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Abstract

Repeated measurements of benthic and pelagic parameters in the rapidly changing Arctic Ocean provide a unique insight into spatial
and interannual trends and changes in the ecosystem. Here, we compiled biogenic and biogeochemical measurements collected from
sediment cores at the Long-Term Ecological Research Observatory HAUSGARTEN located in the Fram Strait. A total of 21 stations were
visited yearly over a period of 18 years (2002–2019). The time series highlighted an increase in bacterial numbers for samples collected
50 days after the peak phytoplankton bloom. Although bacterial abundances were not bathymetric depth-dependent when viewed
across all years, we observed a seasonal trend in benthic microbial abundance closely related to the timing of the phytoplankton
bloom with a time-lag of 100 days between the surface phytoplankton peak and the peak in bacterial abundance in the sediment.
Considering the residence time of phytoplankton in the upper ocean and the water depth, we estimated an average settling velocity
for phytodetritus of 30 m.d−1, which is similar to previous observations from Fram Strait. This suggests that settling organic matter
promotes vertical microbial connectivity and benthic bacterial abundance in the deep ocean, shaping the microbial biogeography,
diversity, and biogeochemical processes.
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Introduction

While global warming has already caused drastic changes
in high-latitude ecosystems during the past decades, we are
still only beginning to understand what consequences such
changes have on pelagic and benthic biogeochemical pro-
cesses. Since the 2000s, the Arctic sea-ice extent has decreased
by ∼12.8% per decade (Meredith et al. 2019), implying strong
physical (e.g. stratification, light availability) and ecosystemic
perturbations (e.g. shifts in species composition, carbon ex-
port; Ramondenc et al. 2022).

The marine Arctic biogeochemical cycles are shaped by Pa-
cific and Atlantic inflows, as well as the influence of large
Arctic rivers, which carry heat, nutrients, and planktonic or-
ganisms to the Central Arctic Ocean (CAO). The Fram Strait
is the only deepwater gateway to the CAO that is affected
by marine heatwaves, often referred to as the “Warm Water
Anomaly” (Beszczynska-Möller et al. 2012). Still, the difficul-
ties in accessing the region during winter limit our ability to
study the consequences and predict the repercussions of en-
vironmental changes on Arctic and subarctic ecosystems. To
compensate for the poor accessibility, polar ocean observa-
tories have been established (Soltwedel et al. 2005) and have
improved our understanding of interannual changes in pelagic
(Nöthig et al. 2015, Schröter et al. 2019, Nöthig et al. 2020)
and benthic species composition (Taylor et al. 2017; Soltwedel
et al. 2020, Górska et al. 2022). Moreover, the development
of autonomous instruments mounted on mooring lines, i.e.
© The Author(s) 2024. Published by Oxford University Press on behalf of Interna
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ediment traps, helps to describe both the interannual and
easonal patterns of planktonic composition in the water col-
mn with environmental factors. For instance, Ramondenc et
l. (2022) used swimmer abundances from sediment traps as a
roxy for monthly and yearly zooplankton distribution. While
elagic sampling is possible using autonomous systems, sam-
ling of benthic ecosystems generally requires access with a
esearch vessel, which limits sampling to the summer period.

Originally, the ocean seafloor was considered to be a sta-
le environment without seasonal variability (Sanders 1968),
uggesting that the time of sampling does not impact the
cientific results. However, today we know that polar ma-
ine ecosystems exhibit extreme seasonality with a robust
nd tight pelagic-benthic coupling (Carmack and Wassmann
006, Wassmann et al. 2006), which is driven by organic mat-
er deposition on the seafloor. Phytoplankton blooms at high
atitudes reach a maximum between May and July (Mayot
t al. 2018) and display different timing, duration, and mag-
itude according to the sea-ice conditions and water stratifi-
ation (Carmack and Wassmann 2006, Mayot et al. 2018).
fter being produced in the euphotic zone and before reach-

ng the ocean floor, the organic matter undergoes multiple
ransformations, such as heterotrophic bacteria remineraliza-
ion (Kwon et al. 2009), zooplankton grazing, and fecal pellet
roduction (Van der Jagt et al. 2020), while being exported
s aggregates and marine particles through the water column
Iversen 2023). Hence, beyond the supply of food to the deep
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ea and seafloor, sinking aggregates connect and disperse pro-
nd eukaryotic organisms from the surface to the deep ocean
Preston et al. 2020, Fadeev et al. 2021). Owing to the sam-
ling strategy and restricted access to the Fram Strait through-
ut the year, benthic researches focused on studying the spatial
nd interannual variabilities of benthic organisms across all
ize classes, from bacteria (Jacob et al. 2013) to epi/megafauna
Bergmann et al. 2011, Vedenin et al. 2019, Soltwedel et al.
020). However, further insights into how the seasonal input
f organic matter, as well as pro- and eukaryotes to the Arctic
nd Subarctic seafloor, impacts the benthic microbial dynam-
cs are essential. This understanding is critical for unraveling
he complexities of biogeochemical cycling and nutrient pro-
uction in the deep sea.
The question therefore arises: Is the abundance of Arc-

ic benthic bacteria on the seafloor stable over time, or have
e overlooked temporal patterns due to limited sampling pe-

iods? To answer this question, we combined annually col-
ected data from a time series spanning from 2002 to 2019 at
he HAUSGARTEN observatory. The main objectives of this
tudy were to (i) characterize the spatiotemporal changes of
acterial abundance in the surface layer of the deep seafloor,
ii) determine bacterial dynamics in relation to environmental
onditions, and (iii) identify potential factors that impact sea-
onal variations in benthic bacterial communities in the Fram
trait.

aterials and methods

tudy area

he Fram Strait is located between Greenland and the Sval-
ard archipelago, acting as a passage between the northward-
owing, salty, and warm West Spitsbergen Current (WSC)
nd the southward-flowing, cold, and fresher East Greenland
urrent (EGC) (Fig. 1). Besides the general water flow that
reates a strong longitudinal gradient, a part of the WSC re-
irculates in the central Fram Strait (Fig. 1). Faced with the
igh ecological interest of this area, the Alfred Wegener Insti-
ute Helmholtz Center for Polar and Marine Research (AWI)
stablished the Long-Term Ecological Research (LTER) obser-
atory HAUSGARTEN in 1999. Currently, the observatory is
omposed of 21 permanent stations covering the entire water
olumn (a water depth range of 250–5500 m) and the upper-
ost sediment layers of the sea floor (Soltwedel et al. 2016)

Fig. 1, Table S1). The LTER site is visited yearly during the
rctic summer to conduct repeat sampling (e.g. water sam-
les, sediment cores) and deploy moorings that are equipped
ith autonomous instruments performing year-round mea-

urements and sampling (e.g. temperature and oxygen sensors,
utonomous water samplers, sediment traps). In this context,
he HAUSGARTEN observatory represents a unique sampling
ite allowing synchronous multidisciplinary research activities
o study the pelagic-benthic coupling in a region strongly ex-
osed to climate change.

ediment collection and treatment

uring the polar expeditions operated by the Alfred Wegener
nstitute from 2002 to 2019, a Multiple Corer (MUC) was
sed to sample the uppermost sediment layers at each of
he 21 HAUSGARTEN sampling sites (Table S1; Fig. 1 red
quares). At each station, three sediment samples were taken
rom three different cores collected by the same multicorer
eployment. The upper five centimeters of the MUC cores
ere then subsampled using disposable plastic syringes with

he anterior ends cut off (ø 1.2 and 2 cm). Sediments were
nalyzed for various biogenic compounds, bacterial numbers,
nd biomass as well as bacterial exo-enzymatic activity (see
elow). Samples for biogeochemical measurements were pre-
erved on board and stored at −20◦C for later analyses in
he home laboratory, always directly after the cruise. Bacte-
ial exo-enzymatic activity measurements were conducted on
oard immediately after sampling, while sediment for bacte-
ial counts was preserved in 2% formalin right after sampling
o stop metabolic processes, cell division and to ensure cell
ntegrity during storage. Water content, indicating the poros-
ty of the sediments, was determined by measuring the weight
oss of wet sediment samples dried at 60◦C. Total organic
atter content was determined as ash-free dry weight after

ombustion of the dried sediment (2 h at 500◦C; Greiser and
aubel 1988). The total of available organic hydrocarbons in
he sediment was assessed by measuring the organic carbon
ontent via gas chromatography using a CNS element ana-
yzer (Kirsten 1979). The availability of phytodetritus, which
epresents the prime food source for benthic organisms, was
ssessed from measurements of sediment-bound chlorophyll-a
nd its degradation products (phaeopigments). Chloroplastic
igments were extracted in 90% acetone and measured on a
urner fluorometer (Shuman and Lorenzen 1975). The bulk
igments (chlorophyll-a plus phaeopigments) were termed
hloroplastic pigment equivalents (CPE; Thiel 1978). Partic-
late proteins, operationally defined as γ -globulin equiva-

ents, were measured according to the Bradford method as
escribed in Greiser and Faubel (1988). Phospholipid concen-
rations were used as a proxy for the total microbial biomass
n the sediments. Lipids were determined following a method
rovided by Findlay et al. (1989), with slight modifications
s described in Boetius and Lochte (1994). Bacterial abun-
ance was counted manually by epifluorescence microscopy
fter staining with acridine orange, according to Meyer-Reil
1983). Volumetric determinations to estimate the mean bac-
erial biomass per cell were conducted with the Porton grid
s described by Grossmann and Reichardt (1991). Bacterial
iomass was estimated using a conversion factor of 3.0 ·
0-13 g C μm−3 (Børsheim et al. 1990). Bacterial enzymatic
ctivities (esterase turnover rates) were estimated using the
uorogenic substrate fluorescein-di-acetate (FDA). FDA mea-
urements, assessing the potential hydrolytic activity of bac-
eria, were carried out according to Köster et al. (1991). All
aw data used in this study are provided in the Supplementary
ata (Table S1).

hlorophyll-a concentration and analyses

erged sensor (MERIS, MODIS aqua, SeaWiFS, VIIRS,
LCI) products of the ESA Ocean Color CCI Climate Change

nitiative are used to compute surface chlorophyll-a concen-
ration (Version 4.0, European Space Agency, available on-
ine at http://www.esa-oceancolour-cci.org). Monthly aver-
ge chlorophyll-a data with a 4 km spatial resolution were
xtracted from 1998 to 2019 for the region of the HAUS-
ARTEN observatory [area between 77.5◦N and 80◦N and
◦W and 10◦E in Fram Strait] (Fig. 1 large orange rectangle).
nnual surface phytoplankton phenology was plotted as Ju-

ian days and then smoothed by applying a locally weighted
24
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Benthic microbial dynamics in the Fram Strait 3

Figure 1. Sampling sites of the LTER observatory HAUSGARTEN and major currents in the Fram Strait (WSC: West Spitsbergen Current; EGC: Eastern
Greenland Current). The orange-shaded area represents data taken for long-term analyses of monthly chlorophyll-a recorded by satellite from 1998 to
2019. The abbreviations SV, S, N, EG, and HG refer to the Svalbard, South, North, East Greenland, and HAUSGARTEN sampling areas, respectively.
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smoothing. The day of chlorophyll peak for each year was
defined as the maximum of the smoothed trends.

Statistical analyses

We used a principal component analysis (PCA) to identify key
environmental variables driving bacterial abundance and ac-
tivity in the multidimensional data set. To avoid statistical
bias, samples where some parameters were missing were not
included in the multivariate analysis, and the data were stan-
dardized to unit variance before PCA application. The number
of interpretable components in the PCA was considered sig-
nificant according to the broken stick model (Frontier 1976).
Thus, a component is considered or excluded if the PCA-
associated eigenvalue is respectively greater or lower than the
value given by the broken stick distribution. Additionally, we
conducted local polynomial regressions (R function “loess”)
to depict the temporal trends of surface chlorophyll and ben-
thic bacterial abundance.

All statistical analyses and illustrations presented in this
manuscript were conducted and created using Python and
R computer programs. The packages vegan (Oksanen et al.
2007) and FactoMineR (Lê et al. 2008) were used for mul-
tivariate analysis, and the ggplot2 package (Wickham 2011)
was used for illustration.

Results and discussion

Environmental gradients and temporal changes

The broken stick model suggested that only the first two PCA
axes had non-random variability (Fig. 2). The first axis (PC1)
and the second axis (PC2) explained 28.4% and 16.3% of
he variability in the data set, respectively. PC1 was driven by
arge opposing contributions such as the bathymetric (depth)
nd longitudinal gradient (Fig. 2). Organic carbon, water con-
ent, bacterial activities, as well as ash-free dry weights were
ositively correlated to the longitude of the sampling site, sug-
esting that sites in the eastern Fram Strait had higher bio-
enic compounds than the western side. This confirms pre-
ious observations where biogenic compounds and bacterial
ctivities decreased in sediments collected further eastward
Soltwedel et al. 2016, Hoffmann et al. 2018). While several
tudies have reported that bacterial numbers are bathymetric
epth-dependent, i.e. less bacterial abundance with increasing
epth (Kröncke et al. 1994, Tholosan et al. 1999, Turley and
tutt 2000, Davey et al. 2001, Quéric et al. 2004, Rowe and
eming 2011), our study could not confirm that observation.

ndeed, even if some years showed decreasing microbial abun-
ance with increasing depth (i.e. 2008, 2009, 2010, 2012; data
ot shown), this trend was lost when viewed across the entire
ime series due to strong interannual variations in bacterial
umbers.
PC2 was driven by four positively correlated variables, i.e.

ulian day, year, bacterial abundance, and bacterial biomass
Fig. 2). The correlation observed is likely influenced by the
hift in sampling periods towards the end of the year, co-
nciding with an increase in bacterial number/biomass. This
ontradicts the suggestions of the seafloor as a stable envi-
onment (Sanders 1968) but aligns with more recent ben-
hopelagic studies (Turley and Mackie 1995, Rapp et al. 2018,
adeev et al. 2021). Hence, our findings suggest that the deep
cosystem in the Fram Strait varies temporally, which can be
aused by (i) a significant increase in bacterial numbers in the
24
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(b)(a)

Figure 2. (a) PCA biplot of the sediment variables recorded at the LTER observatory HAUSGARTEN and (b) comparison of eigenvalues from the
broken-stick method. Shape, color, and dot size indicate, respectively, the sampling site, station number, and bacterial abundances. The abbreviations SV,
S, N, EG, and HG refer to the Svalbard, South, North, East Greenland, and HAUSGARTEN sampling areas, respectively. Acronyms for biogeochemical
measurements performed on sediment cores include: BA for bacterial abundance, BB for bacterial biomass, MBC for mean bacterial biomass per cell,
CPE for chloroplastic pigment equivalents, LIPIDS for phospholipid concentrations, CORG for organic carbon content, CHL a for sediment-bound
chlorophyll-a, AFDW for ash-free dry weight, H2O for water content, and FDA for fluorescein-di-acetate.
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ppermost sediment layers in more recent years or (ii) that
enthic bacterial numbers follow the seasonality observed in
he euphotic zone, however, with an offset due to the sedimen-
ation time from the ocean surface to the seafloor.

The monthly spatial averaged chlorophyll-a concentrations
stimated via satellites in the Fram Strait region over a pe-
iod of 22 years showed typical seasonal variations with large
emporal (timing, duration) and magnitude changes (Fig. 3).
hroughout the time series, the peak in the chlorophyll-a con-
entration, i.e. the peak of phytoplankton bloom, occurred be-
ween the 138th and 186th days of the year and ranged from
.3 mg.m−3 in 2000 to 4.5 mg.m−3 in 1998. Sea ice and strati-
cation of the water column were identified as the key factors
ffecting and controlling the timing of summer phytoplank-
on bloom (Wassmann and Reigstad 2011, Mayot et al. 2018,
öthig et al. 2020). We compared local regressions fitted on
acterial abundances from the surface sediment as a function
f Julian day of the sediment sampling and as the time-lag
n days between sediment sampling and chlorophyll-a peak in
he surface water (Fig. 4). A stronger correlation was observed
hen the bacterial numbers in the sediment were plotted as
function of the time-lag between chlorophyll-a and sam-

ling time (R2 = 0.51) compared to a function of sampling
ime of the year (R2 = 0.34, Fig. 4). This suggests that varia-
ions in benthic microbial abundances in the Fram Strait are
inked to the sedimentation and deposition of organic matter
n the seafloor through the settling of phytoplankton. A time-

ag of 100 days between the chlorophyll-a peak in the euphotic
one and the peak of bacterial abundances in the uppermost
ediment layers of the HAUSGARTEN observatory occurred,
uggesting that deposition of phytoplankton-derived organic
atter on the seafloor occurs roughly 100 days after the peak

n phytoplankton bloom.

ertical connectivity or benthic microbial response?

lthough microbial communities from the upper ocean and
eep sea show minimal overlap (Walsh et al. 2016), it has
een shown that there is a vertical microbial connectivity
here a large amount of bacteria attached to settling organic

ggregates can be transported to the seafloor (Turley and
ackie 1995, Rapp et al. 2018, Fadeev et al. 2021). Hence,

t is possible that the increase in benthic bacterial abundance
as (i) due to arrival of additional bacteria with the settling

ggregates or (ii) that the deposition of organic matter from
he aggregates stimulated growth of the benthic resident bac-
eria.

In the central Arctic ocean, ice-algae aggregates transport
arge numbers of microbial cells from surface ocean to the
eafloor, thereby altering the composition of the benthic mi-
robial community (Rapp et al. 2018). Fadeev et al. (2021)
stimated that 10%–20% of the benthic bacteria may have
een deposited with settling aggregates in both ice-free and
ce-covered regions of the Fram Strait. This shows that there
s a microbial vertical connectivity between the surface ocean
nd the deep seafloor in the Fram Strait and that organic
atter arrives with their associated microbial communities.
similar pattern is also observed in eukaryotic diversity at

lobal scale, where the proportion of pelagic DNA in the
ediment increases with latitude and correlates with partic-
late organic carbon export (Cordier et al. 2022). Such seed-

ng of the seafloor may help the efficiency of biogeochemi-
al cycling by stimulating substrate availability and growth of
he benthic resident bacteria and, hence, explain a substan-
ial increase of 3.5-fold in numbers of bacteria on the seafloor
fter the sedimentation of detritic material from the surface
cean. The time-lag of ∼100 days between the peak in phy-
oplankton bloom and the peak in bacterial abundance can
e used to estimate the average settling velocity of the or-
anic material during its journey through the water column.
he HAUSGARTEN observatory has an average water depth
f 3000 m. Assuming that the increase in benthic microbial
bundance is directly related to the deposition of settling phy-
oplankton aggregates, this suggests that the aggregates sank
30 m.d−1. This is similar to observations by Wekerle et al.

2018), who measured the sinking velocities of in situ collected
024



Benthic microbial dynamics in the Fram Strait 5

Figure 3. Spatial average of remotely sensed chlorophyll-a for the entire Fram Strait study region (see Fig. 1) from 1998 to 2019. Red dots, vertical
dashed lines, and red numbers indicate the Julian day of the chlorophyll peak defined in this study for each year.
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aggregates and found average settling velocities of 30 m.d−1

(n = 22) and 77 m.d−1 (n = 7 with two aggregates sinking
faster than 125 m.d−1) at the stations HG-IX and N4, re-
spectively. The authors concluded that settling velocities be-
tween 20 and 60 m.d−1 were more realistic than the case with
120 m.d−1. Ramondenc et al. (submitted) investigated eDNA
sequences extracted from sediment cores and captured a spe-
cific community mainly composed of pelagic ciliates (Strom-
bidinopsidae family) and pelagic diatoms (Bacillariophyta or-
der) correlating to Julian day. It is well known that microzoo-
plankton protists such as ciliates can feed on chain-forming
diatom (Banse 1982) and bacteria (Sherr and Sherr 1987), and
inhabit settling aggregates (Alldredge and Silver 1988, Silver
et al. 1998). Hence, we suggest that the increasing benthic bac-
terial abundance is directly linked to the deposition of settling
phytomacroaggregates.
While sinking aggregates can transport bacteria to the deep
ea, their long-term presence in sediments is limited (Rapp et
l. 2018). Resident deep-sea bacteria are likely to be better
dapted to in situ conditions (i.e. cold temperature and high
ressure) of the deep-sea environment than surface-derived
acteria (Tamburini et al. 2006, Tamburini et al. 2013).
ccording to Teske et al. (2011), resident benthic bacteria
ave a wider range of enzymatic capabilities and are able
o hydrolyze diverse organic matter inputs compared to
he bacteria found in the water column. Hence, while the
mmediate increase in bacterial abundance in the surface
ediment is likely via aggregate-associated bacteria that arrive
ith settling organic matter, the environment-adapted benthic
acteria may be more efficient in utilizing the newly sedi-
ented organic matter and also subsequently contribute to

he rapid response in bacterial abundance to the organic
024
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(a) (b)

Figure 4. Bacterial number measured in the uppermost sediment layer at the HAUSGARTEN observatory according to (a) the Julian day of the sediment
sampling (R2 = 0.34) and (b) the time-lag of chlorophyll peak in the euphotic zone (R2 = 0.51). Dot color represents the year of the polar expeditions. The
thick lines and shaded area represent, respectively, the local regression and the confidence interval.
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atter deposition on the seafloor. This is
upported by previous observations of an
mmediate increase in benthic microbial
espiration rates and activities following organic matter
eposition to the seafloor (Boetius and Lochte 1996, Kanzog
t al. 2009). However, the multivariate analysis performed
n this study did not show any correlation between bacterial
bundance and bacterial activity, benthic energy availability,
r benthic carbon content. It therefore seems to be a more
omplex system where linear response between benthic
icrobial communities and substrate input does not exist,
hich could be linked to the type of planktonic community

hat comprises the settling aggregates (Braeckman et al.
018).

onclusion

o conclude, this study reveals a distinct seasonal fluctua-
ion in bacterial abundances within surface sediment driven
y organic matter export from the surface ocean. The find-
ngs highlight that changes in benthic bacterial dynamics are
ore closely tied to the time-lag following surface ocean pro-
uctivity rather than water depth, underscoring the critical
ole of temporal factors in shaping seafloor microbial commu-
ities. The observed benthic bacterial dynamics could result
rom (i) the physical transport of aggregate-associated bacte-
ia and/or (ii) the stimulation of sediment bacterial growth.
owever, further in situ investigations are needed to deter-
ine bacterial abundances based entirely on particle depo-

ition. This requires estimating aggregate concentration and
he bacterial numbers associated with specific aggregate sizes
nd/or carbon content. Another approach could involve de-
ermining benthic bacterial abundances based on the benthic
acterial growth rate within the timeframe of aggregate depo-
ition versus sampling time.
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