The experimental implications of the rate of temperature change and timing of nutrient availability on growth and stoichiometry of a natural marine phytoplankton community


Contact
uwe john

Abstract

Climate change increases the need to understand the effect of predicted future temperature and nutrient scenarios on marine phytoplankton. However, experimental studies addressing the effects of both drivers use a variety of design approaches regarding their temperature change rate and nutrient supply regimes. This study combines a systematic literature map to identify the existing bias in the experimental design of studies evaluating the phytoplankton response to temperature change, with a laboratory experiment. The experiment was designed to quantify how different temperature levels (6°C, 12°C, and 18°C), temperature regimes (abrupt vs. gradual increase), timings of nutrient addition (before or after the temperature change) and nutrient regimes (limiting vs. balanced) alter the growth and stoichiometry of a natural marine phytoplankton community. The systematic map revealed three key biases in marine global change experiments: (1) 66% of the studies do not explicitly describe the experimental temperature change or nutrient regime, (2) 84% applied an abrupt temperature exposure, and (3) only 15% experimentally manipulated the nutrient regime. Our experiment demonstrated that the identified biases in experimental design toward abrupt temperature exposure induced a short-term growth overshoot compared to gradually increasing temperatures. Additionally, the timing of nutrient availability strongly modulated the direction of the temperature effect and strength of growth enhancement along balanced N : P supply ratios. Our study stresses that the rate of temperature change, the timing of nutrient addition and the N : P supply ratio should be considered in experimental planning to produce ecologically relevant results as different setups lead to contrasting directions of outcome.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Publication Status
Published
Eprint ID
59269
DOI 10.1002/lno.12613

Cite as
Happe, A. , Ahme, A. , Cabrerizo, M. J. , Gerhard, M. , John, U. and Striebel, M. (2024): The experimental implications of the rate of temperature change and timing of nutrient availability on growth and stoichiometry of a natural marine phytoplankton community , Limnology and Oceanography, 69 (8), pp. 1769-1781 . doi: 10.1002/lno.12613


Download
[thumbnail of Happe_et_a_2024_Limnology Oceanography.pdf]
Preview
PDF
Happe_et_a_2024_Limnology Oceanography.pdf - Other

Download (1MB) | Preview

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Citation


Actions
Edit Item Edit Item