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Abstract Chromophoric dissolved organic matter (CDOM) is a ubiquitous component in marine
environments, and substantial changes in its sources and distribution, related to the carbon cycle in the Arctic
Ocean, are expected due to Arctic warming. In this study, we present unique CDOM data in the Eurasian Arctic
Ocean derived from the year‐round MOSAiC expedition. We used CDOM absorbance spectra and fluorescence
excitation‐emission matrices in combination with parallel factor analysis to characterize differences in DOM
sources and composition. Our results suggested that terrestrial DOM was less sensitive to seasonal changes but
controlled by regionality in hydrography. Elevated dissolved organic carbon (DOC) levels in polar surface
water were primarily derived from terrigenous sources as identified by CDOM absorption and fluorescence
characteristics. In the Amundsen Basin and western Fram Strait surface waters, to which terrestrial DOM is
primarily transported by the Transpolar Drift, we found, on average, a 188% larger meteoric water fraction and a
40% higher DOC concentration compared to the Atlantic water that dominated western Nansen Basin and
Yermak Plateau. In the Amundsen Basin, the DOC concentration in summer of surface water was only 13%
higher compared to winter season. Additionally, autochthonous DOM and chlorophyll‐a concentrations were
relatively low in surface water and exhibited significant differences compared to those observed in summer,
while there were significant differences between autochthonous DOM and chlorophyll‐a. We also observed that
sea ice melt contributed to autochthonous DOM in summer, while storms in winter affected the vertical
distribution of terrestrial and autochthonous DOM in the subsurface.

Plain Language Summary In the Arctic Ocean, dissolved organic matter (DOM) is important
because it represents a large carbon reservoir that cycles through the environment and supports the growth of
marine life in the Arctic. DOM originates from various sources and its composition changes depending on
factors like location and time of year, largely influenced by ocean currents. Microbes in the water break down
DOM, but this process is hindered during the winter months and in areas with limited sunlight. Due to the very
limited and challenging accessibility of the Central Arctic Ocean, there is a lack of DOM data, especially during
winter in the Eurasian Arctic Ocean. Scientists conducted a comprehensive year‐round study during the
MOSAiC expedition and discovered that much of the DOM in the Arctic comes from land in Siberia.
Additionally, seasonal changes were observed to alter the composition of locally produced chromophoric DOM
(CDOM) in surface waters of the Amundsen Basin. In contrast, terrestrial CDOM is less responsive to seasonal
shifts but more influenced by regional variations in hydrography. This highlights the substantial role of regional
hydrographic differences in shaping the characteristics of DOM in surface water across the Eurasian Arctic
Ocean.

1. Introduction
Dissolved organic matter (DOM) constitutes the largest pool of organic material in the ocean (Hansell
et al., 2009). It is a complex mixture of allochthonous (terrestrially derived) and autochthonous (in situ biological
production) materials (Stedmon et al., 2007) and plays a crucial role in the global carbon cycle, rivaling the
atmospheric CO2 content in scale (Friedlingstein et al., 2022). DOM attenuates the penetration of ultraviolet (UV)
and visible light (Hill, 2008; Morris et al., 1995), serves as an energy and nutrient source for heterotrophic
communities (Wetzel, 1984), and acts as a trace metal ligand (Hirose, 2007). In the Arctic, the distribution and
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dynamics of DOM have attracted much attention in recent decades. Studies have shown that the land‐ocean flux
of DOM to the Arctic Ocean has increased due to climate warming and permafrost thawing (Frey & Smith, 2005;
O’Donnell et al., 2016; Spencer et al., 2015). The fraction of DOM that absorbs light within the UV and visible
spectrum is known as chromophoric dissolved organic matter (CDOM). CDOM is optically active and ubiquitous
in the Arctic Ocean, where it has a significant impact on the penetration of UV radiation, solar heating of surface
waters, and light availability for primary production (Granskog et al., 2007; Hill, 2008; Pegau, 2002). Optical
spectroscopy (absorbance and fluorescence) is widely used to characterize the properties and dynamics of CDOM
(Baker & Spencer, 2004; Guéguen et al., 2015; Parlanti et al., 2000; Stedmon et al., 2021; Yamashita &
Jaffé, 2008). Fluorescence excitation emission matrices (EEMs) analyzed using parallel factor analysis (PAR-
AFAC) have been widely used to identify the major components of the fluorescent dissolved organic matter
(FDOM), a subfraction of CDOM that emits a fraction of the absorbed energy as fluorescence (Murphy
et al., 2008; Stedmon et al., 2003).

The upper Eurasian/Eastern Arctic Ocean generally consists of three distinct layers: polar surface water (PSW),
the halocline layer, and the Atlantic Water (AW) layer beneath the halocline (Rudels et al., 1996). PSW is
characterized by relatively low salinity and cold temperatures, while in the halocline layer salinity increases
rapidly with depth, separating surface waters from the relatively warm and saline AW layer beneath. The major
suppliers of freshwater to the Arctic Ocean are low‐salinity Pacific Water entering through the Bering Strait,
precipitation over the Arctic region, continental runoff, and sea ice meltwater (Rudels, 1989; Rudels et al., 1996).
River discharge, in particular, brings high loads of terrestrial organic matter into the Arctic surface waters and
upper halocline (Bélanger et al., 2006; Stedmon et al., 2011). The Transpolar Drift (TPD; Figure 1) is the major
surface current in the eastern Arctic Ocean that transports sea ice and shelf waters from the Laptev and East
Siberian Seas across the Arctic Ocean towards the Fram Strait (Charette et al., 2020). The TPD carries a large
amount of freshwater and terrestrially derived DOM, indicated by elevated CDOM concentrations (Slagter
et al., 2017) and relatively low salinities in PSW (e.g., Paffrath et al., 2021). The position of the TPD varies with
the Arctic Oscillation (Charette et al., 2020; Mauritzen, 2012; Mysak, 2001) affecting the local CDOM
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Figure 1. Map of the study area. Dots represent the CTD stations conducted during the MOSAiC expedition. Stations where
DOM samples were collected from the CTD rosette are highlighted in yellow. Triangles represent stations of the N‐ICE2015
expedition. Squares represent stations of the TA19_4 expedition. Magenta asterisks represent profiles taken by ITP94. AB:
Amundsen Basin, GR: Gakkel Ridge, NB: western Nansen Basin, YP: Yermak Plateau, and FS: Fram Strait. Blue arrows
indicate major Arctic River inflows. White arrows indicate the approximate location of the TPD. Note that the Arctic
Oscillation (Macdonald et al., 2005) can result in a substantial interannual spatial variability of the location of the TPD.
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concentration. CDOM is also influenced by seasonal changes of the Arctic River freshwater discharge, which is
lowest in winter (Mann et al., 2016; Spencer et al., 2008). In the central Arctic Ocean, sea ice meltwater can also
introduce freshwater into the surface layer in summer. In winter, brine released by freezing, increases the density
of the surface layer (Jones et al., 2008). Hence, PSW can be homogenized by convective mixing and brine
rejection during the seasonal ice formation and re‐stratified during the sea ice melt (Korhonen et al., 2013;
Rudels, 1989; Rudels et al., 2004). In addition to physical processes, primary production and heterotrophic
consumption in the Arctic Ocean contribute to the distribution of DOM in surface waters (Hach et al., 2020;
Mathis et al., 2007). The Arctic experiences significant spatial and temporal variability in solar radiation, sea ice
extent, and nutrient availability, leading to considerable differences in primary production (Tremblay & Gag-
non, 2009). This also affect the production and release of bioavailable DOM, a source of carbon and energy for
heterotrophic bacteria and sustaining the structure microbial food webs (Carlson & Hansell, 2015). Especially
during the Arctic winter with its polar night and extreme low temperature, reduced primary productivity (Terhaar
et al., 2021), decreased heterotrophic bacteria activity (Sherr & Sherr, 2003), and limited photodegradation
(Stedmon et al., 2011) could significantly influence the dynamics of DOM, and may lead to the accumulation of
DOM in PSW. The DOM in PSW is subsequently exported to the deep ocean through vertical mixing and
overturning circulation, and gradually mineralized by microorganisms (Hansell & Carlson, 2001). In addition,
strong tidal induced vertical mixing in winter could also affect the transport of DOM into deep waters (Pavlov,
Stedmon, et al., 2016). While a previous study mentions the seasonality of CDOM in the Amerasian sector of the
Arctic Ocean (Matsuoka et al., 2011), there is a lack of DOM measurements, especially during winter in the
Eurasian sector (Boles et al., 2020; Gonçalves‐Araujo et al., 2018).

The “Multidisciplinary Drifting Observatory for the Study of Arctic Climate” (MOSAiC) campaign involved a
year‐round (October 2019–September 2020) passive drift with sea ice of the RV Polarstern across the Eurasian
Basin (Rabe et al., 2022). In this study, we present the first comprehensive year‐round observations of DOM
characteristics in the upper Eurasian Basin, and investigate how optical properties vary across the different water
masses, regions and seasons. Our objective was to determine the spatial and temporal variability of the DOM
composition and sources along the MOSAiC drift, and identify the dominant patterns driving the optical vari-
ability within PSW.

2. Materials and Methods
2.1. Study Area, Sampling, and In Situ Observation

DOM samples from seawater (sampling depth ranged from surface (∼2 m) to bottom (∼4,400 m)) were collected
from the conductivity‐temperature‐depth (CTD) rosettes on the Central Observatory ice floe (Ocean City) and on
RV Polarstern (Knust, 2017) during the expedition PS122 (MOSAiC). The vessel drifted with the first ice floe in
the Amundsen Basin in October 2019 and crossed the Gakkel Ridge from March 18 to April 9, 2020. The drift
continued through the Nansen Basin and reached the Yermak Plateau on 2 June 2020. After crossing the plateau,
the drift entered the Fram Strait on 16 July 2020. After steaming back to the Amundsen Basin near the North Pole,
RV Polarstern drifted again with a second ice floe from August 21 to September 18, 2020. Prior to analysis,
seawater samples were filtered through pre‐combusted (450°C, 5 hr) glass fiber filters (Whatman; GF/F). The
60 mL filtered water column samples were stored in acid washed high density polyethylene bottles at − 20°C for
dissolved organic carbon (DOC) and total dissolved nitrogen (TDN; sum of dissolved inorganic and organic
components) measurements. Samples from November 2019 to February 2020 were also used for absorbance and
EEMs measurements at the AWI Basic Laboratory. The 40 mL filtered water column samples from January 2020
to September 2020 were stored in pre‐combusted amber glass vials at 4°C prior to absorbance and EEMs
measurements at the AWI Basic Laboratory.

DOM samples from lead waters were collected in the Amundsen Basin using a peristaltic pump (Masterflex E/S
portable sampler) from the surface down to 1 m between August 25 and September 4, 2020. These samples were
filtered through an in‐line 0.2 μm pore size Sterivex cartridge filter (polyethersulfone membrane) and stored in
acid washed high density polyethylene bottles at − 20°C for DOC and TDN measurements, and in pre‐combusted
amber glass vials at 4°C for absorbance and EEMs measurements. Salinity for lead water samples was measured
with a hand‐held multi‐parameter probe (Cond 340i, WTW).
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Chlorophyll‐a (Chl‐a) samples were collected from the two CTD rosettes roughly once per week from end of
October 2019 to beginning of October 2020. 2–4 L of water were filtered onto precombusted GF/F filters
(nominal pore size 0.7 μm) under gentle vacuum and frozen at − 80°C.

The stable oxygen isotope ratio (δ18O) of underway seawater samples from underneath the research vessel and
corresponding salinity used in this study was acquired from the PANGAEA data repository (Mellat et al., 2022).

The ice‐tethered buoy ITP94 (Figure 1; Krishfield et al., 2008; Toole et al., 2011) was equipped with a fluo-
rescence sensor and deployed on a 0.7‐m‐thick ice floe in collaboration with the MOSAiC expedition from RV
Akademik Federov. This deployment involved conducting a full one‐way profile every 1.5 days at depths be-
tween 7 and 760 m from October 2019 to July 2020. The in situ fluorescence signal, represented by the voltage
output at excitation 370 nm and emission 460 nm from the fluorescence sensor (ECO FLbb‐CD; WET Labs Inc.),
firstly underwent a smoothing process using a moving average algorithm with a 20‐m window. The fluorescence
data was examined for drift or baseline bias by plotting the mean and standard deviation of each profile (see
details in Stedmon et al., 2021). Subsequently, the voltage signal was linearly calibrated to represent DOM
fluorescence in Raman units (see Figure S1 in Stedmon et al., 2021). We compared the results of the MOSAiC
campaign with previous observations, CDOM absorption and fluorescence acquired during the Norwegian young
sea ICE (N‐ICE2015) expedition in the western Nansen Basin and Yermak Plateau (Figure 1; January–June 2015;
Granskog et al., 2018), and data from the Laptev Sea and East Siberian Sea acquired during the TA19_4
expedition (Figure 1; September–October 2019; Hölemann et al., 2021).

2.2. Water Masses

During MOSAiC, vertical profiles of hydrographic data were collected with two CTD‐systems operated on the
Central Observatory ice floe (Ocean City, Tippenhauer et al., 2023a, 2023c) and on RV Polarstern (Tippenhauer
et al., 2023b, 2023d). Six distinct water masses (Table S1 in Supporting Information S1) were identified along the
drift track based on profiles of potential temperature (θ) and practical salinity (Sp) (Korhonen et al., 2013) Due to
the comparatively low number of observations, the Deep Water (DW) category was not further classified into
different water masses in this study (Meyer et al., 2017; Rudels, 2009; Smethie et al., 1988). More about the
different water masses present during MOSAiC can be found in Schulz et al. (2023). Additionally, PSW samples
from the NICE2015 and TA19‐4 expeditions were compared with PSW samples collected during MOSAiC.

The water mass composition of surface waters during MOSAiC was determined using a three‐endmember mass
balance following the approach of Östlund and Hut (1984), defined by the following equations:

faw + fmw + fsim = 1 (1)

fawSaw + fmwSmw + fsimSsim = S (2)

fawδaw + fmwδmw + fsimδsim = δ (3)

where f is a water fraction, S is practical salinity, δ is δ18O, and the subscripts aw, mw, and sim represent Atlantic
water, meteoric water (i.e., river runoff and precipitation), and sea ice melt water, respectively. Pacific Water was
not used as a water source in this calculation, because there was no influence of Pacific Water within our sampling
area (Paffrath et al., 2021; Schulz et al., 2023). Salinity and δ18O endmember values were defined by following
previous studies (Bauch et al., 2009; Granskog et al., 2012; Stedmon et al., 2015; Östlund & Hut, 1984), where
Saw, Smw, Ssim were assigned to 34.92, 0, and 4, respectively, and δaw, δmw and δsim were assigned as 0.3, − 20, and
− 2‰ respectively. A negative value for fsim represents the amount of water removed by sea ice formation, and
subsequent addition of brines (Bauch et al., 2009; Östlund & Hut, 1984).

2.3. Seasonal Transitions

Seasonal transitions duringMOSAiCwere defined by Shupe et al. (2022) based on daily averaged near‐surface air
temperature (2 m). At the beginning of the drift, the autumn freeze‐up already started, with temperatures around
− 10°C. Subsequently, temperatures continued to decrease, with lows approaching − 40°C. From the end of
November 2019 to mid‐April 2020, temperatures were generally below − 20°C, which was defined as the winter
season. In mid‐April, there was an abrupt shift to temperatures above − 20°C, coinciding with a southerly
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advection event, marking the start of the spring season. In late May, the sea ice reached a consistent surface melt
until early September, with temperatures limited to a narrow range of a few degrees around 0°C, defined as the
summer melt season. From early September, the autumn freeze‐up began again.

2.4. DOC and TDN Analysis

DOC and TDN were determined by high temperature catalytic oxidation (HTCO) and non‐dispersive infrared
spectroscopy and chemiluminescence detection with potassium hydrogen phthalate (PHP) and potassium nitrate
(KNO3) as standards, respectively (TOC‐VCPN, Shimadzu; for details see e.g., Ksionzek et al., 2018). Samples
were first poured into well‐rinsed vials and acidified with 0.1 M HCl (Suprapur Merck) in the autosampler.
Oxygen was then sparged into the samples for 5 min to remove inorganic carbon before 50 μL sample volume was
injected directly on the catalyst at 680°C. The CO2 generated was detected using an infrared detector, with a limit
of determination of 7 μmol DOC kg− 1 and a precision of ±5%. TDN was quantified by a chemiluminescence
detector, with a limit of determination of 3 μmol TDN kg− 1.

2.5. Optical Spectroscopy

EEMs were measured using a spectrofluorometer (Aqualog, Horiba) equipped with a charge‐coupled device
(CCD) detector. Excitation wavelengths were scanned from 240 to 600 nm at 3 nm increments, while emissions
were recorded from 220 to 620 nm at ∼3.3 nm increments. CDOM absorbance spectra were acquired using a
spectrophotometer (UV2700, Shimadzu) in a quartz cuvette with an optical path length of 10 cm in the spectral
range of 200–800 nm. EEMs and CDOM absorbance spectra were processed using the staRdom package in R
studio (Version 3.5.1; Pucher et al., 2019). The fluorescence spectra were blank‐corrected using ultrapure water
(Milli‐Q, Millipore), and then underwent inner filter effect correction and Raman normalization by dividing by
the Raman peak of ultrapure water at an integrated excitation of 350 nm and an emission between 371 and 428 nm
(Raman Units (R.U.); Lawaetz & Stedmon, 2009). A PARAFAC was then applied for all DOM samples
(MOSAiC, N‐ICE2015, and TA19_4 expeditions) to decompose the EEMs into different underlying fluorescent
components (Murphy et al., 2008; Stedmon et al., 2003). The appropriate number of components was determined
by a split‐half validation (Murphy et al., 2013), for which the whole data set was split into six separate randomly
split subsets. Tucker congruence coefficient (TCC) was used to assess the spectral similarity between components
derived from different subsets (Wünsch et al., 2019), resulting in a four‐component model (TCCex,em > 0.99;
Figure S1 in Supporting Information S1). The four underlying components were named as C470, C400, C340, and
C320 based on their fluorescence emission maxima (Figure 2). C470 is often assigned as humic‐like components
with terrestrial origin based on fluorescence maxima (Coble, 1996; Gonçalves‐Araujo et al., 2016; Murphy
et al., 2011). C400 has been assigned as humic‐like substance with marine and microbial origin (Brogi et al., 2019;
Coble, 1996; Wagner et al., 2015), or with terrestrial origin (Gonçalves‐Araujo et al., 2016; Lin & Guo, 2020). In
this study, C400 had a significant correlation with C470 (R2 > 0.9), indicating similar characteristics and
allochthonous origins. According to previous studies, C340 is a protein‐like component (tryptophan‐like peak T)
of autochthonous origin (Coble, 1996), and C320 was similar to the protein‐like (tyrosine‐like peak B) component
of autochthonous origin (Coble, 1996).

The biological index (BIX), a proxy for freshly produced autochthonous DOM, was calculated as the ratio of the
emission intensity at 380 nm divided by that at 430 nm, with a fixed excitation wavelength of 310 nm (Huguet
et al., 2009). Higher BIX values indicate a higher proportion of freshly produced DOM.

The absorption coefficient at λ nm (aCDOM(λ) in m− 1) was calculated by the following equation:

aCDOM(λ) = 2.303A(λ)/l

where the factor 2.303 is the natural logarithm of 10, A(λ) is the absorbance at wavelength λ in nm, and l is the
optical path length in meters (Stedmon & Markager, 2001). The absorption coefficient at 350 nm (aCDOM(350))
has been suggested as a proxy for CDOM concentration, and used to estimate the inputs of terrigenous DOM and
lignin phenol concentrations in the Arctic (Fichot et al., 2016; Spencer et al., 2009; Walker et al., 2013).

The spectral slope of CDOM absorption was calculated over a range of 275–295 nm (S275− 295 in nm− 1; Helms
et al., 2008), and over the 300–650 nm range using non‐linear least squares fitting (S300− 650 in μm

− 1; Stedmon &
Markager, 2001). The spectral slope of CDOM is inversely proportional to molecular weight (Stedmon &

Journal of Geophysical Research: Oceans 10.1029/2023JC020844

KONG ET AL. 5 of 19

 21699291, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JC

020844 by C
lara Jule M

arie H
oppe - A

lfred W
egener Institut F. Polar- U

. M
eeresforschung A

w
i , W

iley O
nline L

ibrary on [25/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Nelson, 2015). S300− 650 is used to characterize DOM composition and photochemical transformation (Helms
et al., 2008; Nelson & Siegel, 2013). S300− 650 and the absorption coefficient at 375 nm (aCDOM(375)) were used to
distinguish marine from terrestrial CDOM based on the model by Stedmon and Markager (2001). The specific
ultraviolet absorbance (SUVA254 in L mg− 1 m− 1) was calculated by the absorbance at 254 nm (given in m− 1)
divided by the DOC concentration in mg L− 1 (Weishaar et al., 2003). SUVA254 has been previously used as a
proxy for aromaticity of aquatic humic substances and is positively correlated with molecular weight (Weishaar
et al., 2003).

2.6. Chlorophyll‐a Measurement

Chl‐a samples were extracted in 90% acetone at 4°C over night, homogenized using a cell mill, and measured on
the following day using a fluorometer (TD‐700; Turner Designs, USA), followed by an acidification step to
determine phaeopigments (see Knap et al. (1996) for details and calculations).

2.7. Statistical Analysis

The software Origin (Version 2018, OriginLab Corporation, Northampton, MA, USA) was used to conduct
principal component analysis (PCA) to assess the variability of optical properties in two contexts: (a) among
different water masses, and (b) within the PSW samples in different regions. The optical properties considered in
the analysis included two humic‐like fluorescent components (C470, C400), BIX, aCDOM(350), and S300− 650.
Before conducting the PCA, these parameters were normalized using z‐score normalization, which involves
subtracting the mean and dividing by the standard deviation. In addition, a one‐way ANOVA test (aov() function
in R; p < 0.01) was conducted to assess the seasonal differences of the FDOM components and Chl‐a in PSW of
the Amundsen Basin during MOSAiC. Eighteen duplicate DOM samples were stored, both, at 4°C and − 20°C. A
non‐parametric Wilcox signed‐rank test (Version 2018, OriginLab Corporation, Northampton, MA, USA) was
used to assess if the optical DOM parameters (C470, C400, C340, C320, BIX, S275− 295, S300− 650, aCDOM(254),
aCDOM(350), aCDOM(375), and aCDOM(650); Table S2 in Supporting Information S1) were significantly different
(p < 0.01) at different storage temperatures.

Figure 2. Contour plots of the four‐component PARAFACmodel developed from fluorescence excitation‐emission matrices
(EEMs) recorded for all DOM samples during the MOSAiC, N‐ICE2015 and TA19_4 expeditions.
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3. Results
3.1. Water Masses

The Temperature‐Salinity (TS)‐diagram of all marine DOM samples collected during MOSAiC revealed clear
hydrographical gradients (Figure S2a in Supporting Information S1).

For PSW, SP (Figures S2b–S2d in Supporting Information S1) ranged from 29.0 to 33.3 (with a mean ± SD of
31.8 ± 1.0) in the Amundsen Basin, from 31.1 to 32.8 (with a mean ± SD of 31.7 ± 0.4) in the Fram Strait, from
34.2 to 34.3 (with a mean ± SD of 34.3 ± 0.1) in the western Nansen Basin, and from 32.5 to 34.1 (with a
mean± SD of 33.8± 0.2) on the Yermak Plateau. While the surface temperature was close to the freezing point in
winter (Figure S3a in Supporting Information S1, deviation of 0.003 ± 0.005°C), their deviation increased to
0.113 ± 0.003°C in mid‐April, indicating the beginning of spring. The AW was primarily observed at depths
ranging from 100 to 700 m. Within the AW layer (Figure S3b in Supporting Information S1), the maximum
temperature was 1.57°C (with a mean± SD of 0.82± 0.46°C) in the Amundsen Basin, 1.71°C (with a mean± SD
of 1.05 ± 0.50°C) in the western Nansen Basin, 2.61°C (with a mean ± SD of 1.12 ± 0.64°C) on the Yermak
Plateau, and 2.66°C (with a mean ± SD of 0.97 ± 0.72°C) in the Fram Strait.

To assess the seasonal differences of the FDOM composition and Chl‐a in PSW of the Amundsen Basin, a one‐
way ANOVA was performed using seasons as factors (Table S3 in Supporting Information S1). We found no
statistically significant seasonal differences in the terrestrial FDOM components C470, and C400 (p > 0.01;
Table S3 in Supporting Information S1). However, the analysis did show statistically significant differences
between seasons for BIX and Chl‐a (p < 0.01; Table S3 in Supporting Information S1). Relatively high con-
centrations of BIX, and Chl‐a were observed after the spring season (Figure 3). However, there was no significant
correlation between BIX and Chl‐a in PSW (ANOVA, p < 0.01; Figure 3b).

The C340, C320, aCDOM(254), and S275− 295 were significantly different between the 4°C and − 20°C storage
(Wilcoxon rank sum test, p < 0.01), in contrast to C470, C400, aCDOM(350), aCDOM(375), aCDOM(650), BIX and
S300− 650 (Wilcoxon rank sum test, p > 0.01). Hence, we selected BIX and S300− 650 and ignored C340, C320 and
S275− 295 for the PCA. PCA was used to explore the variability of optical properties among different water masses
(PSW, UHC, LHC, AW1, AW2, and DW; Figures 4a and 4b). The goal was to understand how optical properties
vary across these different water masses and to identify the main sources of variability. The results of the PCA
revealed that Principal Component 1 (PC1) accounted for 64.7% of the total variance in the optical properties.
PC1 was characterized by large positive loadings for C470, C400, and aCDOM(350), indicating that these variables
contributed most to the variability of water masses. The pattern suggested a relatively high contribution of
terrestrial sources of CDOM. Furthermore, a significant linear relationship was observed between the DOC
concentration and the PC1 score for all water masses (R2 = 0.81), indicating that higher DOC levels, primarily in
PSW and UHC, were associated with a terrigenous source of organic matter. Conversely, lower DOC levels,
mainly in AW1, AW2 and DW, were related to a marine organic matter. Principal Component 2 (PC2) explained

Figure 3. Polar surface water characteristics: (a) Temporal changes of chlorophyll‐a concentration (Chl‐a; black dots) and the
biological index (BIX; blue triangle) in different regions. (b) Relationship between Chl‐a and corresponding BIX in different
seasons (colors) and regions (shapes). AB: Amundsen Basin, GR: Gakkel Ridge, NB: western Nansen Basin, YP: Yermak
Plateau, and FS: Fram Strait. Note. Only some Chl‐a samples in panel (a) are corresponding to DOM samples.
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19.9% of the total variance in the optical properties, and exhibited a strong positive loading for S300− 650, sug-
gesting a contribution of photo degradation processes.

PCA was also applied to the optical properties of PSW samples to investigate their spatial variability. The goal
was to identify the dominant optical properties of PSW in different regions (Figures 4c and 4d). PC1 explained
71.0% of the total variance and effectively separated PSW collected in the Laptev Sea, East Siberian Sea, and
Amundsen Basin from those collected in the western Nansen Basin and Yermak Plateau. PC1 exhibited strong
positive loadings for C470, C400, and aCDOM(350), indicating a relatively high contribution of CDOM from
terrestrial sources. Samples with positive PC1 scores were primarily of terrestrial origin, and samples located at
the right of the PCA biplot represented end members from Siberian shelves (Figure 4c). On the other hand, most
samples from the western Nansen Basin and Yermak Plateau, with negative PC1 scores, was characterized by a
lower contribution of terrestrial CDOM. A significant linear relationship was observed between the DOC con-
centration and the PC1 score for all water masses (R2= 0.93; Figure 4d), also suggesting a predominant terrestrial
CDOM in PSW. PC2 explained 18.3% of the total variance in the optical properties, and exhibited a strong
positive loading for S300− 650. This loading was related to the photochemical alterations of CDOM in PSW,
particularly within the Nansen Basin, Yermak Plateau and Siberian shelves.

Based on the model developed by Stedmon and Markager (2001; SM2001) the relationship between S300− 650 and
aCDOM(375) was utilized to distinguish marine CDOM from terrestrial CDOM. The model provides a threshold

Figure 4. Optical characteristics of water masses during MOSAiC: differences in water masses as revealed by (a) principal
component analysis (biplot) based on optical parameters (C470, C400, BIX, aCDOM(350) and S300− 650), and (b) the
relationship between DOC and principal component 1 (PC1) score. Regional differences in polar surface water: (c) PCA
biplot, and (d) the relationship between DOC and PC1 score during MOSAiC, N‐ICE2015 and TA19_4 expeditions.
Loadings for the six variables are represented in blue. PSW: Polar surface water, UHC: Upper Halocline, LHC: Lower
Halocline, AW1: Upper Atlantic Water, AW2: Lower Atlantic Water, and DW: Deep Water. AB: Amundsen Basin, GR:
Gakkel Ridge, NB: western Nansen Basin, YP: Yermak Plateau, FS: Fram Strait, LS: Laptev Sea, and ESS: East
Siberian Sea.
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for this discrimination (Figure S4 in Supporting Information S1). Data points that fall within the region between
the dashed lines (within the model limits) are considered to represent marine CDOM, indicating that they align
with the expected relationship between S300− 650 and aCDOM(375) for marine sources. On the other hand, data
points that lie outside the model limits are classified as terrestrial CDOM, suggesting that they deviate from the
expected relationship and originate from terrestrial sources. In our study, the water masses PSW and UHC were
predominantly associated with terrestrial CDOM. Samples in PSW or UHC collected in the Amundsen Basin and
Fram Strait exhibited larger deviations from the model limits compared to the samples from the western Nansen
Basin and Yermak Plateau.

3.2. Sources of Surface Waters

To assess the contribution of meteoric water fmw and sea ice melt water fsim (as described by Equations 1–3) in
surface waters, a three‐endmember mass balance approach was used (Figure 5). The fmw values ranged from 0.06
to 0.18 (with a mean ± SD of 0.12 ± 0.03) in the Amundsen Basin, from 0.04 to 0.06 (with a mean ± SD of
0.05 ± 0.01) in the western Nansen Basin, from 0.02 to 0.07 (with a mean ± SD of 0.04 ± 0.01) on the Yermak
Plateau, and from 0.08 to 0.19 (with a mean ± SD of 0.13 ± 0.02) in the western Fram Strait. The Amundsen
Basin and western Fram Strait had significantly higher meteoric fraction in the surface waters, which corre-
sponded to higher concentrations of DOC, and higher levels of the FDOM humic‐like components (C470, and
C400) (Figures 5a–5c). In contrast, there was no clear relationship between meteoric water and autochthonous
DOM, and sea ice melt and autochthonous DOM (Figure 5d).

Figure 5. Polar surface water: meteoric water fraction ( fmw), sea ice melt water ( fsim) and corresponding (a) DOC
concentration, and PARAFAC components (b) C470, (c) C400, and (d) biological index (BIX) in polar surface water (PSW)
over the entire duration of the MOSAiC expedition. Dashed vertical lines separate different regions. Dashed horizontal line
represents the zero value of the left y‐axis. AB: Amundsen Basin, GR: Gakkel Ridge, NB: western Nansen Basin, YP:
Yermak Plateau, and FS: Fram Strait.
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3.3. Vertical Variations in the DOM Composition

One of the challenges of the MOSAiC expedition was to reach consistent high‐quality sampling over all five
consecutive teams that joined the cruise. For quality control, we evaluated the variance of the DOC concentration
and PARAFAC components C470 and C400 in all deep‐water samples (Figure S5 in Supporting Information S1).
Due to the limited input and the predominant refractory character of DOM in the deep ocean (Hansell, 2013;
Hansell et al., 2012), DOM quantity and characteristics in the deep basins remain relatively constant. The co-
efficient of variation in PSW was higher, with values ≥17% for DOC concentration and ≥34% for all FDOM
humic‐like components. For samples in deep water, we observed a coefficient of variation for the DOC con-
centration below 4.9%, which was similar to the analytical repeatability of the method and supported the
conclusion that the teams carried out consistent sampling over the course of the cruise. As expected, the coef-
ficient of variation in PSW was markedly higher in comparison to deep water (Figure S5 in Supporting Infor-
mation S1) as a consequence of seasonal and regional differences in the surface. The TS‐diagram (Figures S2b–
S2d in Supporting Information S1) also showed pronounced differences in DOC concentration and humic‐like
components (C470 and C400) in PSW compared to AW and DW.

Expectedly, PSW exhibited lower TDN concentrations and higher DOC, SUVA254, aCDOM(350), aCDOM(375),
C470, and C400 compared to deeper waters below (Figure 6; Figures S2b–S2d and Table S4 in Supporting
Information S1). When comparing only PSW, higher TDN concentrations were observed in the western Nansen
Basin and Yermak Plateau compared to the Amundsen Basin and Fram Strait. BIX values were relatively high in
surface waters of the western Nansen Basin, Yermak Plateau, and the Fram Strait compared to the Amundsen
Basin. During a strong storm in the Amundsen Basin on 6 March 2020, we observed 27% higher DOC con-
centration, 41% higher SUVA254 value, 107% higher C470 value, but 31% lower TDN concentration, and 23%
lower BIX at ∼200 m water depth compared to samples collected at the same depth in January and February.

During the drift of ice‐tethered buoy ITP94 across the Amundsen Basin from October 2019 to March 2020, DOM
fluorescence in PSW increased over time (Figure 7b, see also and Figure S6b in Supporting Information S1). The
highest values were observed between January and March. FDOM values for SP ∼ 32.5 ranged from 0.015 to
0.042 R.U. in the Amundsen Basin (Figure 7a), for example, The maximum temperatures were observed in the
AW layer over the Yermak Plateau and Fram Strait (Figure S6a in Supporting Information S1), consistent with
observations from CTD rosette data during MOSAiC.

3.4. Lead Waters

The analysis of low‐salinity (2.4 ≤ Sp ≤ 20) surface water samples collected in open water leads in the Amundsen
Basin in late summer revealed a significant positive linear correlation between Sp and DOC (R2 = 0.89;
Figure 8a). Similarly, there was a significant positive correlation between Sp and the FDOM components C470,
and C400 (R2 of 0.90 and 0.88, respectively; not shown). In a PCA analysis, PC1 accounted for 80.0% of the total
variance and effectively differentiated between high‐salinity (28 ≤ Sp ≤ 30) and low‐salinity lead water samples
(Figure 8b). In high‐salinity lead water samples, PC1 was dominated by terrestrial CDOM, indicated by strong
positive loadings for C470, C400 and aCDOM(350). Conversely, low‐salinity lead water samples were charac-
terized by autochthonous CDOM, as indicated by strong negative loadings for the optical parameters BIX and
S300− 650 in PC1. PC2 accounted for 17.0% of the total variance in the optical properties, displaying a notable
positive loading for BIX, suggesting the influence of local production of CDOM for low‐salinity lead water
samples. Additionally, it exhibited a negative loading for S300− 650, indicative of photochemical degradation of
CDOM for low‐salinity lead water samples.

4. Discussion
4.1. Regional Variations of DOM Characteristics

Polar surface water showed distinct regional differences in optical characteristics in the Eurasian Basin, which can
be mainly attributed to the varying contribution of terrestrial organic matter transported via the TPD. Multivariate
statistics (PCA) could explain a high proportion of the variance in the optical parameters by principal component
1 (PC1) that was constituted by those optical parameters that gave a good representation of the terrestrial
contribution in PSW and UHC water in different regions (East Siberian Sea, Laptev Sea and Amundsen Basin).
Consequently, we observed a significant correlation between DOC concentration and the PC1 score (Figure 4).
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Higher DOC concentrations (Table S4 in Supporting Information S1) predominantly reflected the advection of
terrigenous organic matter, rather than local production and degradation processes (Mann et al., 2016; Opsahl
et al., 1999). The SM2001 model (Figure S4a in Supporting Information S1) confirmed the association between
CDOM characteristics and different water masses. PSW and UHC water were associated with terrestrial sources,
while AW1, AW2, and DWwere primarily characterized by a higher contribution of CDOM frommarine‐derived
sources. Furthermore, SUVA254 values were much higher in the Amundsen Basin and western Fram Strait
compared to the western Nansen Basin and Yermak Plateau area (Figure 6) suggesting a dominance of humic‐like
substances with higher molecular weight from allochthonous input (Walker et al., 2013; Weishaar et al., 2003).
DOC concentration and humic‐like fluorescence components were closely associated with meteoric fraction (i.e.,
riverine runoff and net precipitation) (Figure 5), emphasizing that freshwater is primarily provided by Siberian
rivers and net precipitation over land and transported by the TPD across the Central Arctic Ocean toward the
western Fram Strait (Charette et al., 2020). The TPD affects the upper water column of most of the Amundsen and

Figure 6. Upper ocean vertical profiles of temperature, practical salinity, DOC concentration, SUVA254, aCDOM(350), aCDOM(375), total dissolved nitrogen (TDN)
concentration, C470, biological index (BIX), and C400 (arranged from upper left to lower right) in the upper 500 m over the entire duration of MOSAiC. Black arrows:
storm event. Solid vertical black lines separate different regions. AB: Amundsen Basin, GR: Gakkel Ridge, NB: western Nansen Basin, YP: Yermak Plateau, and FS:
Fram Strait.
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Makarov Basins, which are separated by the Lomonosov Ridge (Slagter et al., 2017). The high proportions of
meteoric water in the western part of the Fram Strait (July/August 2020; Figure 5) were derived from relatively
fresh and cold PSW in the East Greenland Current (Pavlov et al., 2015). Our observations are in good agreement
with previous studies reporting that terrestrial DOM from the Siberian shelves contributes significantly to the
DOM composition in PSW in the Amundsen Basin (Amon et al., 2003; Boles et al., 2020; Charette et al., 2020;
Slagter et al., 2017).

Continuous profiling data in the Amundsen Basin, at the start of the ITP94 drift (8 October 2019), showed that
DOM fluorescence was relatively low (0.020 ± 0.0003 R.U.), while Sp was relatively high (32.3 ± 0.01;
Figure 7b) in the PSW. In comparison, when examining PSW in a similar area for ITP60 in December of 2012
(data not shown), Sp was 7.5% higher and DOM fluorescence was 67.8% lower, reflecting the high interannual
variability of the TPD (Krumpen et al., 2019). In March 2020, sampling locations were close to Gakkel Ridge
where the influence of the Transpolar Drift was smaller, as indicated by high Sp (Figure 7b). DOM fluorescence in
PSW also increased continuously from the beginning of the ITP94 drift in the Amundsen Basin until March 2020
(Figure 7b). This increase can either be attributed to the seasonal variability of riverine input or to ITP94 gradually
approaching the core of the TPD (Schulz et al., 2023). Therefore, the influence of terrestrial DOM on the PSW
characteristics and composition can vary within a region, depending on the specific pathway and strength of the
TPD during a given period and with consequences for the regional microbial ecology. It has been shown that the

Figure 7. Temporal changes of dissolved organic matter (DOM) fluorescence in the Amundsen Basin as recorded by the ice‐
tethered profiling system ITP94. (a) TS‐diagram (potential temperature (θ), practical salinity Sp; colors indicate DOM
fluorescence). (b) Temporal evolution of DOM fluorescence for polar surface water (colors indicate practical salinity). Gray
solid line: freezing point. Gray dashed lines: isopycnals.

Figure 8. Dissolved organic matter characteristics in the topmost water layer of sea‐ice leads in the Amundsen Basin
separated into low‐salinity (2.4 ≤ Sp ≤ 20; orange dots) and high‐salinity (28 ≤ Sp ≤ 30; dark gray triangles) samples.
(a) Relationship between DOC concentration and practical salinity (SP) and (b) PCA biplot based on optical parameters
C470, C400, biological index (BIX), absorbance (aCDOM(350)) and spectral slope (S300− 650). Values in black indicate Sp.
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location and strength of the TPD can vary considerably between years as a response to the Arctic Oscillation and
seasonal variability of riverine input (Karcher et al., 2012; Mysak, 2001; Smith et al., 2021).

In contrast, the optical properties of CDOM observed in the western Nansen Basin and Yermak Plateau suggest an
autochthonous origin, likely produced during phytoplankton blooms, with minimal influence from terrestrial
CDOM originating from continental runoff. The Fram Strait serves as an important pathway for the inflow of
warm AW from the Atlantic Ocean into the Arctic Ocean (Rudels et al., 2004). The temperature maximum within
the AW layer is warmest in Fram Strait, and across Yermak Plateau and decreases further downstream before
reaching the western Nansen Basin and Amundsen Basin. PSW formation in the western Nansen Basin and
around the Yermak Plateau involves the entrainment and transformation of cooled AW into the surface layer
during sea‐ice formation and winter convection (Rudels, 1989). This is in agreement with previous studies that
demonstrate that surface waters in the western Nansen Basin and Yermak Plateau were generally affected by the
inflow of relatively warm, salty and nutrient‐rich AW water (Pavlov et al., 2017; Rudels et al., 2015).

4.2. Temporal Changes in DOM: Sea‐Ice Melt, Primary Production, and Storms

The MOSAiC expedition provided a unique opportunity to study DOM sources and characteristics in the Arctic
Ocean over the course of a full year. Our initial main goal during MOSAiC was to track seasonal DOM changes in
the surface ocean. Seasonal variations play a vital role in shaping the physical, biological, and biogeochemical
characteristics of the Arctic Ocean. Although the variability of DOC and humic‐like FDOM over all observations
was highest in the upper 200 m (Figure 6 and Figure S5 in Supporting Information S1), the changes could be
primarily related to varying terrestrial contributions (see above). For the MOSAiC expedition, it was challenging
to unravel seasonal CDOM changes because seasonal and regional changes were superimposed. The limited
temporal coverage of DOM sampling in different regions makes it difficult to assess the overall seasonal vari-
ations in DOM properties during the year‐round expedition. Due to a slightly higher temporal sample resolution,
we focused here on a seasonal comparison in DOM properties exclusively in the Amundsen Basin.

An ANOVA analysis (Table S3 in Supporting Information S1) provided valuable insights into the influence of
seasons on the DOM composition in PSW of the Amundsen Basin, suggesting that the composition of terrestrial
FDOM components (p > 0.01) had minimal seasonal variation. This implies that the input and characteristics of
terrestrial DOM, originating from continental runoff, remain relatively constant and aged across seasons within
this region. Additionally, autochthonous DOM shows less association with meteoric sources (Figures 5e and 5f).
Cooper et al. (2005) suggested that ∼30% of the runoff DOC is initially removed over the shelves before entering
the Arctic Ocean. Kaiser et al. (2017) showed that ∼50% of the annual discharge of terrestrial DOC from Siberian
rivers is mineralized on the Eurasian shelves. Consequently, the most labile DOM may undergo removal on the
Eurasian shelves before reaching the Central Arctic Ocean, and terrestrial DOM transported by the TPD exhibits
relatively refractory characteristics.

Seasonal variations significantly influenced the composition of Chl‐a and autochthonous DOM (p < 0.01; Table
S3 in Supporting Information S1). This implies that changes in biological activity and other environmental factors
associated with seasonal transitions can affect the production and characteristics of autochthonous DOM in this
region. However, it is worth noting that there is little association between Chl‐a and autochthonous DOM in PSW,
even though the highest concentrations of autochthonous DOM and Chl‐a were observed in the summer season
(Figure 3). In winter, constantly low concentrations of autochthonous DOM and Chl‐a were observed. Chl‐a
concentration is commonly used as a proxy for estimating phytoplankton biomass (Sauzède et al., 2015),
which leads to the release of labile organic matter into the water column (Carlson et al., 1998; Lancelot, 1979).
The primary production in the Arctic Ocean is affected by a complex interaction between different abiotic and
biotic drivers, with light and nutrient availability being most important (Popova et al., 2012). Light availability in
the Arctic Ocean is strongly influenced by the presence of sea ice and the properties of the sea ice, such as surface
albedo (reflectivity), snow depth, and ice thickness, play a crucial role in determining how much solar radiation
can penetrate into the ocean (Castellani et al., 2022). During winter, light availability is constrained by the polar
night and ice cover, which resulted in a constantly low chlorophyll‐a concentration. The Amundsen Basin
exhibited the highest average values of aCDOM(350) (Figure 6 and Table S4 in Supporting Information S1) among
all regions during MOSAiC and with its light‐absorbing properties it can also attenuate light penetration into the
water column, with implications for primary producers (Granskog et al., 2007; Lund‐Hansen et al., 2015).
Nutrient availability is not only affected by horizontal advection of nutrient‐rich waters, in the Eurasian Basin
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most prominently via the Atlantic inflow, but also by supply from upwelling (Carmack et al., 2006, 2016). The
transport of high loads of riverine freshwater by the TPD result in low salinity surface waters and strong strat-
ification, which can affect nutrient mixing and availability in the upper ocean layers (Nummelin et al., 2016). The
interplay between these factors and their seasonal variations can lead to changes in primary production, with
subsequent influence on the release of labile organic matter into the water column. In addition, freshly generated
autochthonous DOM in the ocean can also originate from cell lysis and release by zooplankton grazing
(McKnight et al., 2001; Nagata et al., 2000). Most of this newly produced DOM is biologically labile and
consumed and respired rapidly by heterotrophic bacteria (Hansell et al., 2009). However, a small fraction of this
autochthonous DOM escapes rapid remineralization and is transformed into refractory material by abiotic and
biotic processes and accumulates in the surface layer for eventual export to the deep ocean by bottom water
formation (Hansell et al., 2009). In winter, low temperatures decrease bacterial activity, thereby reducing DOM
biodegradation (Sherr & Sherr, 2003), which may be related to the constant autochthonous DOM. The manifold
controls on DOM production and decomposition as well as temporal decoupling from production were likely
reasons for our observation that Chl‐a and autochthonous DOM concentrations were decoupled, which is in
agreement with previous studies (Cao et al., 2020; Carr et al., 2019; Jeon et al., 2023; Painter et al., 2018).

Few samples during MOSAiC were obtained from the uppermost surface water during the summer season in the
Amundsen Basin. The analytical results of the low‐salinity lead water samples demonstrated the contribution of
DOM derived by sea ice melt to the autochthonous DOM fraction in the surface water (Figure 8b). For low‐
salinity lead water samples, we also observed a significant positive correlation between DOC concentration
and salinity (Figure 8a). This was in contrast to the general observation that fluorescence and DOC concentration
in PSW were mainly derived by terrestrial sources and therefore correlated negatively with salinity. This implies
that freshwater input from sea ice melt plays a role in reducing salinity and diluting terrestrial DOMwithin surface
waters. During the summer season, the impact of warming becomes more pronounced (Figure S3a in Supporting
Information S1) and due to increased solar radiation and resulting sea ice melt, surface water is warming and
freshening, leading to enhanced stratification. This finding aligns with previous studies suggesting the release of
labile DOM by sea ice melt (Brogi et al., 2018; Zabłocka et al., 2020), with fundamental consequences for the
microbial ecology in surface water (Underwood et al., 2019), and the influence of melting sea ice on the dilution
of the surface water (Logvinova et al., 2016). Consequently, the interplay between DOM release from sea‐ice
production and its subsequent microbial turnover could also contribute to the decoupling observed between
autochthonous DOM and Chl‐a. Nevertheless, this decoupling may not be the sole factor governing the distri-
bution of autochthonous DOM. Another plausible explanation for this decoupling is that the sea‐ice drift speed
differs from the speed of the underlying water.

Storms in winter also affect the chemical signatures at the ice water interface (Rabe et al., 2022). DuringMOSAiC,
in the Amundsen Basin on 6 March 2020 (Figure 6), we observed major changes down to ∼200 m water depth, as
indicated by higher values of DOC and optical parameters that represented terrestrial CDOM contribution, but
lower TDN concentrations and biological contribution BIX. We assume that this abrupt change was related to a
strong storm that occurred right before the time of sampling and that led to the deepening of the mixed layer.
Consequently, the influence of the storms could shape the vertical distribution of DOM and related microbial
processes in the subsurface. A previous study also reported that the transfer between AW and PSW can be affected
by the vertical velocity shear below PSW,which is strengthened by strong storms in winter (Polyakov et al., 2013).

4.3. Perspective

The optical parameters and components derived from Parallel Factor Analysis were suitable to characterize water
masses and FDOM sources and distribution in the surface of the Eurasian Arctic Ocean. PARAFAC components
represent independent fluorophores or groups sharing very similar spectra. C470, for example, can be charac-
terized as a mixture that was associated with aromatic, high molecular weight organic matter exhibiting terrestrial
characteristics that have been shown to correlate with lignin phenol concentrations (Amon et al., 2003;
Gonçalves‐Araujo et al., 2016; Murphy et al., 2011). However, the exact chemical origin of these components
remains unknown. Converting fluorescence intensities to concentrations is also challenging due to varying ef-
ficiencies of different fluorophores in absorbing and converting incident radiation to fluorescence (Murphy
et al., 2013). Another limitation was apparent, when we performed a PCA analysis and combined lead and ocean
water samples (similar to Figure 4, data not shown): the optical characteristics of lead water were indistin-
guishable from PSW. Additionally, all lead waters are located in the Amundsen Basin, highly influenced by TPD,
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characterized by a significant contribution of terrestrial DOM. This factor may also explain the indistinguish-
ability of PSW between lead and ocean waters based on only optical parameters. Therefore, we will carry out a
follow‐up study that uses Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT‐ICR MS) hy-
phenated with liquid chromatography to achieve additional chemical information that allows distinguishing the
chemical characteristics and the quantity of DOM sources in the Central Arctic Ocean during MOSAiC.
Improving our capabilities in quantifying the sources and fluxes of DOM is crucial to assess its role in the carbon
cycle and how this role changes with the drastically increasing temperatures in the Arctic Ocean.
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948019 (Kong et al., 2022). CTD profile data on the Central Observatory ice floe (Ocean City; https://doi.org/10.
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959963; Tippenhauer et al., 2023b) during the MOSAiC expedition are available from the PANGAEA data
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Tippenhauer et al., 2023c) and on RV Polarstern (https://doi.org/10.1594/PANGAEA.959965; Tippenhauer
et al., 2023d) are available from the PANGAEA data repository. The stable oxygen isotope ratio (δ18O) and
corresponding practical salinity are available from the PANGAEA data repository at https://doi.org/10.1594/
PANGAEA.948291 (Mellat et al., 2022). Chl‐a concentrations from CTD casts during the MOSAiC expedition
are available from the PANGAEA data repository at https://doi.pangaea.de/10.1594/PANGAEA.963277 (Hoppe
et al., 2023). The Ice‐Tethered Profiler data is collected by the Ice‐Tethered Profiler Program (Krishfield
et al., 2008; Toole et al., 2011) based at the Woods Hole Oceanographic Institution (https://www2.whoi.edu/site/
itp/). Some figures are illustrated using Ocean Data View software (Schlitzer, Reiner, Ocean Data View, https://
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