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Abstract—An accurate parameterization of glacier calving is
essential for understanding glacier dynamics and constraining
ice-sheet models. The increasing availability and quality of
remote sensing imagery opens the prospect of a continuous
and precise mapping of relevant parameters such as calving
front locations. However, it also calls for automated and scalable
analysis strategies. Deep neural networks provide powerful tools
for processing large quantities of remote sensing data. In this
contribution, we assess the benefit of diverse input data for
calving front extraction. In particular, we focus on Landsat-8
imagery supplementing single band inputs with multi-spectral
data, topography and textural information. We assess the benefit
of these three datasets using a dropped-variable approach. The
associated reference dataset comprises 728 manually delineated
calving front positions of 23 Greenland and 2 Antarctic outlet
glaciers from 2013 to 2021. Resulting feature importances empha-
size both the potential integrating additional input information
as well as the significance of their thoughtful selection. We ad-
vocate utilizing multi-spectral features as their integration leads
generally to more accurate predictions compared to conventional
single band inputs. This is especially prevalent for challenging ice-
melange and illumination conditions. In contrast, the application
of both textural and topographic inputs cannot be recommended
without reservation since they may lead to model overfitting. The
results of this assessment are not only relevant for advancing
automated calving front extraction but also for a wider range
of glaciology-related land surface classification tasks using deep
neural networks.
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learning, feature importance
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I. INTRODUCTION

CALVING of marine terminating outlet glaciers results
in seasonal and interannual changes of their frontal

positions. These calving front variations are both, triggered by
changes in the glacier dynamics, but also affect the dynamics
of tidwater glaciers [1–3]. The accurate detection of calving
rates is crucial for investigating the physical mechanism and
controlling factors [4–8]. Moreover, accurately representing
calving front dynamics in models is an essential part of con-
straining glacial evolution [9] and can improve simulations of
mass loss and projections of future sea-level contributions [10–
14]. Consequently, temporally and spatially comprehensive
calving front datasets are essential for a better understanding
and modelling of marine terminating glaciers.

The increasing availability and quality of both optical as
well as radar satellite imagery enable us to realize a continuous
mapping of calving front locations. However, most current
calving front datasets [15–21] are based on manual delineation
which is laborious and infeasible considering the immense data
volume. Therefore, calving front records are often limited in
temporal resolution making seasonal analyses difficult. The
huge amount of data accentuates the necessity for automated
and scalable delineation strategies. Driven by this issue various
empirical feature extraction algorithms have been developed
in the last decades pursuing robust automated calving front
extraction [22–27]. However, most of these methods require
case specific modifications and are not tested for spatial
transferability and large scale applications.

As an alternative to these established image processing
techniques and owing to advances in the field of machine
learning, deep artificial neural networks (ANN) are becoming
the model of choice for solving complex image processing
tasks. Mohajerani et al. [28] introduced this approach by
mapping calving front locations of three Greenlandic outlet
glaciers using single band optical Landsat imagery empha-
sizing its performance, especially against hardcoded edge
detection operators. Cheng et al. [29] substantially expanded
this framework by advancing pre-processing procedures, the
underlying neural network architecture as well as achieving a
robust handling of Landsat-7 scanline corrector errors. Other
studies focused on the usage of synthetic-aperture radar (SAR)
imagery, where both single-polarization inputs [30] and dual-
polarization inputs [31] have been used. While the usage of
SAR has clear advantages, such as the independence from
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weather and illumination, it also imposes some challenges.
Particularly the backscatter characteristics of glacial ice vary
throughout the year, making it hard to distinguish between
relevant surfaces. Heidler et al. [32] addressed this problem by
intertwining semantic segmentation with edge detection into
a single model. They achieved better prediction performance
under these problematic conditions. Considering both optical
and radar sensor characteristics Zhang et al. [33] developed
a more generalized framework capable of processing multi-
sensor imagery.

Despite their similarities, all these approaches differ in
study areas, input data, pre-processing strategies and neural
network architecture. Recently, Heidler et al. [32] and Zhang
et al. [33] provided extensive comparisons between different
deep learning models and architecture modifications. However,
only little consensus and literature exists regarding input
feature selection and their specific contribution to prediction
performance. Since remote sensing data is usually multimodal
and ANN excel at synergistically integrating diverse datasets
[34], we expect high potential on including additional input
information. Hence, in this contribution we make an important
step proposing to include further input features for automated
calving front delineation from optical Landsat-8 imagery. We
focus on the following three input datasets: multi-spectral
bands, topographic model data and textural features. The
motivation for utilizing these three datasets is given by their
significance for a wide range of remote sensing tasks.

Section II covers utilized datasets and the scope of our work.
Section III explains the setup and applied methods. Section IV
contains the treatment of results and a subsequent discussion.
Finally, Section V gives a summary and outlook.

II. DATA AND SCOPE

A. Data source
The analysis made in this paper is based on optical Landsat-

8 imagery. In particular, we utilize the radiometrically cali-
brated and orthorectified Level-1 data products provided by
the United States Geological Survey (USGS). With its two
imaging sensors Operational Land Imager (OLI) and Thermal
Infrared (TIR) Sensor Landsat-8 provides wide multi-spectral
capabilities ranging from visible (VIS) over near-infrared
(NIR) and short wave infrared (SWIR) to TIR wavelengths.
In total, Landsat-8 has 11 different bands. Besides the 30m
resolution of the reflective bands and 100m resolution of
the thermal bands, an additional panchromatic band combines
visible wavelengths into one channel achieving 15m reso-
lution. With the exception of band 9, which lies outside an
atmospheric window and is therefore designed for observing
the atmosphere, all available bands are used. In itself Landsat-8
has reasonable spatial and temporal coverage, achieving sub-
weekly revisit times of all Greenlandic glaciers outside polar
night. A combination with the recently launched Landsat-
9 decreases revisit intervals even further, reaching sub-daily
sampling for north Greenland glaciers outside polar night [35].
In the following we introduce three particular input datasets
we apply in this study.

Most optical satellite-sensors capture image data within spe-
cific wavelength ranges across the electromagnetic spectrum.

Utilizing these multi-spectral bands or band combinations
is widely established for glacier mapping and monitoring
tasks [36]. The concept is based on the distinct reflective
curves of different surface types along the electromagnetic
spectrum. Figure 1 illustrates these reflectance curves for
different surfaces on and around Greenland glaciers along with
the atmospheric transmission and Landsat-8 band designations
used in this study. Figure 2 displays these surface dependent
reflectivities exemplarily for three Greenlandic glaciers: Store
Glacier (a-d), Daugaard Jensen Glacier (e-h) and Jakobshavn
Isbræ (i-l). The VIS spectrum (band 1-4, 8) is characterized
by high reflectance of glacier ice and ice mélange as well
as very high reflectance of snow [37]. Band 1 senses deep
blues and violets, enabling a better view of shady surfaces
than longer wavelengths. The NIR reflectivity is decreased by
both grain size and the presence of liquid water [38]. The
latter facilitates a better spectral separability between glacier
and ice mélange. SWIR wavelengths are marked by a high
reflectance of bedrock and a low reflectance of snow and ice.
Signals in the TIR spectrum are influenced by thermal pro-
cesses related to both surface and weather conditions [39, 40].
Depending on these conditions and the responding surface
temperatures, TIR reflectivities of snow, ice and water may
be very similar or noticeably different. Although some studies
successfully applied multi-spectral data to facilitate automated
glacier mapping [41–43], current approaches for ANN based
calving front extraction are limited to the use of single band
inputs, discarding additional multi-spectral information.

As a second dataset we assess topographic elevation model
data. Baumhoer et al. [31] and Heidler et al. [32] already
experimentally utilized a digital elevation model (DEM) and
found that a careful integration facilitates more accurate model
predictions. This is especially the case under challenging con-
ditions, where synchronous topography information helps to
constrain the glacier front position relative to the fjord topog-
raphy. Nevertheless, Heidler et al. [32] also observed a severe
model overfitting on the DEM for dynamic regions where
elevation data and satellite imagery are contradictory. This
resulted in systematic errors at the glacier front and ultimately
to an accuracy decrease compared to models without DEM
inputs. To counteract this, we only make use of above sea-
level bed elevation. Bed elevation data has the ice thickness
subtracted and is therefore temporally stationary. Thus, we
avoid overfitting at the glacier front while still providing
topographical context for the model. By disregarding the sub-
sea-level topography, specifically by setting negative elevation
values to zero, we create an ice-free DEM-like product. Bed
topography data is taken from BedMachine Greenland v3 [12].

Satellite imagery of polar regions, especially in Greenland,
consists mostly of natural textures. Hence our satellite images
are stochastic in nature and are suitable for methods of statisti-
cal image analysis. For our third dataset, we analyze the gray-
level co-occurrence matrix (GLCM), which counts the co-
occurrence of neighboring gray levels in the image, enabling
a statistical extraction of textural features [44]. Applying a
9 px× 9 px sliding window on the 15m resolution panchro-
matic band we extract the following textural features: angular
second moment, contrast, entropy, dissimilarity, homogeneity
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Fig. 1. Atmospheric transmission, Landsat-8 band designations (numbers) and typical reflectance curves for different surfaces found on or around glaciers.
Figure adapted from Kääb et al. [36].

Fig. 2. Surface dependent reflectivities for Store Glacier (a-d), Daugaard Jensen Glacier (e-h) and Jakobshavn Isbræ (i-l) for different wavelength ranges
of Landsat-8, namely the deep blue (Band 1), NIR (Band 5), SWIR (Band 6) and TIR (Band 10). Arrows indicate ice flow direction. The calving front is
highlighted as a dashed line. For the location of the specific glaciers see Fig. 4.

and correlation. The idea in utilizing these features is that
the homogeneous texture of the ice mélange, water or fast
ice stands out to the glacier front which is characterized by
crevasses, seracs and other distinguishing features [25]. Figure
3 emphasizes this aspect by showing (a) the panchromatic
image, (b-g) spatial characteristics of GLCM textural features
and (h) the topography model exemplarily for Hagen Bræ in
North Greenland (Fig. 4). Although the textural features allow
for a better separability between different surface types, they
do not well represent objects or areas smaller than the selected
window size. In Figure 3 this is particularly evident for the
small icebergs near the glacier front. Reducing the window

size further would enable a sharper transition between relevant
surface types, but also leads to a noisy and unstable feature
extraction. Since the GLCM feature transformation is highly
non-linear, it cannot be learned easily by neural networks and
can thus provide a valuable enrichment of the input data.
Combining GLCM textural features with ANNs has therefore
already been explored in various areas of image analysis [45–
47]. Here we will assess how this method can be applied for
the calving front extraction.
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Fig. 3. (a) Panchromatic image, (b-g) textural features and (h) above-sea level topography of Hagen Bræ. Arrows indicate ice flow direction. The calving
front is highlighted as a dashed line.

B. Reference dataset

Over the last two decades the Greenland Ice Sheet has
experienced an increased ice-mass loss which is caused mainly
due to increased surface melt and ice discharge [48]. Along
with accelerating glacier velocity and frontal ablation, high
retreat rates have been found [2]. The quantification and under-
standing of glacier dynamics will provide important insights
into the Greenland Ice Sheet response to ongoing change as
well as long-term climate forcing. In order to facilitate these
analyses and resolve spatial and temporal data gaps of calving
front positions, we choose the Greenland Ice Sheet as the main
study area for our assessment.

Our reference dataset consists of 18 Greenland outlet
glaciers which are used for model training, validating and
testing. Additional 5 Greenlandic glaciers and 2 glaciers at the
Antarctic Peninsula are used for model testing, specifically for
assessing spatial transferability. Figure 4 gives an overview
of the spatial distribution of our analyzed glaciers. The se-
lection ensures diversity of morphological features as well
as of calving and ocean conditions. As these conditions also
change throughout the year with cloud cover and illumination
changing scene by scene, we have to ensure sufficient sampling
during the observation periods from spring to autumn. In
total, the reference dataset consists of 728 manually delineated
calving front positions, of which 585 calving fronts (from 2013
to 2019) are used as input for model training, and 143 calving
fronts (from 2020 and 2021) are used for model testing.

III. METHODS

A. Neural network implementation

Mapping glacier calving front locations is a contour detec-
tion task. So far the most popular approach in accomplish-
ing this with ANNs is based on pixel-wise semantic image
segmentation using a convolutional neural network followed
by vectorizing the output mask. In particular U-Net type
architectures [49] have proven to be very effective for various
study areas and sensor types [28, 30–32]. Since this study

focuses on input data assessment rather than advancing ANN
architecture, we adapt the already established U-Net model for
our analysis. The U-Net itself is based on a contracting path
reducing spatial information while increasing feature informa-
tion followed by an expanding path where spatial and feature
information are combined by alternating concatenations and
deconvolutions. The receptive field of a U-Net is defined by the
number of contracting and expanding blocks. Deeper models
have larger receptive fields and thereby more spatial context
information for each pixel classification. Since calving front
delineation benefits significantly from increased spatial context
[32] our model is expanded by two additional resolution levels,
i.e. from four to six levels. Figure 5 shows the processing
architecture and relevant dimensions of the U-Net used in this
study.

The presented model performs a land surface classification
where a land and glacier class is semantically segmented from
a water class, with the calving front later to be extracted
from the boundary between these two classes. The ANN input
consists of the multi-spectral, topographic and textural datasets
described in Section II. Raster subsets have dimensions of
512 px× 512 px and are centered at the calving front location
of the corresponding glacier. With a uniformly applied 30m
ground sampling distance each input raster subset covers
an area of about 15 km× 15 km. To counteract overexposed
areas in our satellite imagery we apply additional image
enhancement in form of a cumulative count cut clipping the
data between the 0.1 and 98 percentile of each multi-spectral
band. In total, we use 17 input layers, namely 10 Landsat-8
bands, 6 GLCM textural features and bed topography. Finally,
all of these 17 input layers are normalized to the range between
0 and 1 using an 8-Bit quantization.

To counteract model overfitting we select every fifth image
of the training data, a total of 164, for internal validation. The
remaining training data is augmented 8-fold by flipping and
rotating. The resulting 5232 raster subsets are finally used for
training the model with randomized batches of size 8. For
this we apply the Adam optimization algorithm [50] on a
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(a) Greenland (b) Antarctic Peninsula

Fig. 4. Geographic location of the 23 Greenlandic and the 2 Antarctic outlet glaciers used in our reference dataset. Red dots indicate glaciers used for training
and testing. Glaciers marked with a white dot are only used for model testing.

binary cross-entropy loss function for 150 epochs. The final
model weights are selected based on the binary classification
accuracy of the internal validation dataset. The ANN imple-
mentation is realized using the TensorFlow 2.3 library [51].
Training is carried out on an IBM Power 9 node using a
NVIDIA V100 GPU with 32 GB high bandwidth memory.
With each epoch taking three to four minutes, our model is
trained after 7.5 to 10 hours. Up to 32 models can be trained
in parallel.

Figure 6 gives a basic overview of the processing work-
flow. The trained model performs an automated land surface
classification, where each image pixel is denoted a probability
between 0 (water) and 1 (glacier and land). As part of post-
processing, this floating point number probability mask is vec-
torized using the Geospatial Data Abstraction Library contour
algorithm [52], thresholding at a probability of 0.5. Larger
glaciers, with calving fronts exceeding the 512 px× 512 px
input window, are separated into several independent pre-
dictions which are averaged in the overlapping area before
vectorization. This concept is adopted from Baumhoer et al.
[31]. It is applied for Humboldt Glacier, Nioghalvfjerdsbræ
and Zachariae Isstrøm, which are split into 7, 3, and 2 separate
overlapping predictions, respectively. Finally, we extract the
glacier calving front by intersecting the vectorized coastline
with a static mask. This mask is manually created for each

glacier and specifies the corridor of possible calving front
locations.

B. Accuracy assessment

To validate the ANN model it was applied to the test
dataset introduced in Section II-B. This test dataset contains
177 manually delineated frontal positions for all Greenlandic
glaciers used for training the model, but for the different time
period 2020 and 2021. Also included were an additional 5
Greenlandic glaciers and 2 glaciers at the Antarctic Peninsula.

As main error metric we choose the distance between the
predicted and the manually delineated calving front trajectory.
Conceptually, this corresponds to the area between the two
curves normalized by their length. We implement this metric
by averaging the minimal distance to the manual delineation
every 30m along the predicted front. We define two different
accuracy estimates based on the non-normal distribution of the
averaged distance error for the 177 test scenes:

1) The mean distance error is sensitive towards outliers,
which are mostly due to large misclassified areas and
therefore falsely extracted calving front positions of
scenes with very challenging conditions.

2) The median distance error, in contrast, is not sensitive
towards individual scenes. It gives information on the
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Fig. 5. The U-Net based processing architecture used in this study. A contracting sequence consists of convolutions followed by batch normalization, a
rectified linear unit (ReLU) and a max pooling operation. Expanding sequences are composed of a concatenation with spatial context from the contracting
path, convolutions followed by batch normalization and a ReLU. Note that all dimensions are denoted at the top of the blocks.

Fig. 6. Overview of the processing workflow using an exemplary satellite scene of the Daugaard Jensen Glacier. Through an ANN, a land and glacier class
is semantically segmented from a water class. After vectorization, we extract the calving front using a static mask.

general scene-by-scene performance as well as on a
systematic overfitting of our model.

Although our model is fitted using pixel-wise binary cross-
entropy, the mean and median distance error metrics are more
representative measures of model performance. This is due
to the ANN based pixel-wise classification only being an
intermediate step in our processing scheme. A high binary
classification accuracy does not necessarily translate into an
accurate calving front prediction as binary classification accu-
racy is primarily important directly at the glacier front.

C. Assessment of feature importance

Deep learning has proven to be a powerful set of tools
in many data-driven fields. However, these methods often
produce complex models that provide little to no insight
how these predictions are derived. Numerous methods are
attempting to look inside this ”black box” function and to
understand the contribution of a feature to the predictive power
of a model. Popular and computational convenient methods
are based on the permute-and-predict strategy first introduced
by Breiman [53]. Since our model inputs exhibit signifi-
cant statistical dependences, which is a common property
of multi-layer remote sensing imagery, diagnostics based on
this permute-and-predict approach can be highly misleading
[54–56]. Hooker and Mentch [57] explain this behavior in
detail and suggest several alternatives generally based on

either conditional permutation or model-relearning. Taking the
results of these studies into account, we evaluate our features
using the dropped variable concept suggested by Hooker and
Mentch [57], which is equivalent to the leave one covariate
out framework introduced by Lei et al. [58].

For this we re-train the ANN model applying only certain
subsets of our input features. The prediction power of these
models, in this study portrayed by the mean and median
distance error to the manual delineation, is then comparatively
evaluated. This very pragmatic approach allows us to conclude
on the benefit of corresponding omitted or supplemented input
features. Rather than evaluating every layer separately we
use the three input datasets introduced in Section II: multi-
spectral bands, topographic model data and textural features.
This is computationally feasible and coherent from a user
implementation point of view. Since we want to assess the
contribution of each dataset compared to conventional single
band input, the panchromatic band is always included.

ANN training is not deterministic; instead, it is stochastic.
Even when using the same training data, every fitted model
is different and therefore performs differently when applied to
the test dataset. This is especially prevalent in our workflow
since the loss function used to optimize the model differs
from the error metric used in accuracy assessment. A better
model convergence could be achieved by applying a custom
loss function as well as by implementing additional output
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Fig. 7. Results of the feature importance assessment. The various input feature combinations are listed on the Y-axis, with the panchromatic single band
image being supplemented by additional features. The ’violin plot’ depicts the distribution of mean distance error and median distance error assessed by
comparison to the manual calving front delineation. Every vertical line represents one trained model applied on the test dataset. The horizontal extent of the
’violin graphs’ is defined by corresponding minimum and maximum values and the vertical extent by the frequency distribution.

TABLE I
MEAN AND MEDIAN DISTANCE ERROR AS WELL AS BINARY CLASSIFICATION METRICS ACCURACY AND F1-SCORE FOR DIFFERENT COMBINATIONS OF

INPUT DATA.

Additional input features Mean distance (m) Median distance (m) Binary classification accuracy F1-Score
Multi-spec. & Texture & Topo (44.9± 0.9) (28.6± 0.5) (99.10± 0.04) (99.31± 0.03)

Texture & Topo (52.0± 0.5) (34.2± 0.5) (99.08± 0.01) (99.30± 0.01)
Multi-spec. & Topo (49.9± 0.9) (28.3± 0.4) (99.05± 0.04) (99.27± 0.03)

Multi-spec. & Texture (66.5± 2.0) (28.8± 0.3) (98.32± 0.07) (98.74± 0.04)
Topo (60.0± 0.7) (33.5± 0.3) (99.01± 0.04) (99.25± 0.02)

Texture (60.9± 0.7) (32.8± 0.4) (98.47± 0.07) (98.83± 0.04)
Multi-spec. (52.7± 2.2) (27.4± 0.4) (98.68± 0.04) (99.00± 0.03)

None (single band) (63.1± 0.9) (30.7± 0.2) (98.45± 0.07) (98.82± 0.06)

layers, which enforce calving front classification more heavily.
In this analysis, we enable a thorough comparison between the
different input datasets by fitting 40 models for each feature
combination. This ensures statistical stability and an estimate
for the variability of the predictions.

IV. RESULTS AND DISCUSSION

Figure 7 presents the outcome of the feature importance
analysis. Mean and median distance errors are depicted for
various input feature combinations. Each vertical line inside
the ’violin graphs’ represents one trained model applied to
the test dataset. Table I lists corresponding statistics. It also
quotes the binary classification metrics accuracy and F1-score
for comparability to existing studies [31, 32]. Regardless of the
applied feature set, the median error is always smaller than the
mean error. This is due to some challenging test scenes which
exhibit large deviations to the manual delineation. The mean
error characterizes the predictive power of a model under these
conditions. When using the panchromatic band only, without
additional input features, the trained models provide reliable
predictions with 63m mean and 31m median error for our
test dataset (last line in Fig. 7 and Table I). Additional input

features can both increase and decrease a model’s predictive
power. For the median error, an improvement in model per-
formance with respect to conventional single band processing
is only observed when applying multi-spectral features. In
contrast, the median error increases if textural and/or topog-
raphy data are added without adding multi-spectral features.
This indicates that both of these datasets can increase a
models susceptibility for overfitting which lead to systematic
misclassifications at the calving front throughout the whole
test dataset. Notably, models using only multi-spectral features
have a slightly better median performance compared to models
using all available data. Evaluating the mean distance error of
our models enables an assessment on the handling of chal-
lenging scenes as the mean is particularly sensitive towards
outliers. With the exception of combining multi-spectral with
textural inputs, all assessed models exhibit an improvement
in mean error with respect to the single band processing.
Combining all three presented datasets results in a significant
mean error decrease from 63m to 45m, emphasizing their
benefit for processing imagery under challenging conditions.

Figure 8 presents specific examples of the above concluded
characteristics. Each of the 40 model predictions is shown in
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Fig. 8. Feature importance exemplarily shown for four different test scenes. Shown are RGB images with ground truth as dashed black line, ice flow direction
as an arrow and the 40 model predictions in semi-transparent red for different glaciers (rows) and different input features denoted above the respective columns.
The mean distance error for the depicted predictions at the glacier front is also given.

semi-transparent red with increasing intensity the more the
predictions overlap. The manually delineated front position
is drawn as a dashed black line. The presence of fast ice
usually leads to abrupt textural changes ahead of the actual
glacier front. This is a result of the fast ice breaking at the
glacier front or calved ice which is not transported away.
Conditions like these often lead to systematic misclassifica-
tions of the ANN since both gray value and texture help
very little in differentiating these surfaces. This causes the
predicted front to follow the wrong textural transition and

results in a large distance error. The case of Harald Moltke Bræ
(Fig. 8a-d) demonstrates these characteristics and confirms
a significant accuracy increase by including multi-spectral
information. This is a result of varying reflectivities of different
ice, snow and ice-melange surfaces. Figure 8 (e-h), showing
a scene of Jakobshavn Isbræ, manifests the same aspect in
a slightly different way. Frequent breakups of the northern
branch terminus lead to an unpronounced textural transition at
the calving front. Without utilizing multi-spectral information,
these scenes remain very hard to delineate. The third scene
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(Fig. 8i-l), shows the performance using different input feature
sets at Waltershausen Glacier. Thick clouds cover most of
the scene and barely allow us to identify the calving front.
Combined with the fact that this glacier is not part of the
training dataset, this scene is very challenging to process
by the ANN. The different models clearly show that under
conditions like these, stable predictions are only possible using
topography data. In particular, the calving front - coastline
transition as well as large parts of the coastline itself are not
visible in this scene, thus making external data mandatory
for an accurate delineation. Topographic information provides
an important constraint of the calving front position inside
the fjord. Finally, the case of Rinks Glacier (Fig. 8m-p) is
representative of a large portion of the test imagery which
is reliably delineated, with distance errors well below 100m,
regardless of the used input information. Still, we notice a
decreased distance error when applying multi-spectral data.
Interestingly, but also in accordance with our findings in
Figure 7, the addition of textural as well as topography data
increases the distance error. This happens for a large number of
otherwise easy to delineate test scenes, and mostly for certain
parts of the glacier front with changing ice-melange texture
or pronounced glacial meltwater plumes. Hence, we suspect
increased overfitting when including textural and topography
data which manifests in a larger median error over the whole
dataset. Although we applied several techniques to counteract
model overfitting, modifying the ANN architecture, specifi-
cally adjusting its complexity, might be necessary to take full
advantage of these input features.

V. SUMMARY AND OUTLOOK

Our results provide important insights for advancing ANN
based calving front extraction. The feature importances por-
trayed in this study emphasize both the potential in integrating
additional input information as well as the significance of their
thoughtful selection. The integration of multi-spectral bands is
not only convenient since most data products deliver this in-
formation anyway, but also leads to more accurate predictions
especially under challenging conditions. Using topography and
textural inputs cannot be recommended without reservation.
Both datasets can help for certain scenes but result in a higher
median distance error for our test dataset, which indicates that
the corresponding models are overfitted. The integration of
these datasets needs to be done carefully and, if possible,
accompanied by further investigations and model adjustments.

The results of this assessment are not only relevant for
advancing automated calving front extraction, but also for
a wider range of glaciological land surface classification
tasks using optical imagery and deep neural networks. Recent
studies already explored the application of deep learning
algorithms for mapping supraglacial lakes and debris-covered
glaciers. The results presented in our contribution reinforce
these existing efforts but also lay the foundation for further
applications and developments.

CODE AND DATA AVAILABILITY

The code used for pre-processing, ANN training and ac-
curacy assessment as well as all reference data applied in

this study are available at the TU Dresden Open Access
Repository and Archive (http://dx.doi.org/10.25532/OPARA-
183). In particular, this includes 728 manually delineated
calving front positions, which we provide in a georeferenced
shapefile format, as well as 995 machine learning ready input
raster subsets with their corresponding, manual delineated,
segmentation mask.

ACKNOWLEDGMENT

The authors would like to thank the USGS for providing
Landsat-8 imagery. The authors are grateful to the TU Dresden
computing centre (ZIH) for providing their high-performance
computing and storage infrastructure. We acknowledge the
National Snow and Ice Data Center QGreenland package and
the Norwegian Polar Institute Quantarctica GIS package. We
thank the three anonymous reviewers for their constructive
comments which helped to improve the manuscript.

REFERENCES

[1] I. Joughin, I. Howat, R. B. Alley, G. Ekstrom, M. Fahne-
stock, T. Moon, M. Nettles, M. Truffer, and V. C. Tsai,
“Ice-front variation and tidewater behavior on Helheim
and Kangerdlugssuaq Glaciers, Greenland,” Journal of
Geophysical Research: Earth Surface, vol. 113, no. F1,
2008.

[2] T. Moon and I. Joughin, “Changes in ice front position on
Greenland’s outlet glaciers from 1992 to 2007,” Journal
of Geophysical Research: Earth Surface, vol. 113, no. F2,
2008.

[3] L. Müller, M. Horwath, M. Scheinert, C. Mayer, B. Eber-
mann, D. Floricioiu, L. Krieger, R. Rosenau, and S. Vijay,
“Surges of Harald Moltke Bræ, north-western Greenland:
seasonal modulation and initiation at the terminus,” The
Cryosphere, vol. 15, no. 7, pp. 3355 – 3375, 2021.

[4] D. I. Benn, T. Cowton, J. Todd, and A. Luckman,
“Glacier Calving in Greenland,” Current Climate Change
Reports, vol. 3, pp. 282 – 290, 2017.

[5] D. A. Slater, F. Straneo, D. Felikson, C. M. Little,
H. Goelzer, X. Fettweis, and J. Holte, “Estimating
greenland tidewater glacier retreat driven by submarine
melting,” The Cryosphere, vol. 13, no. 9, pp. 2489–
2509, 2019. [Online]. Available: https://tc.copernicus.
org/articles/13/2489/2019/

[6] M. Trevers, A. J. Payne, S. L. Cornford, and T. Moon,
“Buoyant forces promote tidewater glacier iceberg
calving through large basal stress concentrations,” The
Cryosphere, vol. 13, no. 7, pp. 1877–1887, 2019.
[Online]. Available: https://tc.copernicus.org/articles/13/
1877/2019/

[7] S. J. Cook, P. Christoffersen, M. Truffer, T. R.
Chudley, and A. Abellán, “Calving of a large
greenlandic tidewater glacier has complex links to
meltwater plumes and mélange,” Journal of Geophysical
Research: Earth Surface, vol. 126, no. 4, p.
e2020JF006051, 2021, e2020JF006051 2020JF006051.
[Online]. Available: https://agupubs.onlinelibrary.wiley.
com/doi/abs/10.1029/2020JF006051

https://tc.copernicus.org/articles/13/2489/2019/
https://tc.copernicus.org/articles/13/2489/2019/
https://tc.copernicus.org/articles/13/1877/2019/
https://tc.copernicus.org/articles/13/1877/2019/
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JF006051
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JF006051


SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 10

[8] S. M. Melton, R. B. Alley, S. Anandakrishnan, B. R.
Parizek, M. G. Shahin, L. A. Stearns, A. L. LeWinter, and
D. C. Finnegan, “Meltwater drainage and iceberg calving
observed in high-spatiotemporal resolution at helheim
glacier, greenland,” Journal of Glaciology, p. 1–17, 2022.

[9] R. B. Alley, J. Andrews, J. Brigham-Grette, G. Clarke,
K. Cuffey, J. Fitzpatrick, S. Funder, S. Marshall,
G. Miller, J. Mitrovica, D. Muhs, B. Otto-Bliesner,
L. Polyak, and J. White, “History of the greenland
ice sheet: paleoclimatic insights,” Quaternary Science
Reviews, vol. 29, no. 15, pp. 1728 –1756, 2010, special
Theme: Arctic Palaeoclimate Synthesis (PP. 1674-
1790). [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0277379110000399

[10] A. Vieli and F. M. Nick, “Understanding and modelling
rapid dynamic changes of tidewater outlet glaciers: Issues
and implications,” Surveys in Geophysics volume, vol. 32,
pp. 437 – 458, 2011.

[11] J. H. Bondizo, M. Morlighem, H. Seroussi, T. Kleiner,
M. Rückamp, J. Mouginot, T. Moon, E. Y. Larour,
and A. Humbert, “The mechanisms behind Jakobshavn
Isbræ’s acceleration and mass loss: A 3-D thermome-
chanical model study,” Geophysical Research Letters,
vol. 44, no. 12, pp. 6252–6260, 2017.

[12] M. Morlighem, C. N. Williams, E. Rignot, L. An,
J. E. Arndt, J. L. Bamber, G. Catania, N. Chauché,
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