixed Summergreen, Sparse
Larch, and Burned or bare represent roughly 9%–
10% each. Sparse Larch is mainly found in the east-
ern Chukotka part and at higher elevations, while
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Figure 3. Principal component analysis of the bioclimatic variables related to the forest type classes. Each arrow corresponds to a
single bioclimatic variable, the variable name is explained in appendix A1.4.

Mixed Summergreen is centered in central and west-
ern Yakutia (figure 4).

Medium Larch and Mixed Summergreen have the
lowest accuracies (table 2) as their reflectance spec-
tra were in-between classes, and fewer training/valid-
ation plots were available for these classes (appendix
A2.1). Formost classes, the precision scores are higher
than the recall, implying that the classification tends
to be cautious in predicting the positive class. We per-
formed a qualitative accuracy assessment and found
that our maps provide more thematic details than
pre-existing landcover maps (appendix A2.2).

3.2. Controls for forest-type distribution:
multivariate modeling of environmental drivers
A GLM was fitted for each region and class (N = 30)
to highlight the importance of the environmental
variable in predicting the presence/absence of the
class. Overall, the regional GLMs explain more
variance than the local models, suggesting that local

topographic metrics alone do not explain an import-
ant part of the forest-type distribution compared to
the climate variables in the regional models alone.
However, the local models show the relative import-
ance among the topographical metrics. The pseudo-
R2 varied from 0.001 to 0.75, ranging from poor pre-
dictive power to very high (appendix A2.3). Low pR2

models are usually where the forest type is not pre-
valent in the region, inducing few presence values of
the predicted variable (e.g. Evergreen in Chukotka,
or Sparse Larch in Khamra). Conversely, high pR2

occurs in models where the class is predominant in
the region (e.g. Sparse Larch inChukotka,Dense Larch
in Western Yakutia).

3.2.1. Regional models for forest-type distribution
The magnitude of the model estimates (i.e. log odds)
shows the importance of the predictors. Here, mean
annual temperature and mean temperature of the
warmest quarter and of the coldest quarter are the

6
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Figure 4. Classification maps of the estimated forest-type distribution. (a) Overview map with geographic regions of interest: (b)
CH Chukotka, (c) OY Oymyakon, (d) CY Central Yakutia, (e) WYWestern Yakutia, and (f) KH Khamra. Map data: Google,
©2024 NASA, TerraMetrics.

Table 2. Performance of the forest-type classification showing overall accuracy, Kappa coefficient, precision, recall, and f-score. Classes
have high accuracies except Mixed Summergreen and Medium Larch.

Class label F-score Precision Recall

Sparse Larch 88.27 81.32 96.53
Medium Larch 35.37 42.27 30.40
Dense Larch 77.07 63.03 99.16
Evergreen 92.28 91.53 93.04
Mixed Summergreen 44.51 65.21 33.78
Mixed Summergreen-Evergreen 78.47 79.02 77.93
Burned or bare 68.87 97.64 53.20

Accuracies

Overall accuracy 78.17
Kappa 72.82

most influential predictors for all three classes across
all regions (figure 5) with coefficients varying from
−25 to +25 (compared to −0.4 to +0.8 for precipit-
ation of driest quarter).

The estimates suggest that increasing temperature
in the warmest or coldest quarter is more favorable
for the occurrence of Sparse Larch and Evergreen com-
pared toDense Larch. In the Oymyakon region,Dense
Larch shows strong negative log odds to the warmest
quarter temperature. Conversely, the mean annual
temperature has consistently significant negative val-
ues for Sparse Larch and Evergreen, indicating that
an increase in mean annual temperature reduces the
likelihood of Sparse Larch and Evergreen. GST is not
statistically significant except for Evergreen where we
observe a positive relationship from NE (Oymyakon)
to SW (Khamra), meaning increasing GST is more
favorable to Evergreen along this gradient. The annual

temperature range seems influential for Sparse Larch
and Evergreen, where we observe a stronger positive
relationship for Sparse Larch and a shift from neg-
ative to positive log odds for Evergreen from Central
Yakutia to the Khamra region in southwest Yakutia.

Furthermore, our results show that precipitation
of the driest quarter (bio_17), representing the cold-
est winter months, varies significantly across regions.
For both Sparse Larch and Evergreen, we observe a
decrease in the log odds from Chukotka to central
Yakutia and an increase to the west to the Khamra
region. These results suggest that from Chukotka to
Central Yakutia, both classes tend to be located where
winter precipitation is higher than from Yakutia to
Khamra. Winter precipitation in the three coldest
months is not an important predictor ofDense Larch,
except in western and central Yakutia where the log
odds are positive.

7
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Figure 5. Results of 15 regional generalized linear models including annual mean temperature (bio1), temperature annual range
(bio7), mean temperature of warmest quarter (bio10), mean temperature of coldest quarter (bio11), precipitation of driest
quarter (bio17), and ground surface temperature (GST) within a 30 km radius around each vegetation plot, and sampled at 1 km.
Each point corresponds to the output of the model, i.e. the log odds. The y-axis is the estimated log-odds output of the model,
and the x-axis the region. If the predictor variable was not statistically significant (p> 0.05), the circle is unfilled. KH: Khamra,
WY: Western Yakutia, CY: Central Yakutia, OY: Oymyakon, and CH: Chukotka.

Figure 6. Results of the 15 local generalized linear models including aspect, elevation, slope, and topographic position index,
within a 3 km radius around each vegetation plot, and sampled at 0.1 km. Each point corresponds to the output of the model,
i.e. the log odds. If the predicting variable was not statistically significant (p> 0.05), the circle is unfilled. KH: Khamra, WY:
Western Yakutia, CY: Central Yakutia, OY: Oymyakon, and CH: Chukotka.

3.2.2. Local topographic models for forest-type
distribution
The results of the local models suggest that slope, fol-
lowed by TPI are the most influential predictors in

the models for all three classes and regions (figure 6).
According to the modeling results, an increase in
slope augments the likelihood of Dense Larch pres-
ence versus Evergreen and Sparse Larch, both of which

8
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Figure 7. Correlation matrices between models and regions showing the Pearson correlation coefficients. The x-axis shows the
different fitted models, and the y-axis shows the different datasets used for prediction. The top row is of regional models and the
bottom row of local models. The columns show forest-type class: (left) Sparse Larch, (middle) Dense Larch, and (right) Evergreen.
Red colors indicate positive correlations, and blue negative. The darker the color the stronger the correlation. KH: Khamra, WY:
Western Yakutia, CY: Central Yakutia, OY: Oymyakon, and CH: Chukotka.

have negative estimates in Chukotka. Consequently,
Dense Larch is more likely to be situated on steeper
slopes than Sparse Larch and Evergreen except for in
the Chukotka region.

The outcomes of the TPI analysis indicate that
Sparse Larch tends tomanifest at relatively lower elev-
ations, andDense Larch at relatively higher elevations
(e.g. ridges), excluding the Oymyakon region where
local elevation variations are more pronounced than
in the other regions. Elevation displays weak coeffi-
cients, but Evergreen shows a tendency to be located at
a lower absolute elevation. Aspect exhibits consider-
able variation between regions and classes; however,
the robustness of the results is not evident in themag-
nitude and statistical significance of the estimates.

3.2.3. Potential versus realized niches
The applicability of the predicted (potential) versus
realized environmental niches along the SW-NE tran-
sect in eastern Siberia was assessed. The potential
niche of each forest-type class was predicted using the
dataset of each subregionwith its fittedmodel, corres-
ponding to the realized niche, and visualized in space
(figures 7 and 8).

For Sparse Larch, the regional models appear
to effectively capture its ecological niche across the
regions of interest, featuring notably high posit-
ive correlation coefficients (figures 7(a) and 8(a)).
This suggests that the realized and potential regional

climate niches of Sparse Larch align well across
regions. For Dense Larch and Evergreen, the regional
models appear to effectively capture their ecological
niche only when the model and dataset are geo-
graphically close together (figures 7(b) and (c)). For
example, the regional model for Dense Larch trained
in Oymyakon with theWestern Yakutia dataset shows
a low Pearson coefficient (0.30; figure 7(c)), which
could imply that the climate features are different
and inapplicable between regions or that there is a
mismatch between the realized and potential niches.
Additionally, forest types like Evergreen in Chukotka
or Sparse Larch in Khamra are not common and
therefore lead to low correlation coefficients.

Local models show varying results for all classes,
with both positive and negative Pearson coefficients
(figures 7(d), (f) and 8(b)). This suggests that, based
on local topography, the potential ecological niches of
the three classes are not filled, and/or that the topo-
graphic variables are not compatible from one region
to another.

4. Discussion

Our study shows that the distribution of the forest
types Sparse Larch, Dense Larch, and Evergreen is
mainly influenced by climatic drivers on the regional
scale rather than topographic boundary conditions
on the local scale. Regional models that include

9
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Figure 8. Predicted class distributions in geographical space compared to their observed distribution, with associated correlation
coefficient. Left panels are: (a) predicted Sparse Larch distribution using the regional Oymyakon model for the Chukotka region;
and (b) predicted Evergreen distribution using the local Central Yakutia model in Khamra. In grey is where the forest type is
absent. The right panels correspond to the mapped class distribution. Mixed Sum: Mixed Summergreen, Mixed Sum/Ever: Mixed
Summergreen-Evergreen.

only selected bioclimatic variables and GST gener-
ally have higher predictive power than local mod-
els that include the topographic variables only. These
findings suggest that the regional climate variables
are more significant drivers of forest-type distribu-
tion than local topographic variables, supporting our
initial hypothesis. Nevertheless, the predictive power
of some models is low, probably reflecting the com-
plexity of the processes behind boreal vegetation
dynamics [14, 86]. Anothermain finding of this study
is the positive correlation between potential and real-
ized forest-type niches, which weakens with increas-
ing distance from one region to another along the
SW-NE transect.

4.1. Air temperature variables drive forest types’
distribution at the regional scale
Using climatic drivers in GLMs on the regional scale
identified the predominant factors of forest types
with air temperature variables as the main driver of
forest type in eastern Siberia. Air temperature vari-
ables are significantly more important than precipit-
ation variables andGST in explaining the distribution
of the three forest types. These results are consistent
with a paleoclimate study that showed the import-
ance of temperature as a driver of forest dynamics
in western Siberia across the past 9000 years [14].
A biome reconstruction study based on global fossil
pollen records finds that vegetation change in the
Northern Hemisphere may be limited by moisture
changes, meaning the effect of temperature and pre-
cipitation combined [87]. Moreover, we show that
mean annual temperature has themost influence, fol-
lowed by mean temperature of the warmest quarter

andmean temperature of the coldest quarter. Our res-
ults suggest that an increase in mean annual temper-
ature (keeping the other variables stable) decreases
the likelihood of occurrence of Sparse Larch and
Dense Larch. In the Khamra region, we find that
Evergreen responds positively to an increase in the
coldest temperature but negatively to an increase
in the warmest temperature. We notice similar pat-
terns between mean annual temperature and the
warmest and coldest temperatures for all forest types.
Wilmking et al [88], suggest that, depending on the
precipitation regime and the age of the forest, increas-
ing temperature could positively or negatively influ-
ence tree growth. Eastern Siberia being a high-latitude
region is subject to unprecedented rising temperat-
ures due to climate change [89–92]. Our GLM res-
ults suggest that when mean annual temperatures
increase in the taiga-tundra ecotone of Chukotka,
where the transition zone is diffuse [93], less Sparse
Larch is expected, but there is a higher likelihood of
Dense Larch. These results could imply a latitudinal
treeline migration and forest densification similar to
processes currently observed in Chukotka further to
the south [94]. A part of the regional models’ vari-
ance remained unexplained, indicating the influence
of additional factors on forest-type distribution, such
as topography.

4.2. Slope as an indicator of moisture drives forest
types’ distribution at the local scale
Local models including topographic variables at the
local scale, explained the respective influence of slope,
TPI, aspect, and elevation on forest types distribu-
tion. Our local modeling approach indicates that
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slope and TPI are the main local topographic drivers
of the three forest types. The results highlight the
preference for Dense Larch to be found on steeper
slopes compared to Sparse Larch and Evergreen. The
TPI findings suggest that Sparse Larch typically occu-
pies the lower elevations of its local surroundings. In
contrast,Dense Larch is positioned at the higher elev-
ations of its surroundings. Sato and Kobayashi [21]
find that larch forests are controlled by topography-
mediated hydrology and that they prefer patches with
lower inundation risks. Our finding that dense larch
forest tends to be located on steeper slopes than sparse
larch forests may be explained in terms of hydrology
with higher soil water drainage and hence lower risks
of flooding compared to lower elevation or flatter
lands. Furthermore, hilly terrain provides more space
to grow than valley bottoms, and the latter contains
fine-grained water-saturated sediments which could
explain the use of the environmental space on slopes.
Even though past studies proved slope orientation to
be an important driver of larch abundance [21], our
study does not find aspect to be a significant driver of
the three forest types. Another study [95] has found
that, as a result of topographically induced differences
of solar radiation, Siberian larchwas limited to north-
facing slopes in the northern Mongolian mountain
taiga. When considering our modeling approach and
large study area, the variability in aspect across classes
and regions is not significant. While aspect could
potentially influence forest distribution, its import-
ance diminishes greatly when considering slope, TPI,
and elevation in the GLM, especially slope. Khamra,
Western Yakutia, and Central Yakutia have low topo-
graphy, and therefore no major influence of aspect is
expected. In addition, the influence of topography on
boreal forest distribution might be reduced or neg-
ated by the impact of fire or other disturbances that
could locallymodify forest distribution. Larch density
responds to microsite conditions such as water tracks
and natural levees [81], but capturing such intric-
ate topographical patterns remains challenging due
to the moderate resolution of the topographic data
(GLO-30 m). The multivariate analysis of both local
and regional models helped define the realized niches
of Sparse Larch, Dense Larch, and Evergreen.

4.3. Realized and potential environmental niches
diverge with increasing distance
The fitted local and regional models were applied to
other regions to investigate the applicability of the
identified realized environmental niches. For Dense
Larch and Evergreen, we find that regional models
are well represented at the landscape scale, and when
the classes are sufficiently present in the area. This
suggests that the potential and realized habitats of
closely located regions, such as Central Yakutia and
Western Yakutia, align effectively. The question arises
as to why, with increasing distance, the realized and

potential species distributions do not appear to con-
verge. Pearson and Dawson [85], discuss how a low
realized versus potential ratio might indicate differ-
ent phenomena such as biotic interactions, edaphic or
other non-climatic environmental factors, and mod-
elingmisspecifications. Some Larix species have over-
lapping bioclimatic niches [96] which, in turn, affect
the forest-type niche. For example, in the Khamra
and Western Yakutia regions, Larix and Evergreen
also occur in mixed classes (Mixed Summergreen-
Evergreen; Mixed-Summergreen) and therefore Larix
and Evergreen are present but, in the prediction,
the realized versus potential niches are not aligned
because we map them by their endmember classes
of Evergreen or Larix only. However, if we integrate
the Mixed Summergreen-Evergreen and the Mixed-
Summergreen classes in space, abundant Larix and
Evergreen is filling its niches.

Svenning and Skov [15] argue that the low filling
of the potential range is mainly due to dispersal lim-
itations, which reflects historical constraints from
the post-glacial recolonization from ice-age refugia.
Additionally, Herzschuh [5] proposes that the boreal
tree refugia are governed by the environmental condi-
tions experienced during the Last Glacial. Specifically,
deciduous and evergreen boreal forests were determ-
ined by different conditions during the Last Glacial
resulting from genetic constraints and indirectly from
the glacial climate [5]. Additional environmental
factors, such as fire history at a site can affect the
recovery and trajectories of boreal forests [97, 98],
especially at Lake Khamra in the southern part of our
study where wildfire history has been documented
over the last two millennia [99]. Evergreen tree taxa,
over the past millennia to recent years, have progress-
ively transgressed in eastern Siberia from SW to the
NE summergreen larch refugia [26, 27]. Our results
predict that these taxa have potential climatic niches
towards the East (figure 7(c)). If the transgression
continued, Evergreen would theoretically have envir-
onmental space to grow in this region, where poten-
tial niches could be filled, provided other factors such
as competition with larch and poor dispersal are not
limiting. We show that the climate- and topography-
drivenmodels explain some, but not all, of the forest-
type distribution. These findings prompt consider-
ation of the hypotheses put forth by Svenning and
Skov [15] and Herzschuh [5], and we suggest that
both the Late Glacial environmental factors and cur-
rent climate and topography play a role in shaping the
present-day distribution of boreal forests.

4.4. Methodological improvements and limitations
This paper is based on state-of-the-art methods, such
as RF supervised classification and GLM. Reliable
forest-type maps were produced based on S2 late
summer reflectance composites trained with forest
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plot data from our 2018 and 2021 expeditions in east-
ern Siberia. These maps provide an assessed distribu-
tion of forest types, which, to our knowledge, was not
previously available due to a lack of research focusing
on this region and due to missing optimization of the
available global landcover maps for this region.

Using late summer reflectance proves especially
effective for high-latitude areas where obtaining
cloud-free time series satellite images can be chal-
lenging, and the distinction between evergreen and
summergreen is low during the peak of photosyn-
thetic productivity. Here, we optimized the acquisi-
tion specifically for late summer, necessitating fewer
images compared to full-year time-series approaches.
This method helped us robustly map three spectral
endmembers that are highly distinguishable: Sparse
Larch, Dense Larch, and Evergreen. However, we
encountered difficulties with classes that spectrally
fell in-between the reflectance value ranges of the end
members, as their spectral values show a wide range
and a similar reflectance shape (appendix A2.1). For
example, the Medium Larch class represents reflect-
ance spectra fluctuating between Sparse Larch and
Dense Larch. Our labeling approach, based on in-situ
and drone-derived crown cover percentage may also
be suboptimal for mapping this class, as continuous
values rather than class-level labels might be better.

From a qualitative assessment, we identified sim-
ilarities in spatial patterns of forest distribution with
other global landcover maps. Our maps demonstrate
higher thematic accuracy and diversity of classes,
especially for regions where important forest types
were not mapped or are missing in the global land-
cover maps. This reliable mapping stems from our
focus on optimizing the map for the forest growing
in eastern Siberia where limited reference data are
available in contrast to regions like Western Europe
[100]. Still, despite having a substantial number of
field plots available, challenges persisted in mapping
forest types due to the scarcity of some classes, and
generally insufficient labeled data. Augmenting the
dataset with additional ground-truthed data would
undoubtedly enhance the precision of our classifica-
tion. Access to more publicly available labeled data is
imperative for further refining remote sensing classi-
fication for upscaling to a broader scale.

Our study focused on bioclimatic and topo-
graphic variables, yet other factors such as natural
disturbances like wildfire are also thought to shape
the distribution of boreal forests in eastern Siberia
[101–103]. For example, a study highlighted that fire
appears as the main factor controlling the dominance
of deciduous over evergreen forests in Siberia, with
different forest types having different thresholds of
fire tolerance [104]. The authors [104] suggest that
evergreen conifers are the natural late-successional
species both in central and eastern Siberia. Other
forest disturbances caused by insect outbreaks or

wind can also impact the dynamics and hence the
distribution of forest types [105]. Our study did
not focus on such factors though, being centered on
bioclimatic and topographic variables. However, as
our models reveal unexplained variance, it prompts
speculation that factors such as fire or disease may
play a significant role.

5. Conclusion

We investigated the spatial distribution and drivers of
boreal forests in eastern Siberia, along a SW–NE tran-
sect. We provided high-resolution maps of summer-
green and evergreen needleleaf forest types in east-
ern Siberia based on S2 imagery and field data. We
determined the main drivers governing the distribu-
tion of forest types, considering climate and topo-
graphy. Lastly, we identified potential and realized
environmental niches of the forest types and assessed
their spatial applicability.

Our results demonstrate that our classification
approach achieved higher accuracies for Sparse Larch,
Dense Larch, and Evergreen than the other classes due
to their distinct reflectance spectra. The late summer
reflectance allowed the Evergreen and Larch classes
to be well differentiated, enabling the possibility of
investigating their drivers at a fine resolution. The
forest-type driver’s analysis indicated temperature is
a key regional driver, with topography playing a role
at the local scale. Additionally, the realized and poten-
tial climate niches of Dense Larch and Evergreen align
well when they are spatially close, but do not appear to
converge as the distance increases, indicating poten-
tial dispersal limitations. Our evaluation reveals a
notable unexplained portion of the variability in cer-
tain models, hinting at other influential factors. We
propose that both historical legacy environmental
factors and current climate and topography contrib-
ute to shaping the present-day distribution of boreal
forests.

Considering the ongoing climate change and
rising temperatures in the Arctic, we anticipate that
these changes will significantly impact forest types.
Potential environmental niches could be filled in
different regions, or species may undergo reshuff-
ling within their niche space [106]. Our findings,
along with other studies, suggest that the effects of
climate change will lead to a northward advance
of the treeline ecotone, or its densification [107–
110]. Such phenomena will impact the climate-
feedback interactions with boreal forests (i.e. albedo
decrease), which can significantly contribute to global
warming as Earth-system modeling studies revealed
[111]. Consequently, understanding the composition
and drivers of these unique high-latitude ecosystems
becomes essential in evaluating the present condition
of the forests and anticipating their responses to cli-
mate change.
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Appendix

A1. Appendix methods
A1.1. Sentinel-2 satellite mosaic generation and
extraction of forest-covered area
We used a S2 late-summer time surface reflectance
ranging from September 1st to October 15th, 2018–
2022. S2’s multispectral instrument gathers data in
13 spectral bands at a spatial resolution ranging from
10 to 60 m with a temporal resolution of 3–5 d.
The S2 bands used in our study to compile the tem-
poral composite from 2018 to 2022 are summar-
ized in table A1.1. We added the NDVI derived from
the NIR and the red band as the ratio of the dif-
ference between B8 and B4 to the sum of the two
reflectances [112]. From the S2 time-series collec-
tion, we used only images with less than 10% cloud
coverage. We masked the remaining ones using the
S2 qualitative assessment layer (band QA60), apply-
ing a bit mask for cloud and cirrus pixels bitmask
(Bit 10: opaque clouds, Bit 11: cirrus clouds). As our
study focused on forests, we masked non-forested
areas using a satellite-derived global tree canopy cover
product from Hansen et al [113]. Finally, mosaics of
the regions linked to the field plots were created with
the S2 image collection using the 25th-percentile pixel
value of each band which specifically provides atmo-
spheric noise reduction and is robust to outliers com-
pared to the median pixel [114–116].

We constructed a forest map using the Hansen
tree canopy cover map for the year 2000 defined as
canopy closure in percentage for all vegetation taller
than 5 m in height [113]. This product is available at
30.92 m nominal resolution with a value range from
0% to 100%. We checked with different thresholds
for the treeline regions where we have field data and

expert knowledge, and set our mask to the minimum
cover value, 1%, meaning all areas with less than 1%
tree canopy cover map were masked. We also tested
NDVI peak summer thresholds to serve as an act-
ive tree mask, however, the threshold masks were
very noisy, with no optimal threshold for all maps,
and we did not find a reasonable threshold to extract
all sparse forest types in the Oymykyon mountain
region. The ABoVE tree canopy cover dataset [117]
presents better tree coverage patterns with fewer arti-
facts than theHansen dataset [113]. TheABoVEdata-
set should be preferred if forest canopy cover percent-
age is the focus of the research. For the application
as a forest mask, the 1% Hansen tree cover threshold
is rather similar in the boreal domain (figure A1.1)
but more restrictive when excluding shrubland in the
treeline ecotone (figure A1.1(a)). We consider that
using the Hansen tree canopy cover map for the year
2000 is a robust approach, because, in general for
all the maps, forest change in the past 20 years has
predominantly occurred due to fires. In this case,
we could modify the state of the Hansen tree mask
by mapping the recent fire scars in the classification
using the class ‘burned or bare’ to produce the actual
state of the forest-covered area.

A1.2. Sentinel-2 labeling of the training and validation
dataset
The forest-type classification’s training and valida-
tion dataset were based on the pre-processed S2 col-
lection, the forest plot, and the image interpretation
sites. 60 m × 60 m (36 pixels) polygons centered on
the 30m× 30m field plots were built, as they were set
in homogeneous environments, and assigned a single
forest-type label to all pixels contained within each of
the 79 sites [54]. Each of the 79 forest plots was labeled
with the forest-type based on field data of tree spe-
cies and crown cover percentages using the method
as follows:

• When the vegetation plot had one species of tree,
the plot was assigned a label as this species only. For
example, a plot with 60% Larix crown cover was
designated ‘Larch’.

• When the plot had two species with one comprising
less than 10%, it was assigned a label as the dom-
inant species. For example, a plot with 60% Larix
with 5% Pinus was designated ‘Larch’.

• When the plot had multiple tree species with
similar cover (relative difference <20%), it was
assigned a label of mixed forest. There were two
cases: ‘Mixed Summergreen’ (e.g. Larix and Betula),
and ‘Mixed Summergreen-Evergreen’ (e.g. Larix and
Picea).

Additionally, we calculated the plot crown cover per-
centage based on LiDAR point clouds recorded in
2021 with a Yellowscan Mapper carried by an M300
DJI drone, and structure from motion from the

13

https://doi.org/10.1594/PANGAEA.964699
https://doi.org/10.1594/PANGAEA.967133


Environ. Res. Lett. 19 (2024) 074050 L Enguehard et al

Table A1.1. Sentinel-2 bands used for the classification and their description.

Band name Wavelength S2A/S2B (nm) Description

B2 496.6/492.1 Blue
B3 560/559 Green
B4 664.5/665 Red
B5 703.9/703.8 Red Edge 1
B6 740.2/739.1 Red Edge 2
B7 782.5/779.7 Red Edge 3
B8 835.1/833 NIR
B8A 864.8/864 Red Edge 4
B11 1613.7/1610.4 SWIR 1
B12 2202.4/2185.7 SWIR 2

Figure A1.1. Comparison of Hansen 2000 and ABoVE for the year 2020 tree cover percentage in two regions of interest. (a)
Chukotka, in the treeline region. (b) Central Yakutia, west of the Lena River in the Alas region. In the treeline region of Chukotka
(a), ABoVe shows higher tree percentages where the sites EN18031 to EN18034 are located. However, we collected field data from
these sites that show this area is only low shrub/tundra and non-forested as of the summer of 2018 [52]. In the lowland regions of
Central Yakutia (b), Hansen and ABoVe match well. Map data: Google, ©2024 TerraMetrics. Adapted from [117]. CC BY 4.0. and
Map data: Hansen/UMD/Google/USGS/NASA.

built-in RGB camera carried by the DJI Phantom 4
recorded in 2018 [118]. Due to the abundance of
larch stands in eastern Siberia and having access to
the in-situ estimated and UAV-based crown cover
data, we expanded three larch categories into Sparse
Larch (crown cover < 20%), Medium Larch (crown
cover between 20 and 50%), and Dense Larch (crown
cover > 50%). The crown cover percentage was cal-
culated from Lidar pointclouds where we extracted
the mean tree crown cover percentage (for trees > 2
m with a resolution of 3 cm) from a Canopy Height
Model for the plot area. Both UAV and field crown
cover estimations had similar values varying between
0% (meaning no tree), and 100% (meaning entirely
covered by tree canopy). If the two values were dis-
similar, we chose the in-situ value.

To enrich and balance the dataset, we added a
total of 24 image interpretation plots (of a similar
60 × 60 m size) corresponding to the ‘Evergreen’
and ‘Mixed Summergreen-Evergreen’ labels that were
chosen with expert knowledge using the NDVI band
of our collection and Google Earth© imagery com-
pared with spatially closely visited field sites at the
same period. The ‘Burned or bare’ label was assigned
to recent or older burnt forest plots. In total, we
defined six forest classes and one class for barren
or recently burned as labels: Sparse Larch, Medium
Larch, Dense Larch, Evergreen, Mixed Summergreen,
Mixed Summergreen-Evergreen, and Burned or Bare.
These classes are the basis of the forest-type classific-
ation (table A1.2, section 2.2.1 in the main text, rep-
licated below).
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Table A1.2. Total number of visited and image interpretation plots and pixels and associated detailed class name and short class labels
[54].

Detailed class name Class label Expedition plot Image interpretation Total polygons

Larix woodland Sparse Larch 19 0 19
Open Larix forest Medium Larch 12 0 12
Closed Larix forest Dense Larch 16 0 16
Needleleaf Evergreen forest Evergreen 9 18 27
Mixed broadleaf and needleleaf
Summergreen forest

Mixed Summergreen 12 0 12

Mixed broadleaf and needle leaf
Summergreen and Evergreen
forest

Mixed Summergreen-Evergreen 3 6 9

Burned or bare Burned or bare 8 0 8
Total polygons — 79 24 103
Total pixels — 2844 864 3708

Table A1.3. Bioclimatic variables fromWorldClim v2.0. In bold and italic are the variables used in the study.

Bioclimatic variable Short name

Annual mean temperature bio1
Mean diurnal range bio2
Isothermality bio3
Temperature seasonality bio4
Max temperature of warmest month bio5
Min temperature of coldest month bio6
Temperature annual range bio7
Mean temperature of wettest quarter bio8
Mean temperature of driest quarter bio9
Mean temperature of warmest quarter bio10
Mean temperature of coldest quarter bio11
Annual precipitation bio12
Precipitation of wettest month bio13
Precipitation of driest month bio14
Precipitation seasonality bio15
Precipitation of wettest quarter bio16
Precipitation of driest quarter bio17
Precipitation of warmest quarter bio18
Precipitation of coldest quarter bio19

A1.3. Classification of forest types
Random Forest is an ensemble classifier consisting of
multiple decision trees constructed using randomly
selected training datasets and random subsets of pre-
dictor variables. The results from each tree are aggreg-
ated, and an individual pixel’s classification is decided
based on the class that emerges as the most frequent
choice across all decision trees. To avoid autocorrela-
tion, we sampled pixels from the distinct 60 × 60 m
polygon extent of the forest plots for validation and
training sets, so that both sets are not from the
same vegetation plot. To tackle unbalanced classes,
we applied stratified sampling to maintain a propor-
tional representation of classes within both training
and validation datasets [119].

Several parameters were used to quantitatively
assess the classified map, including precision, recall,
overall accuracy, and F1 score which are com-
monly used to assess unbalanced datasets. Precision
(consumer’s accuracy) measures the proportion of

correctly identified positive cases from all cases
identified as positive, whereas recall (producer’s
accuracy) measures the proportion of true posit-
ives that were correctly identified by the model
The F1 score provides a balance between pre-
cision and recall, and the overall accuracy gives
information about the whole classification result
[120, 121].

A1.4. Principal component analysis of the bioclimatic
variables
Bioclimatic variables were derived from the monthly
averaged temperature and precipitation values to
generate more biologically meaningful variables. We
identified five groups that were the least correlated.
One bioclimatic variable per group was selected for
our analysis. We chose from group one bio11, from
group 2 bio17, from group 3 bio1, from group 4 bio10
and from group 5 bio7 (table A1.3).
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Figure A2.1.Mean percentile of the 25th late summer surface reflectance pixel value for the training pixels of each mapped class.

A1.5. Topographic controls of forest types
The slope was derived with the ee.Terrain.slope func-
tion in GEE, and represents the degree of inclination
of the surface. The TPI was computed using the DEM
focal_mean function inGEE, which is where themean
elevationwithin a specific neighborhood of each pixel
and centered on that pixel is then subtracted from the
original elevation of that pixel. In our case, we used a
15-pixel neighborhood (15 m× 30 m× 30 m) to get
landscape variations, and we standardized the TPI to
amean of zero and a standard deviation of 1 to avoid a
large range of TPI values. TheTPI represents the relat-
ive elevation compared to its neighborhood, therefore
positive TPI represents a ridge and negative values a
depression. Finally, the aspect was computed with the
ee.Terrain.aspect function in GEE, and represents the
orientation of the terrain with 0 being North, 90 East,
180 South, and 270 West.

A1.6. Multivariate analysis
GLM is a multivariate statistical method that allows
the formation of regression between a response vari-
able and explanatory (predictor) variable(s), and
unlike traditional regressions, its parameters do not
need to be normally distributed and no assumptions
are made about their error distribution [122, 123].
We used GLM with a binomial distribution and a
logistic link function, with a binary response where
to 1 = presence of the class and 0 = absence. Thus,
the GLM returns logistic regression coefficients rep-
resenting the log odds, as follows [122]:

γi = log

(
pi

1− pi

)
(1)

where γi is the linear model, pi is the probability of
an event occurring with a given location i. The linear
model formed is then a logistic regression of the suc-
cess or failure of a given binary variable. Therefore,
each estimated coefficient is the expected change in
the log odds of the class of interest being present (pre-
dicted variable = 1) for a unit increase in the cor-
responding predictor variable holding the other pre-
dictor variables constant at a certain value.

Even though probabilities are easier to under-
stand than log odds, we did not convert log odds
to probabilities. Log odds have negative or positive
values, which reflect the nature of the relationship
between the predicted variable and the predictors (a
positive coefficient implying a positive relationship
and a negative log odds for a negative relationship).
Additionally, the magnitude of the log odds informs
about the importance of the predictor. Information
about themagnitude and direction of the relationship
is lost when converting log odds to probabilities. For
example, a log odd of+20 would have the same prob-
ability as log odds of+4, but the latter shows a weaker
relationship to the predictor.

A2. Appendix results
A2.1. Spectral reflectance per class
The averaged late summer surface reflectance spec-
tra show distinct ranges of values for the seven classes
(larch classes versus evergreen) (figure A2.1).Medium
Larch and Mixed Summergreen-Evergreen show less
distinct surface reflectance curves than the classes
Sparse Larch, Dense Larch, and Evergreen and their
spectral values are more diffuse between larch and
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evergreen classes. Evergreen shows a ‘green vegetation’
reflectance spectrum with a green peak due to high
absorption in the red band, but relatively low NIR
reflectance, whereas the summergreen classes show
only low photosynthetic activities in late summer by
low absorption in the red band but are still distinct by
high reflectance in the NIR. The Burned or bare class
shows a flat reflectance in the visible wavelength range
and a high reflectance in the SWIR.

A2.2. Spatial qualitative accuracy assessment
We compared our classified map with two other
landcover products: Copernicus Global Land Cover
Layers: CGLS-LC100Collection 3 9 (LC100), and ESA
WorldCover 10 m v200 (ESA WC) with respectively
100 and 10 m spatial resolution [70, 71]. We selec-
ted one subset in each study area (KH, WY, CY, OY,
CH) and analyzed the spatial land cover patterns with
expert knowledge (figure A2.2). In every region, our
map provided significantly more detailed informa-
tion compared to ESA WC, which exhibits far fewer
land cover classes. Below are our observations con-
cerning the comparison with the LC100 map.

(a) Khamra region (KH): LC100 provides a detailed
landcover map, with evergreen forest spatial pat-
terns similar to our map. However, we mapped
more Evergreen forests close to Lake Khamra,
which we visited in 2018 allowing us to ground-

truth the data [52, 124]. Additionally, LC100
presents several pixels as closed forest or as an
undefined class while we map detailed mixed
classes.

(b) Western Yakutia (WY): Our forest-type map
provides more detail than LC100, identifying
newly burnt areas and different types of forests.
LC100 shows mainly closed deciduous forests
while we map different deciduous and mixed
forest classes.

(c) Central Yakutia (CY): LC100 shows mainly
closed deciduous needleleaf forests, but we
provide more details notably with the cor-
rect presence of Evergreen forests on both sides
of the Lena River, as assessed by field data
in 2018 and 2021 [52, 53, 124]. Our forest-
type map also shows newly burnt or bare
areas.

(d) Oymyakon region (OY): LC100 maps a signi-
ficant amount of undefined closed forest, while
we show more sparse and dense larch, as well as
identified burnt or bare areas.

(e) Chukotka (CK): The region around Lake
Illyrney appears with more forest in the SWwith
LC100, but not around the lake, where shrubs
are identified. We identified mainly Sparse
Larch around the lake, where we have ground-
truthed samples that match our classified map
[52, 124]
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Figure A2.2. Comparison of our classified forest type map results with two global land cover products (ESA World cover and
LC100 CGLS) in regions of expert knowledge. (a) Lake Khamra region in southwest Yakutia, (b) Mirny region in Western Yakutia,
(c) Lena River and the western and eastern banks in Central Yakutia (d) Verkoyansk mountains close to Oymyakon, and (e) Lake
Illyrney in the Chukotka region. Map data: Google, ©2024 TerraMetrics. Map data: Google, ©2024 TerraMetrics. Reproduced
from [71]. CC BY 4.0. Reproduced from [70]. CC BY 4.0.

A2.3. Model performance
Table A2.3 shows the pseudo-R2 (pR2) of each model,
based on three different calculationmethods from the

pscl R package: McFadden, Maximum likelihood, and
Cragg and Uhler’s. A model is commonly well-fitted
if pR2 ranges between 0.2 and 0.4.
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Table A2.3. Pseudo-R2 of each model.

Model name McFadden Maximum likelihood Cragg and Uhler’s

model_loc_c0_Chuk 0.507 635 925 0.409 840 84 0.634 288 727 Local model
model_loc_c2_Chuk 0.021 402 023 0.018 715 284 0.031 917 95 Regional model
model_loc_c3_Chuk 0.127 859 064 0.003 055 098 0.129 197 295
model_loc_c0_Ulu 0.095 937 937 0.118 370 565 0.161 921 732
model_loc_c2_Ulu 0.015 5346 0.003 399 695 0.017 270 083
model_loc_c3_Ulu 0.016 420 959 0.015 147 689 0.025 0269
model_loc_c0_Yak 0.020 230 599 0.005 753 78 0.023 185 81
model_loc_c2_Yak 0.001 104 611 0.001 444 766 0.001 979 459
model_loc_c3_Yak 0.045 057 724 0.048 312 294 0.072 454 479
model_loc_c0_WesYak 0.027 837 418 0.008 833 662 0.032 365 355
model_loc_c2_WesYak 0.110 787 748 0.091 221 87 0.157 748 303
model_loc_c3_WesYak 0.020 159 659 0.025 391 417 0.035 227 321
model_loc_c0_Kha 0.007 135 776 0.002 299 296 0.008 338 921
model_loc_c2_Kha 0.016 050 132 0.000 871 038 0.016 482 601
model_loc_c3_Kha 0.011 695 565 0.015 183 814 0.020 808 386
model_reg_c0_Chuk 0.649 817 089 0.467 281 394 0.752 963 428
model_reg_c2_Chuk 0.104 702 97 0.108 049 289 0.162 606 467
model_reg_c3_Chuk 0.072 102 58 0.003 130 197 0.073 566 113
model_reg_c0_Ulu 0.115 924 572 0.125 970 888 0.183 371 546
model_reg_c2_Ulu 0.124 309 763 0.003 946 543 0.126 048 038
model_reg_c3_Ulu 0.028 477 539 0.024 224 054 0.041 960 423
model_reg_c0_Yak 0.070 004 475 0.012 113 989 0.075 812 259
model_reg_c2_Yak 0.119 133 106 0.150 010 618 0.201 508 958
model_reg_c3_Yak 0.242 247 25 0.174 448 029 0.319 052 646
model_reg_c0_WesYak 0.129 669 278 0.023 325 497 0.140 167 383
model_reg_c2_WesYak 0.194 459 858 0.160 177 483 0.270 346 243
model_reg_c3_WesYak 0.090 432 731 0.103 885 79 0.147 844 071
model_reg_c0_Kha 0.033 159 579 0.004 712 887 0.035 493 755
model_reg_c2_Kha 0.150 536 495 0.002 479 774 0.151 593 065
model_reg_c3_Kha 0.098 273 102 0.126 640 256 0.169 331 086
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