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The ordinary ice sheet modellers world

How do I get easy 
access to satellite 

data analysis output 
for my simulations….

How to avoid 
duplication of 
massive data?

I need to get ready 
for late CMIP7 

delivery….

Why not try 
distributed 

computing?? 

How can I publish 
my simulation 
data easily?
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Evolving lateral margins

14.1 Calving of tidewater glaciers

Tidewater glaciers are mainly located in the Arctic, but also along the
Antarctic Pensinsula tidewater glaciers are found. They are charac-
terised by seasonality in their calving behaviour and being highly crevassed
in the downstream areas, which triggers a calving behaviour that is dis-
tinct from the one of ice shelves. There are several factors, that make

Figure 73: Calving at tidewater glaciers

calving of tidewater glaciers distinct from ice shelf situations: the calv-
ing front is often ’undercut’, that is melting arising from subglacial dis-
charge, that leads to a gradient in ice thickness over short distances,
hence bending stresses are supporting calving. Melting is also facili-
tated by the warm water in the fjord, the so called ambient water, which
may have its own seasonal variability, in particular as in fall the fjord is
becoming covered with sea ice, which melts typically around May. While
from September/October to May the calving front is advancing, with the
fjords opening up in spring, larger calving events take place, so the calv-
ing fronts are retreating. While in winter the tidewater glacier may grow
a small floating part, the summer calving can break this part off entirely
and calving in summer may happen from the grounded part only. In ad-
dition the already existing crevasses are filled with water over the course
of the melt season, which increases the stress at the crack tips leading
to further crack propagation and subsequent to calving.
As a small recap, the calving front evolution equation reads as

@Fcf
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?
cf = �Ncf (c? + m
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?
cf = c

? + m
?
cf with the calving rate c

? and the frontal melt m
?
cf

and the normal vector pointing outside the ice. Frontal melt has been
parameterised in some studies. The melt rate is suggested to depend
on the oceanic thermal forcing TF , the thickness of the ice below water
Hw and the subglacial water discharge qsg and parameters A, B, ↵, �

that are adjusted to match observations

m
?
cf = (A Hwq

↵
sg

+ B) TF�
. (277)

How well this parameterisation is representing the real world is so far
unclear. The calving rate in normal direction shall be discussed below,
as it is based on failure theory.

14.2 Calving of ice shelves

At the fronts of ice shelves, we can distinguish between different types
of calving

• small scale calving, meaning calving without prior rift formation,
icebergs of small size
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Figure 67: Calving at tidewater glaciers

calving of tidewater glaciers distinct from ice shelf situations: the calv-
ing front is often ’undercut’, that is melting arising from subglacial dis-
charge, that leads to a gradient in ice thickness over short distances,
hence bending stresses are supporting calving. Melting is also facili-
tated by the warm water in the fjord, the so called ambient water, which
may have its own seasonal variability, in particular as in fall the fjord is
becoming covered with sea ice, which melts typically around May. While
from September/October to May the calving front is advancing, with the
fjords opening up in spring, larger calving events take place, so the calv-
ing fronts are retreating. While in winter the tidewater glacier may grow
a small floating part, the summer calving can break this part off entirely
and calving in summer may happen from the grounded part only. In ad-
dition the already existing crevasses are filled with water over the course
of the melt season, which increases the stress at the crack tips leading
to further crack propagation and subsequent to calving.

@Fcf

@t
+ ~vh grad Fcf = �Ncfa

?
cf = �Ncf (c? + m

?
cf ) (268)

a
?
cf = c

? + m
?
cf (269)

c
? = ||vh|| �vM

�max

(270)

m
?
cf = (A Hwq

↵
sg

+ B) TF� (271)

15.2 Calving of ice shelves

At the fronts of ice shelves, we can distinguish between different types
of calving

• small scale calving, meaning calving without prior rift formation,
icebergs of small size
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calving rate frontal melt

We define the boundary set as follows

�cf := {(~x, t) 2 R3 ⇥ R | Fcf (~x, t) = 0}

which is an equipotential surface of Fcf .

�s (49)

�cf (50)

�b,gr (51)

�b,fl (52)

�lat (53)

�id (54)

hb hs H (55)

SMB BMB (56)
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Figure 23: calving front

Figure 24:
Components of the motion at the calving
front.

Again the normal vector points outside the ice, here outside the ice shelf
or tidewater glacier
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Ncf is again the gradient norm
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As a consequence of Fcf = 0 the material time derivative of Fcf with
respect to the motion of the calving front ~w must vanish

dwFcf

dt
=

@Fcf

@t
+ (grad Fcf ) · ~w = 0 (124)

A difference to the kinematic boundary condition of the upper and lower
surface of the glacier, we are dealing here with a velocity of the front
only in horizontal direction ~wh. The frontal ablation function a

?
cf is thus

given by
a

?
cf = ( ~vh � ~wh) · ~n (125)

with ~vh the horizontal velocity of ice. In case the glacier or ice shelf front
is adavancing acf is positive and negative for retreat.
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?
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which is called the calving front evolution equation. Despite the proce-
dure to derive the calving front evolution equation is similar to the other
free surfaces, there is a considerable difference in that respect that the
frontal ablation rate constitutes of two different contributions: calving c

?

and frontal melting m
?
cf .

a
?
cf = c

? + m
?
cf (127)

The calving rate c
? can ideally be estimated by a physically based calv-

ing law.

The calving front evolution equation has a potential for data assimilation.
Calving front positions can be obtained from satellite remote sensing
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Figure 23: calving front

Figure 24:
Components of the motion at the calving
front.

Again the normal vector points outside the ice, here outside the ice shelf
or tidewater glacier
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on the Strickler coefficient, however, an educated guess would be to
assume k = 10s m

�1/3. Satellite remote sensing data in very high
resolution allows to constrain the width of such rivers. Most of them are
found to be 2-10m wide (represented by the thin lines in Fig.59. As rivers
appear in ablation zones and ablation zones are located at the margins
of the ice sheet where the topography is steep, slopes may become as
large as 5 · 10�3. The daily flux can thus be in the order of 105

m
3
/day.

By means of optical satellite remote sensing the time period in which

Figure 59:
Velocity and flux in supraglacial rivers
based on the Glauckler-Manning-Strickler
equation.

rivers are water filled can be constrained using the so called normalised
difference water index (NDWI), which relates reflectance of bands of
wavelength in the visible spectrum. In Northeast Greenland, we find that
there is a sharp onset in filling of the rivers and only a short duration of
discharge through rivers of only 10-14days - depending on the particular
year - end of July.

As rivers are flowing along the gradient of the surface topography, they
may fill sinks and form supraglacial lakes. However, if rivers flow across
areas that are crevassed, water will be filling the crevasses, too. If these
crevasses are deep, or crevasses are in form of a fracture network, as
is plausible for shear margins, this may be a way to route water to the
base of the ice sheet, feeding into a subglacial system.

14.1.4 Supraglacial lakes

Supraglacial lakes can have vast sizes, both in area and depth. The
largest supraglacial lake in Northeast Greenland has a size of 21km2,
the largest lake depth we found so far is 40m. Many lakes are however
much smaller in area and depth. They do not only act as a storage of
water (and with that mass), but open water surface have a low albedo.
In West Greenland, many lakes are forming throughout the melt season
and drain through moulins end of the season. In the Northeastern sector
they drain less frequent and are hence remaining over winter. Smaller
lakes may freeze through, but most of these lake are covered by lake
ice in winter but the larger part of the volume remains liquid throughout
the winter season, despite temperatures dropping below -30�C.

Fcf(x, t) < 0 8 x 2 !i(t)
Fcf(x, t) = 0 8 x 2 �cf(t)
Fcf(x, t) > 0 8 x 2 !o(t)

14.2 Englacial hydrology

There is little knowledge of englacial hydrology of ice sheets. Obser-
vations (satellite and field) show that lakes may drain within only hours.
This can be facilitated by fractures opening, which may be in a form of
channels, which is the reason why these are called englacial channels.
Observations in mountain glaciers revealed that most of the englacial
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We define the boundary set as follows

�cf := {(~x, t) 2 R3 ⇥ R | Fcf (~x, t) = 0}
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Figure 23: calving front

Figure 24:
Components of the motion at the calving
front.

Again the normal vector points outside the ice, here outside the ice shelf
or tidewater glacier
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Ncf is again the gradient norm
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As a consequence of Fcf = 0 the material time derivative of Fcf with
respect to the motion of the calving front ~w must vanish

dwFcf

dt
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A difference to the kinematic boundary condition of the upper and lower
surface of the glacier, we are dealing here with a velocity of the front
only in horizontal direction ~wh. The frontal ablation function a

?
cf is thus

given by
a

?
cf = ( ~vh � ~wh) · ~n (125)

with ~vh the horizontal velocity of ice. In case the glacier or ice shelf front
is adavancing acf is positive and negative for retreat.
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which is called the calving front evolution equation. Despite the proce-
dure to derive the calving front evolution equation is similar to the other
free surfaces, there is a considerable difference in that respect that the
frontal ablation rate constitutes of two different contributions: calving c

?

and frontal melting m
?
cf .

a
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The calving rate c
? can ideally be estimated by a physically based calv-

ing law.

The calving front evolution equation has a potential for data assimilation.
Calving front positions can be obtained from satellite remote sensing
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Figure 23: calving front

Figure 24:
Components of the motion at the calving
front.

Again the normal vector points outside the ice, here outside the ice shelf
or tidewater glacier
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As a consequence of Fcf = 0 the material time derivative of Fcf with
respect to the motion of the calving front ~w must vanish
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A difference to the kinematic boundary condition of the upper and lower
surface of the glacier, we are dealing here with a velocity of the front
only in horizontal direction ~wh. The frontal ablation function a
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with ~vh the horizontal velocity of ice. In case the glacier or ice shelf front
is adavancing acf is positive and negative for retreat.
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which is called the calving front evolution equation. This is basically also

a level set equation:
Fcf(x, t) < 0 8 x 2 !i(t)
Fcf(x, t) = 0 8 x 2 �cf(t)
Fcf(x, t) > 0 8 x 2 !o(t)

Despite the procedure to derive the calving front evolution equation
is similar to the other free surfaces, there is a considerable difference
in that respect that the frontal ablation rate constitutes of two different
contributions: calving c

? and frontal melting m
?
cf .

a
?
cf = c

? + m
?
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The calving rate c
? can ideally be estimated by a physically based calv-

ing law.
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level set method



Next step

inverse modelling of calving fronts
parameter optimisation problem



Evolving ice thickness
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Tracking the grounding line
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Architecture of ice sheet models
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Initial state

How to obtain a proper initial state for projections?

geometry, velocity, temperature @ initial state ?



Initial state
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Spin-up’s and projections

now … in future
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Distributed computing – the plan
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Outlook

Sounds simple, but ...

.... not trivial for infrastructure providers


