

Challenges of Distributed Preprocessing, Computation, and Postprocessing in Ice Sheet Simulations

Timm Schultz, Angelika Humbert and the CAPICE team

The ordinary ice sheet modellers world

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESEORSCHUNG

The system

gravity driven lubricated flow

thermo-mechanically coupled problem

Enthalpy field

Surface mass balance

Velocity field

Evolving lateral margins

level set method + calving laws where needed

Evolving lateral margins

Evolving lateral margins

 $\frac{\partial F_{cf}}{\partial t} + \vec{\mathbf{v}}_h \text{ grad } F_{cf} = -N_{cf}a_{cf}^{\perp} = -N_{cf}(c^{\perp} + m_{cf}^{\perp})$

calving rate

level set method

frontal melt

 ω_i

Next step

inverse modelling of calving fronts parameter optimisation problem

Evolving ice thickness

Tracking the grounding line

evaluation

OA

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

Architecture of ice sheet models

How to obtain a proper initial state for projections?

geometry, velocity, temperature @ initial state ?

Initial state

Initial state

Initial state

Inversion + thermal spin-up

Spin-up's and projections

IPCC

Distributed computing – the plan

Eggert, D., Sips, M., Sommer, P. S. and Dransch, D. (2022). DASF: A data analytics software framework for distributed environments. V. 0.3.0. GFZ Data Services. https://doi.org/10.5880/GFZ.1.4.2021.008

- central message broker (based on Apache Pulsar)
- remote procedure calls (RPC)
- messaging protocol language bindings for python and typescript
- example: Digital Earth Flood Event Explorer

Outlook

Sounds simple, but ...

.... not trivial for infrastructure providers