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Abstract. Accurate estimates of water isotope diffusion
lengths are crucial when reconstructing and interpreting wa-
ter isotope records from ice cores. This is especially true in
the deepest, oldest sections of deep ice cores, where ther-
mally enhanced diffusive processes have acted over millen-
nia on extremely thinned ice. Previous statistical estimation
methods, used with great success in shallower, younger ice
cores, falter when applied to these deep sections, as they
fail to account for the statistics of the climate on millennial
timescales. Here, we present a new method to estimate the
diffusion length from water isotope data and apply it to the
Marine Isotope Stage 19 (MIS 19) interglacial at the bottom
of the EPICA Dome C (EDC, Dome Concordia) ice core.
In contrast to the conventional estimator, our method uses
other interglacial periods taken from further up in the ice
core to estimate the structure of the variability before dif-
fusion. Through use of a Bayesian framework, we are able to
constrain our fit while propagating the uncertainty in our as-
sumptions. We estimate a diffusion length of 31±5 cm for the
MIS 19 period, which is significantly smaller than previously
estimated (40–60 cm). Similar results were obtained for each
interglacial used to represent the undiffused climate signal,
demonstrating the robustness of our estimate. Our result sug-
gests better preservation of the climate signal at the bottom of
EDC and likely other deep ice cores, offering greater poten-
tially recoverable temporal resolution and improved recon-
structions through deconvolution.

1 Introduction

Large ice sheets from the polar regions offer unique insights
into the climate up to hundreds of thousands of years ago.
The drilling of deep ice cores in Greenland and Antarc-
tica enables measurements of water isotopic ratios (δ18O,
δD, δ17O) impacted by fractionation effects upon evapora-
tion and condensation. These ratios have been shown to re-
late to atmospheric temperatures at the time of deposition
as snowfall (Dansgaard, 1964) and therefore provide a valu-
able proxy of past-climate conditions. However, water iso-
tope records are not perfectly preserved, partially due to the
molecules dispersing over time, smoothing the profile by
attenuating high-frequency variability. This displacement is
known as diffusion and occurs both in the firn, due to snow–
vapour exchange in the pores (Johnsen, 1977; Whillans and
Grootes, 1985), and in ice through processes such as ice dif-
fusivity (Ramseier, 1967) and liquid water veins (Nye, 1998).
Diffusion in ice is a much slower process than in firn but
can act over much longer time periods, with the oldest, deep-
est sections of deep ice cores being most affected. Since ice
diffusion increases with temperature, the warming of deep
ice due to geothermal heat from the bedrock further accel-
erates the process. Additionally, the effect is exacerbated on
the temporal scale by extreme layer thinning from ice flow.
Collectively, these conditions can result in the attenuation of
variability up to millennial timescales in deep ice cores (Pol
et al., 2010).
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Water isotope diffusion can be characterised by the dif-
fusion length, defined as the average displacement of wa-
ter molecules along the vertical axis relative to their ini-
tial position within the ice sheet. In addition to informing
which frequencies climate variability is preserved, knowl-
edge of the diffusion length can enable techniques used to
recover some of the lost information, such as deconvolution
(Johnsen, 1977). These reconstructions are extremely sensi-
tive to the diffusion length, so obtaining accurate values is
crucial for interpreting the isotopic data. Furthermore, the
temperature dependence of the diffusion process reflected on
the magnitude of the diffusion length constitutes the latter
as a good candidate for a firn temperature proxy (Simonsen
et al., 2011; Gkinis et al., 2014; van Der Wel et al., 2015).

By comparing the power spectrum of a diffused wa-
ter isotope record with that of the undiffused isotopic cli-
mate signal, it is possible to estimate the diffusion length.
Current estimation methods assume that the isotopic vari-
ability before diffusion is constant across all frequencies,
i.e. white noise (Johnsen et al., 2000; Gkinis et al., 2014;
Jones et al., 2017; Kahle et al., 2018; Holme et al., 2018).
This assumption is justified by the strong noise generated
by precipitation intermittency and the stratigraphic noise,
which dominates the signal up to decadal or multi-centennial
timescales depending on the accumulation conditions of
the site (Johnsen et al., 2000; Casado et al., 2020). How-
ever, on the longer timescales observed at the bottom of
deep ice cores, the isotopic profile is not accurately rep-
resented by white noise. This is evident from other ice
cores, which demonstrate strong variability over millen-
nia, such as Dansgaard–Oeschger events from Greenland
cores (NGRIP members, 2004; NEEM community members,
2013) or Antarctic Isotope Maxima events visible in Antarc-
tic cores (Petit et al., 1999; EPICA community members,
2004). To accurately represent the statistical properties of
such millennial variability, the estimation method requires a
modified approach.

In this study we estimate the diffusion length for the Ma-
rine Isotope Stage 19 (MIS 19) section of the EPICA Dome C
(EDC, Dome Concordia) ice core (763–795 ka). Previous es-
timations derived from water isotope data suggest a diffu-
sion length between 40 and 60 cm for the MIS 19 interglacial
(Pol et al., 2010). In contrast, analytical diffusion models us-
ing the physical properties of the ice core predict values be-
tween 16 and 22 cm (Pol et al., 2010; Grisart et al., 2022),
which poses the question whether the model physics is wrong
and/or the statistical estimator is biased when applied to deep
ice. We address the latter point, removing the assumption that
the climate signal can be approximated by white noise. In-
stead, the initial climate is inferred from similar periods fur-
ther up in the core where the water isotopes have not under-
gone significant ice diffusion. We use a Bayesian method-
ology that propagates uncertainty in this reference climate
spectrum while also constraining parameters to physically re-
alistic ranges. This paper explains the new approach and dis-

cusses possible future applications and improvements. The
new diffusion length estimate is compared with previous es-
timations and will serve as an indicator for how significant
deep-ice diffusion will be in future deep ice cores such as the
Beyond EPICA – Oldest Ice Core (BE-OIC).

2 Data and methods

2.1 Water isotope data

We use discrete δ18O data from the EDC ice core, measured
at the Niels Bohr Institute, University of Copenhagen, with
a water–CO2 equilibration mass spectrometry system (Finni-
gan MAT 251) (Grisart et al., 2022). The data have a reso-
lution of 11 cm and a reported accuracy of 0.07‰ and were
dated using the Antarctic ice-core chronology (AICC2012)
(Veres et al., 2013). For the diffusion length estimate, we
define MIS 19 from a depth of 3147 m (748 ka) to 3190 m
(802 ka), which marks the beginning of the MIS 18 glacial
period and the termination of the MIS 20 glacial period re-
spectively (Pol et al., 2010). Depth ranges for the more re-
cent interglacial periods of MIS 1 (the Holocene), MIS 5, and
MIS 9 are given in Table 1, along with depth ranges where
data are missing. All section selections are a trade-off be-
tween using a long section allowing for a more precise statis-
tical estimation and using a shorter section only containing
warm periods.

2.2 Method overview

In summary, the diffusion length in deep ice is estimated us-
ing a modification of the existing statistical model by repre-
senting the power spectrum of the water isotope record be-
fore diffusion as a power law. An appropriate power law is
estimated from selected water isotope data from shallower
sections of the same ice core, where diffusion will not have
had time to affect the relevant frequencies, spanning time pe-
riods of a similar climate state and length to the deep-ice sec-
tion.

2.3 Spectral analysis

The diffusion length and the properties of the isotopic vari-
ability are estimated in the frequency domain. For this, we
use the raw periodogram on linearly detrended data with a
split cosine bell taper of 10 % as this estimator is unbiased
and we are only using it for parametric fits.

The isotope time series are irregular in time due to ice
flow thinning, which is incompatible with classical power
spectra analysis. Therefore, when working with data on the
time domain, the respective records were linearly interpo-
lated to equidistant time points. Although this introduced
power loss at high frequencies in the power spectra (Schulz
and Stattegger, 1997; Hébert et al., 2021), our analysis did
not include these frequencies and so remains largely unbi-
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Figure 1. Full high-resolution EDC δ18O record (Grisart et al., 2022), with selected interglacial windows used in this study highlighted.

Table 1. Depth ranges of analysed data and the corresponding time periods. Also included are the depths and times at which the δ18O data
were missing. MIS 9 and MIS 19 contained no missing values.

Interglacial Depth range (m) Time period (ka) Missing δ18O data Missing δ18O data
depth ranges (m) time periods (ka)

MIS 1 7.755–354.145 0.05–11.6 119.955–120.615 3.15–3.17
234.355–234.795 7.27–7.28
288.805–290.345 9.32–9.38

MIS 5 1539.505–1734.755 116.7–131.6 1583.505–1594.395 120.3–121.1
1638.505–1649.395 124.5–125.4
1693.505–1704.395 128.5–129.3

MIS 9 2526.645–2592.645 321.9–339.3 – –

MIS 19 3159.145–3185.545 763.6–795.0 – –

ased. Gaps were only present in the temporal data used for
spectral analysis and did not exceed 100 data points (at most
corresponding to 863 years). The effect on the spectra was
small and did not significantly impact the final result (see
Appendix A).

For comparison, we also calculated diffusion lengths using
the conventional white-noise model for a running window
over the entire EDC ice-core record. Gaps in the data were re-
solved through linear interpolation, and large or frequent lin-
ear interpolated gaps can significantly affect the power spec-
tra. Therefore, the estimate was only performed over win-
dows in which less than 25 % of the δ18O values were miss-
ing to minimise estimation biases, explaining the gaps seen
in Fig. 5b.

2.4 Spectral representation of diffusion length

The diffusion of water molecules averages out variability,
with rapidly increasing effectiveness as frequency increases.
While the lowest frequencies remain mostly unchanged, in-
formation at higher frequencies can be greatly affected. This
relationship allows for the diffusion length of a water isotope
time series to be estimated through analysis of its spectral
properties combined with a representative model.

Mathematically, the effect of diffusion on a time series
can be represented by a convolution with a Gaussian filter
(Johnsen, 1977; Johnsen et al., 2000):

g(z)=
1

σ
√

2π
e
−

z2

2σ2 , (1)

where z is the depth and σ is the diffusion length in the same
units as z. By applying the convolution theorem, we can rep-
resent the effect of diffusion in the frequency domain with
the transfer function:

G(k)= e
−k2σ2

2 , (2)

where k = 2πfz and fz is frequency in the depth (units of
m−1). From this the power spectral density (PSD) is

P(k)= P0(k)e
−k2σ 2

, (3)

where P0 is the PSD of the isotope profile before diffusion
and P is the PSD of the signal after diffusion. In real isotope
records the measurement process will add some noise ε to
the signal:

P(k)= P0(k)e
−k2σ 2

+ ε(k). (4)
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Therefore it is possible to estimate the diffusion length of a
water isotope record by taking its power spectrum and fitting
Eq. (4) as a model of the effect of diffusion.

The white-noise climate assumption of conventional meth-
ods relates to the P0 term, prescribing it as frequency in-
dependent. A constant P0 means the model contributes all
of the power difference between frequencies to diffusion.
Also, when water isotope measurements are made of dis-
crete samples, the measurement noise ε is often considered
to be white noise, as each measurement should be indepen-
dent of the previous measurement. This does not hold true in
a continuous-flow analysis system, where the noise can have
positive autocorrelation due to mixing within the water lines
(Gkinis et al., 2014), which would also influence the shape of
the power spectrum. All the data used in this report were dis-
cretely measured, so the measurement noise was considered
to be white.

Discrete sampling will also introduce a block-averaging
effect, further smoothing the data and biasing our diffusion
length estimate if not taken into consideration. The magni-
tude of this smoothing depends on the sampling resolution
and can be computed using the method described in Gkinis
et al. (2014). For the 11 cm resolution data used here, we
compute the corresponding rectangular filter with a width of
11 cm to be equivalent to a diffusion length of∼ 3.3 cm. Such
small-scale smoothing is unlikely to have a significant effect
on the heavily diffused deep ice, so the resulting bias is con-
sidered negligible.

2.5 Fitting methods

There are two common approaches for fitting a spectrum
with Eq. (4), a linear regression method applied only to
the lower frequencies (Jones et al., 2017) and a non-linear
method applied over the entire spectrum (Gkinis et al., 2014;
Holme et al., 2018; Kahle et al., 2018).

The linear approach (Jones et al., 2017) focuses only
on the lower frequencies, where the power of the climate
signal is much greater than the measurement noise term
(P0(k)e

−k2σ 2
� ε(k)). In this frequency range, Eq. (4) can

be approximated as Eq. (3), and by taking the natural log of
both sides we get

lnP(k)=−k2σ 2
+ lnP0. (5)

Assuming lnP0 is independent of frequency (Johnsen
et al., 2000), we can model P on a logarithmic scale as a
function of k with a linear regression which will have a slope
proportional to the square of the diffusion length. The cut-
off frequency (that is, the upper frequency limit after which
the ε term is no longer negligible) is usually manually de-
fined, which makes this method difficult to generalise and
automate. This method relies on the frequency independence
of P0, as any changes with frequency will create a non-linear
relationship between P and k.

Another possible method of statistically estimating the dif-
fusion length involves modelling lnP as a function of fz and
fitting all parameters of Eq. (4) including the noise (Gki-
nis et al., 2014). Unlike the linear approach, this fit can be
applied over all available frequencies, removing the subjec-
tive step of choosing a cut-off frequency. Variants of this ap-
proach exist for situations where the measurement noise is
not white, such as with data measured using continuous-flow
analysis (Gkinis et al., 2014; Kahle et al., 2018).

While previous studies assumed P0 is equivalent to white
noise, the latter fitting method, unlike the linear one, also al-
lows for a frequency dependence of P0, and so it was the
preferred choice for our new approach going forwards.

2.6 Estimating diffusion length when P0 is not constant

To get a realistic alternative model for P0 suitable for longer
timescales, we use water isotope data less affected by diffu-
sion from the same site. Assuming the statistics of similar
climate states over time are comparable, we estimate P0 em-
pirically from a shallower section of the same ice core span-
ning a time period of a similar length and climate state. The
ice diffusion in this shallow record is still negligible, as it is
younger, colder, and less thinned than the deepest ice. Addi-
tionally, any significant firn diffusion is on timescales much
shorter than we are analysing. For the MIS 19 case, we take
water isotope data from interglacial periods further up in the
EDC ice core.

To parameterise the variability across a large range of fre-
quencies, we use a power law,

P0(ft )= α · f
−β
t , (6)

which has been shown to be a good approximation of the
spectrum of climate variability (Pelletier, 1998; Huybers and
Curry, 2006). Here, α and β are constants, and ft is the fre-
quency in the time domain. We work in time units only for
the P0 fit because similar climate variability during different
past-climate states results in comparable power spectra in the
time domain but not in the depth domain, as the annual layer
thickness will vary over time and ice depth.

For the case of the MIS 19 record from EDC, an appro-
priate time period to estimate the climate signal before long-
term ice diffusion is another, more recent interglacial. Using
the same EDC ice core, we selected sections of water isotope
data from the MIS 1 (the Holocene), MIS 5, and MIS 9 inter-
glacials, which were retrieved from depths shallow enough to
remain unaffected by lower-frequency diffusion. Large data
gaps are present over the MIS 7 and MIS 11 interglacials, so
a reliable power spectral estimate could not be acquired. In-
terglacial records from deeper in the ice core (MIS 13/15/17)
were not suitable for our analysis as diffusion has attenuated
the frequencies over which we are inferring the spectrum of
P0. Using different interglacial periods to estimate P0 allows
us to evaluate the sensitivity of our diffusion length estimate
on our choice of the interglacial.
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2.7 Bayesian fitting approach

We used a Bayesian approach for all our power spectrum fit-
ting as it has a several advantages over classical methods.
Most importantly, rather than having to either set parame-
ters to specific fixed values or leave them free to assume any
value, the prior distributions of a Bayesian model allow us to
put physically realistic restrictions on the values of parame-
ters while also allowing uncertainty in their true values to be
propagated through into uncertainty in the final estimate of
diffusion length. Additionally, the Bayesian method allows
us to specify a gamma distribution which is the true distri-
bution of the errors in power spectral density estimated by
Fourier methods (Bloomfield, 2004). The Gaussian approx-
imation assumed by classical fitting in log space produces a
positive bias in the estimated power, which here would affect
estimated diffusion lengths.

Using a reduced model without diffusion (Eq. 6 from ear-
lier), we fit our undiffused climate spectra (P0) for MIS 1,
MIS 5, and MIS 9 with largely uninformative, truncated nor-
mal priors (see Appendix B) of α ∼N (0.1‰2 kyr, 1‰2 kyr)
and β ∼N (1.5, 1). Here, N(x,y) refers to a normal distribu-
tion of mean “x” and standard deviation “y”. This gives a
large range of possible values to find the best fit for the ini-
tial MIS 19 climate signal. The posterior means and standard
deviations of α and β from these fits were then used to pa-
rameterise informative priors for subsequent fits of the full
model including diffusion (Eq. 4) to MIS 19.

P(fz)= α · f
−β
z e−4π2f 2

z σ
2
+ ε (7)

For the power of the noise we used a somewhat informa-
tive prior, as the uncertainty of the δ18O data is well defined
from the lab-based measurements, while for the key param-
eter of interest, the diffusion length, we used a weak, unin-
formative prior. We set a lower limit of 0 for all parameters
in all fits to prevent negative, non-physical values for α, σ ,
and the noise ε and to constrain β to power-law red-noise-
like behaviour. For the error in spectral estimation we used a
gamma distribution, γ (φ, φ/P̂ (fz)), where φ represents the
scale parameter and φ/P̂ (fz) represents the shape parame-
ter. For this distribution, the magnitude of the error is pro-
portional to the estimated power. We fit an additional final
model with a prior for P0 defined by taking the mean and
standard deviation of the α and β estimates from the individ-
ual interglacials (“Mean” row in Table 2).

The models were defined in the Stan language (Carpen-
ter et al., 2017) and fit using the No-U-Turn sampler (Hoff-
man and Gelman, 2014) with the R package CmdStanR from
Gabry and Češnovar (2021). For each fit, we sampled 2000
values from 4 independent chains, with the first 1000 itera-
tions discarded as a warmup. Inspection of Rhat values and
trace plots of the posterior model parameters indicated that
chains were well mixed for all parameters and all models
converged.

2.8 Conventionally estimated EDC diffusion lengths

In order to determine the significance of this new method,
we first estimate the diffusion length using the conventional
model, where the climate variability P0 is considered con-
stant across all frequencies, which is the second method in
Sect. 2.5. However, we still use our Bayesian approach to cir-
cumvent the bias of the least-squares estimator. We use the
same σ and noise priors as before, as well as a weak α prior
of α∼N (0.5‰2 m, 0.1‰2 m). We apply this to a running
window of 500 data points across the full high-resolution
EDC record.

3 Results

3.1 New P0 estimate

The full power spectra of the selected interglacial time peri-
ods used to constrain P0 proved difficult for a direct power-
law fit. Different timescales can have different power laws
(Pelletier, 1998), and this is evident in the power spectra,
which seem to level off at frequencies above 3 kyr−1 (Fig. 2).
Considering also that the lowest few frequencies in the spec-
tra are biased due to tapering, we did not apply the P0 fit
over the whole spectra. We heuristically selected a frequency
range between 0.25 kyr−1 < ft < 2.5 kyr−1 which can be
reasonably modelled with a power law for each interglacial.
We also devised a technical approach to compute this range,
taking care to include all frequencies relevant for the MIS 19
diffusion length estimate, as explained in Appendix C. This
computed range closely matched our manually chosen range,
so we proceeded with the latter for simplicity. This frequency
range also excluded the significantly diffused higher frequen-
cies, with the highest included frequency having lost only
0.2 % of its initial power due to firn diffusion, which makes
a negligible difference in the power-law fit.

Using the Bayesian sampling method, the power-law fit is
applied to each of the three more recent interglacials within
these frequency bounds, with best fits using the mean α and
β values per interglacial shown in Fig. 2. The correspond-
ing average parameter values are shown in Table 2, with er-
rors representing the standard deviation of the Bayesian es-
timates. We also use the mean of both parameters across the
three interglacial fits to represent the average interglacial. Af-
ter an age-to-depth conversion using the MIS 19 record, this
gave Gaussian prior distributions of α∼N (0.0176‰2 m,
0.0025‰2 m) and β ∼N (1.19, 0.28), with the strength taken
as the standard deviation of the interglacial parameter means,
accounting for differences between the statistics of the simi-
lar climate states.

3.2 Improved diffusion length estimate for MIS 19

While prior distributions of α and β could be derived from
data, we still need to choose priors for the measurement
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Figure 2. Best power-law fit for the power spectra of (a) MIS 1, (b) MIS 5, and (c) MIS 9 with 90 % confidence intervals, over the frequency
range 0.25 kyr−1 < ft < 2.5 kyr−1 (shaded grey). The effect of firn diffusion can be seen attenuating the highest frequencies, which were
excluded from the power-law fit.

Table 2. Alpha and beta values estimated from each interglacial
fit in Fig. 2 and their mean. Errors in the interglacial parameters
are the standard deviation of the sampled values, while the error
in the mean value is the standard deviation between the average
interglacial values.

Interglacial α ( ‰2 m) β

MIS 1 0.0160± 0.0032 0.86± 0.27
MIS 5 0.0205± 0.0039 1.38± 0.31
MIS 9 0.0163± 0.0030 1.31± 0.23

Mean 0.0176± 0.0025 1.19± 0.28

noise and the diffusion length itself for our MIS 19 diffusion
length estimate. A Gaussian prior distribution of N (0.07‰,
0.02‰) is sufficient for the ε term as the uncertainty of the
δ18O data is well defined from the lab-based measurements.
The diffusion length σ was given a very weak Gaussian prior
distribution of N (0.4 m, 0.4 m), allowing the model almost
complete flexibility to find the best fit. Using the mean α and
β priors, a diffusion length of 31± 5 cm (95 % confidence)
was estimated. A full table of the results for each interglacial
is shown in Table 3.

3.3 Comparison of the conventional and new approach

Estimating diffusion length using an incorrectly parame-
terised best-fit model can significantly bias the result. To
demonstrate this, we use the conventional method in Sect. 2.8
and apply it to the theoretical spectrum of a diffused power
law with measurement noise, with α = 1, β = 1.5, σ = 0.3,
and ε = 0.07. The computed best fit greatly misrepresents the
lower frequencies (Fig. 4) and estimates a diffusion length of
0.415, an overestimation of almost 40 %.

Aware of this bias, we applied the conventional method
to the MIS 19 spectrum to evaluate the difference between
the two estimates, using the Bayesian approach with a very
weak P0 prior of N (1‰2 m, 10‰2 m) and the same σ and
noise priors as before. Directly comparing the two fits, our
new method demonstrates a clear qualitative improvement
(Fig. 5a). The conventional approach estimated a diffusion
length of 55± 6 cm, over 77 % larger than the new method.

To get an understanding about the evolution of diffusion
length at Dome C, we applied the conventional method over
a running window across the full Dome C record (Fig. 5b).
Gaps in the diffusion length profile arise due to missing high-
resolution δ18O values, as we excluded diffusion length es-
timates where more than 25 % of the data in the window
were missing. Adding our new result (pink) gives a new im-
pression of the scale of diffusion in the deepest section of
Dome C.

4 Discussion

4.1 Overcoming the estimation bias of the conventional
method in deep ice

Applying the conventional method to a running window over
EDC, the estimated diffusion lengths rapidly increase from
∼ 20 cm at a depth of ∼ 2800 m to nearly 60 cm at the bot-
tom of the ice core, a depth of almost 3200 m (Fig. 5b). The
average 500-data-point window in this depth range covers
∼ 50 kyr, a timescale over which variability cannot be con-
sidered uniform across all frequencies. Furthermore, this in-
terval in the record spans four glacial–interglacial cycles,
with some windows containing the transition between these
states, contributing to more low-frequency variability. This
is inconsistent with the common assumption of approximat-
ing the original, undiffused record as white noise, strongly
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Figure 3. (a) Best fit of the power spectrum of MIS 19 for each P0 prior defined using the younger interglacials and the mean result. The fit
was only applied over the shaded region, matching the shaded region used in the power-law fits (Fig. 2). (b) Histograms of Bayesian posterior
sampled diffusion length estimates for all four scenarios. The weak diffusion length prior is shown in black.

Table 3. All parameters estimated from the MIS 19 spectrum, using different P0 (α and β) priors. Uncertainties represent 95 % confidence
intervals.

Interglacial α (‰2 m) β σ (cm)
√
ε

dz (noise (‰))

MIS 1 0.015± 0.005 1.2± 0.4 30± 5 0.0653± 0.0008
MIS 5 0.017± 0.006 1.5± 0.5 32± 5 0.0659± 0.0009
MIS 9 0.015± 0.005 1.5± 0.4 31± 5 0.0656± 0.0009

Mean 0.015± 0.004 1.4± 0.4 31± 5 0.0655± 0.0009

biasing conventional estimates of deep-ice diffusion. Adding
frequency dependence to P0 in the estimator model through
prescribing power-law scaling helps to eliminate such biases.

4.2 Isotopic variability before diffusion and interglacial
assumption

The downside of the proposed method is that it needs infor-
mation about the isotope variability before diffusion (P0). In
our estimate of this undiffused isotopic signal, we assumed
the spectral properties of more recent interglacial periods are
comparable to that of the MIS 19 interglacial. It could be
argued this is a logical leap, as the interglacials vary in du-
ration and amplitude. However, our diffusion length estimate
was insensitive to the interglacial chosen (Fig. 3b, Table 3).
For our final result estimated using the mean of the P0 inter-
glacial fits, the strength of the priors of α and β are taken as
the standard deviation across the individual interglacial fits,
corresponding to the uncertainty of our average interglacial.
Regardless of whether these precautions represent the full
uncertainty in our assumption, it is certainly a more accurate
representation of isotopic variability over multi-millennial
timescales than white noise. It is usually assumed that iso-
topes in ice cores are faithful recorders of multi-centennial
and longer temperature variability. Therefore, P0 is dom-

inated by the climate variability at these timescales. This
would also allow for the use of other proxy information, for
example from marine sediment cores (Shakun et al., 2015),
in future studies to test how appropriate it is to use P0 from
more recent interglacials to approximate the variability in
MIS 19.

4.3 Advantages of the Bayesian approach

Our implementation of a Bayesian fitting approach enables
our prior knowledge of the physically realistic values of the
parameters to be incorporated into the fit (Gelman et al.,
2013). Using a fixed power-law slope to represent our estima-
tion of the past-climate statistical properties would be restric-
tive, and its accuracy would influence our diffusion length
estimate. On the other hand, allowing complete freedom of
the P0 spectrum fit could produce a biased diffusion length
estimate as the shape of P0 may account for some of the
loss of variability due to diffusion. The Bayesian method of-
fers a middle ground, where the fit parameters are suggested
through priors and the strength of the suggestion depends on
the confidence of our knowledge of the parameter. Given our
inference for P0 is an assumption, this is ideal as it allows for
some flexibility during the fitting process to account for dif-
ferences between the MIS 19 interglacial and the more recent
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Figure 4. Best fits of a theoretical power spectrum of a deep-ice-core record simulated using Eq. (4), plotted on (a) log–log and (b) log–f 2

axes. The latter demonstrates how the assumed linearity of the low frequencies in the first fitting method from Sect. 2.5 breaks down when
some underlying power-law behaviour is present.

Figure 5. (a) Comparison of MIS 19 power spectrum best fits using the conventional, white-noise method (green), and the new power-
law method (pink). (b) Conventional diffusion length profile of the EDC record (green) and new diffusion length estimate (pink). MIS 19
diffusion length estimate from Pol et al. (2010) using the conventional method described in Johnsen et al. (2000) is also shown for comparison
(yellow). The inset shows a zoomed-in view of the deepest section of the EDC record.

interglacials, without overcompensating for diffusive attenu-
ation effects. In other words, the priors enabled our knowl-
edge and confidence in the parameter values to be incorpo-
rated into the fitting process, allowing for the uncertainty of
the parameters to propagate through to the fit. A further ad-
vantage of this method was its capability to correctly treat
the residuals of the model as a gamma distribution. Standard
non-linear fitting methods assume a Gaussian distribution of
the residuals, but this is not the case for power spectral den-
sity estimators.

4.4 Implications of the new diffusion length estimate
for MIS 19

Our estimate of 31± 5 cm for the diffusion length over the
MIS 19 interglacial period, relative to earlier estimates of
40–60 cm (Pol et al., 2010), has important implications for
the interpretation of this part of the EDC ice core. This is be-
cause the remaining power of certain frequencies after diffu-
sion is extremely sensitive to the diffusion length. In the EDC
record, millennial variability would be reduced to around 1 %
of the record before diffusion for our new estimate, compared
to 1/100 000 for the conventionally estimated 55±6 cm. The
former offers the opportunity to reconstruct millennial vari-
ability using deconvolution, whereas this is not possible for
the 55 cm case given the magnitude of measurement noise.
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The significant decrease in our diffusion length estimate vs.
conventional estimates can be explained by the introduction
of a “red-noise” behaviour from our P0 fit (Fig. 4). Red-noise
contains more variability in low frequencies than high fre-
quencies and so may account for some of the power differ-
ence across frequencies which would otherwise be attributed
entirely to diffusion, as in the conventional case. The new es-
timate is much closer to the diffusion lengths at the bottom
of the EDC ice core modelled from physical first principles,
which average around 20 cm (Pol et al., 2010; Grisart et al.,
2022), reducing the discrepancy between the empirical and
analytical results. This new result offers a much more op-
timistic outlook for recovering millennial-scale climate fea-
tures from future deep-ice-core projects such as the BE-OIC.

4.5 Future outlook

Possible improvements to the precision of our estimate could
be made with a higher sampling resolution or data spanning
longer time periods. Increasing the resolution would provide
some opportunity to reduce the uncertainty, but the effect will
be limited as the high frequencies do not contribute to the dif-
fusion length estimate, with the main improvement arising
from the effective measurement noise reduction at a given
frequency. It would also lessen the smoothing effect of block
averaging due to the rectangular sampling scheme, although
in the future this could be directly incorporated into the fit.
Alternatively, increasing the time span of our selected water
isotope record would improve the reliability of our P0 esti-
mate. However, for MIS 19 the record could not be extended
without including data from glacial periods and different cli-
mate states with different variability structures, which would
complicate our P0 model.

While the focus of this new method was to improve the
diffusion length estimate for deep ice, it should also be con-
sidered for application to shallower ice cores. Power-law be-
haviour is observable in the climate across multi-millennial
to sub-annual timescales (Pelletier, 1998), which suggests
younger ice cores and firn cores could also benefit from this
modified approach. Specifically at core sites with higher ac-
cumulation rates and therefore less stratigraphic noise, such
as the West Antarctic Ice Sheet (WAIS) Divide ice core
(Jones et al., 2018), a power law P0 may offer a more ac-
curate estimation than white noise.

Perhaps the main disadvantage of this new method com-
pared to conventional estimation methods is the necessary
inference of the undiffused isotopic profile from elsewhere
in the ice core. It would be much more practical if it were
possible to generalise the approach for an entire ice core, ac-
quiring a full diffusion length profile with depth. This is po-
tentially achievable using a different parameterisation for P0
that is valid across a broader frequency range. Using white
noise (reflecting depositional noise) superposed on a piece-
wise power-law scaling (reflecting internal climate variabil-
ity vs. multi-millennial orbitally forced variability) might be

one option. Another idea is to test if non-diffused parameters
such as the dust content from the same section of the ice core
can be related to the climate variability and thus P0.

5 Conclusions

We have described a new approach for water isotope diffu-
sion length estimations in deep ice cores, resolving the bi-
ased assumption of a white-noise undiffused climate signal.
Our method instead implements a power-law slope inferred
from water isotope sections of a similar climate state in the
shallower parts of the ice core, better representing the cli-
mate on millennial scales. Incorporating Bayesian statistics
enables us to use priors, chosen based on our knowledge of
the parameters and propagating our uncertainties into the fit-
ting procedure. We applied our new method to the MIS 19
water isotope record from the bottom of the EDC ice core,
estimating a diffusion length of 31± 5 cm, a 23 % reduc-
tion to the smallest previously estimated value of 40 cm (Pol
et al., 2010). A smaller diffusion length offers a more opti-
mistic outlook for the preservation of millennial climate sig-
nals in the oldest-ice projects such as the BE-OIC. Future
work could be made to generalise the process for entire ice-
core records, possibly through adjusting the Bayesian priors
for different climate states or, alternatively, inferring P0 from
non-diffused parameters.

Appendix A: Interpolation effect

The data for the P0 fits are gappy and unevenly spaced (time
axis). To resolve this for finding the power spectra we cre-
ate an evenly spaced age axis with the same number of data
points and then linearly interpolate the δ18O data onto this
new axis.

To see the effect this might have on the resulting P0 fit,
for each interglacial (MIS 1/5/9) we simulate a very high-
resolution time series with the same parameters as the inter-
glacial. We then bin the data to the unevenly spaced axis of
the interglacial record and remove data where the interglacial
data have gaps. We compare the spectra and fits with evenly
binned data with no gaps, representing the ideal, unbiased
spectra. The results for each interglacial are shown below.

We found the linear interpolation has a negligible effect
in the frequency range the fit is applied over, as it only in-
troduces error in much higher frequencies. For MIS 1 and
MIS 9 there is not much data missing, so the interpolated fit
matches almost perfectly with the “true” fit. This is not the
case for MIS 5, as enough data are missing that it impacts the
accuracy of the fit. However, the resulting fit still falls within
the 90 % confidence interval, and given it only contributes
partially to a suggestive prior, the MIS 19 fit is not strongly
affected (less than 1 cm bias).
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Figure A1. Effect of interpolation on a simulated time series with spectral parameters from (a) MIS 1, (b) MIS 5, and (c) MIS 9.

Appendix B: Prior sensitivity

Priors for α and β in the P0 fits are uninformative (Fig. B1),
as are the priors for the diffusion length and noise in the
MIS 19 diffusion length estimate fit (bottom plots in Fig. B2).
The more informative α and β priors in the MIS 19 diffusion
length estimate (top plots in Fig. B2) are defined from the P0
fits.

Figure B1. P0 fit priors and posteriors.
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Figure B2. MIS 19 fit priors and posteriors.
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Appendix C: Defining the frequency range of the fit

The P0 power-law fit need only be applied over the fre-
quencies most sensitive to small changes to the diffusion
length, as lower frequencies are unaffected by diffusion and
higher-frequency variability is attenuated to such an extent
that measurement noise dominates. Therefore, an estimate is
only necessary over the frequencies in between these two ex-
tremes. To find the relevant frequency range, we rearrange
Eq. (3) for frequency:

ft =

√
− ln(P (ft )/P0(ft ))

2πσ
λ̄, (C1)

where λ̄ represents the mean annual layer thickness and is
required to convert the diffusion length into the time domain.
Here, the term P(ft )/P0(ft ) represents the fraction of power
remaining after diffusion at the frequency ft . Therefore, we
can calculate a frequency range for the fit by defining an up-
per and lower limit of power loss, assuming an approximate
diffusion length. Given we do not know the diffusion length,
we take a conservative guess to prevent excluding important
frequencies. For the MIS 19 case, we approximate a min-
imum diffusion length of 15 cm and a maximum diffusion
length of 60 cm and use these values to estimate the upper
and lower frequency limit respectively. The lower limit is de-
fined as the frequency where the remaining power first drops
below 1/e, while the upper limit is defined as the frequency
after which the remaining power is below 10 % of the mea-
surement noise level. For the latter definition, the power of
the measurement noise can be reliably estimated from the flat
tail of the diffused power spectrum, while the assumed P0 is
estimated from the highest frequencies in the power spec-
tra (giving a conservative, larger frequency range as this is a
larger P0 than would be expected for the higher frequencies).

The measurement noise was estimated from the MIS 19
power spectrum, which tails off over the highest frequencies
at a PSD of 5.4× 10−4 ‰2 m, corresponding to a measure-
ment noise of ±0.07‰. Then, given λ̄= 8.4× 10−4 m yr−1

or 0.84 m kyr−1 and assuming an upper diffusion length esti-
mate of 60 cm (Pol et al., 2010), a power drop to 1/e occurs at
a frequency of ft = 0.22 kyr−1. Likewise, using the mean an-
nual layer thickness and a lower diffusion length estimate of
15 cm from models (Pol et al., 2010), the power drops below
10 % of the estimated measurement noise at ft = 2.45 kyr−1.
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