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Reply to 'Dissimilarity measures affected by
richness differences yield biased delimitations
of biogeographic realms'’
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Recently, we classified the oceans into 30 biogeographic realms based on species’ ende-
micity. Castro-Insua et al. criticize the choices of dissimilarity coefficients and clustering
approaches used in our paper, and reanalyse the data using alternative techniques. Here, we
explain how the approaches used in our original paper yield results in line with existing
biogeographical knowledge and are robust to alternative methods of analysis. We also repeat
the analysis using several similarity coefficients and clustering algorithms, and a neural
network theory method. Although each combination of methods produces outputs differing in
detail, the overall pattern of realms is similar. The coarse nature of the present boundaries of
the realms reflects the limited field data but may be improved with additional data and

mapping to environmental variables.
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ecognising the data limitations for the ocean!=3, an ideal

biogeographic mapping would combine both empirical

field data with expert knowledge of species ecology to
account for sampling bias, and consider the validity of its findings
to prior work, e.g., refs -9, We used a world data set of 65,000
marine species mapped to 5° latitude-longitude cells to map
realms based on species endemicity!. Our primary presentation of
the results used Jaccard’s coefficient of similarity, by far the most
widely used index in biogeography studies’, and Group Average
linkage clustering methods. However, we also showed similar
biogeographic patterns were obtained using equal area hexagons
of different sizes, and alternative coefficients, including Simpson’s
coefficient that we noted is not biased by species richness (see Fig.
3 in ref. !). During preliminary analyses, we had explored
numerous other coefficients and clustering methods, but either
found them unsuitable or did not find biologically meaningful
differences in the results. The three main steps in our analysis
were statistical cluster analysis of a carefully curated data set,
manual exclusion of geographically isolated cells surrounded by a
more biogeographically coherent cluster, and comparison of the
recommended realms to previously proposed classifications
(see Supplementary Table 4 in ref. 1). The data consisted of
diverse marine species sampled by a wide variety of methods,
from human observations in the field, to plankton nets, fishery
trawls, and analysis of sediment samples. Thus variation in
clusters could result from neighbouring cells appearing different
because one had only benthic and another only pelagic samples
for example, or distant cells appearing the same because their
records were limited to widespread pelagic species.

Castro-Insua et al.% re-analysed our data using several similarity
coefficients, clustering algorithms and groupings of clusters. Their
maps look like our map of the clusters before demarcation of the
realms (see Supplementary Fig. 3 in ref. 1). This map had over 200
potential clusters but we manually merged isolated clusters (e.g.
only a single 5° cell) into their neighbours because we did not
consider them biogeographically robust and likely a reflection of
sampling bias. We further examined the number of clusters at 1%
similarity steps in the dendrogram until clusters showed no clear
geographic relationship. This process was conservative and
emphasised geographic coherency as a principle of the realms.

As suggested by Castro-Insua et al.2, we here compare how the
use of Jaccard’s and Simpson’s coefficients, and Group Average
and Ward’s clustering methods, affect the hierarchical clustering
of the realms. Indeed, differences in the cluster dendrograms do
occur (Fig. 1). Jaccard’s with Group Average singles out the Baltic
Sea first from all other realms, and then the Black Sea (Fig. 1).
Both ‘seas’ have low and variable salinity regions and thus
freshwater species are present which distinguish them from all
other realms. However, Jaccard’s with Ward’s coefficient places
both seas’ together and within a Pacific-Indian-Southern Ocean
cluster which makes no biogeographic sense given the geographic
distance between these locations. In contrast, Jaccard’s with
Group Average subsequently separates an Atlantic-Arctic
(including part of the very North Pacific) group from a southern
hemisphere group (including the Pacific, Southern and Indian
Oceans). When we examine the dendrograms using Simpson’s
coefficient we find Ward’s methods provide more biogeo-
graphically meaningful arrangements of the realms than using
Group Average clustering (Fig. 1). In all cases with Simpson’s, the
Black Sea now clusters most closely with its Mediterranean
neighbour, and the Baltic Sea with its neighbouring North-East
Atlantic realm. This result also makes biogeographic sense,
indicating how each coefficient differently emphasises species
similarities and richness. In the case of Simpson’s, we found that
Ward’s provides a more balanced hierarchy than Group Average,
as suggested by ref. 8, and it first separates the realms into two

groups, a northern Atlantic-Pacific + Arctic, and mid and
southern Pacific + Southern + Indian Ocean, clusters (Fig. 1).

A very different method for mapping endemicity, Infomaps, has
also been developed recently using neural network theory®?. In
contrast to the above methods, it uses each species record (latitude-
longitude) directly. We also used this method (see Fig. 3 in ref. 1)
and while similar to our proposed realms overall, it did extend the
Caribbean realm southwards along the coast of Brazil. Here we
map results of cluster analyses using both Sorenson’s (similar to
Jaccard’s) and Simpson’s coefficients with Group Average clus-
tering, and Infomaps on both 2009 and a 2015 OBIS data set (used
in!0 (Fig. 2). In contrast to our previous analysis, which included
all 5° cells with any data, when analysing the 2015 data, we
excluded cells with fewer than 50 samples. These data exclusion
explains the empty hexagon cells on the map in Fig. 2. While all
maps show the same general distribution of realms, they also show
how the realm boundaries need better resolution.

We find both Jaccard’s and Sorenson’s with Group Average
clustering, and Simpson’s with Ward’s clustering, provide bio-
geographically informative outcomes, as does Infomaps. Cluster
analysis is exploratory and results need to be interpreted based on
understanding the underlying data to judge if clusters form
meaningful groups. Our realms were defined by using both
these statistical methods and knowledge of the species composition
of the underlying data to consider sampling bias, and then com-
pared with prior expert classifications (see Fig. 2 and Supple-
mentary Table 4 in ref. !). The analytical alternatives suggested by
Castro-Insua et al. are part of a suite of alternative methods of
cluster analysis. The results of all of these methods need to be
interpreted in the context of the taxonomic and geographic lim-
itations of the underlying data, and in biogeography, in terms of
geographic coherence and related knowledge.

The results of mapping the marine realms supported theories
that pelagic, deep-sea and microscopic species are more wide-
spread than benthic, coastal, and macroscopic, respectively!l.
Species’ endemicity was higher along continental shelves than in
the open ocean and deep-sea. These shelves provide most fisheries
and suffer most human impact, and are a focus of conservation
efforts. The map provides a practical resource for conservation and
resource management, and a hypothesis, which should be tested
with additional data and software tools. Indeed, independent data
analyses support our classification for shallow-water ostracods!?
and have split Australia into the same northern tropical and
southern temperate realms as in our analysis!3. We show and agree
with Castro-Insua et al. that alternative statistical methods can
affect the hierarchical relationships of the realms, and that bio-
geographic research needs to consider both the similarity coeffi-
cient, clustering algorithm, and number of clusters. However, we
caution against using only one method because alternatives,
including Jaccard’s, Simpson’s, Infomaps, combined with alter-
native clustering methods, may provide new insights into biogeo-
graphic patterns. Further, these patterns must somehow reflect
environmental conditions, and such data are increasingly available
in the four-dimensions of latitude, longitude, depth, and time!41>.

Data availability

The primary data used here are freely available from OBIS
(https://www.iobis.org). The aggregated species by 5° cell matrix
finally used in the data analysis is available from Figshare at
https://figshare.com/s/e11b3f7769ef353¢6262 and https://doi.org/
10.17608/k6.auckland.5086654
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Fig. 1 Examples of analysis of hierarchical relationships between the realms using Jaccard's similarity coefficient with a Group Average and b Ward's
clustering methods; and Simpson'’s similarity coefficient clustered using € Group Average and d Ward's clustering methods
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Fig. 2 Maps of the realms overlaid on results of biogeographic analyses. The biogeographic realms are denoted with black lines. Top row is using InfoMaps
on the a 2009 (n = 65,000 species, 107 clusters) and b 2015 (n = 51,670 species, 140 clusters) data from OBIS. Results of analysis of the OBIS 2015 data
is shown for two sizes of hexagons (600,000 - 800,000 kmZ and ~50,000 km2) using ¢ Sorenson's (38 clusters, 0.8 similarity cutoff), d Simpson's
(43 clusters, 0.8 cutoff), e Sorenson’s (252 clusters, 0.86 cut off), and f Simpson’s (252 clusters 0.75 cut off), similarity coefficients. The geographic gaps
in b-f are because only cells with >50 samples (data with same time and place and one or more species) were used for analysis of the OBIS 2015 data.
Colours were automatically assigned by the software to show cells belonging to the same biogeographic group, and are not comparable across maps
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