Climate change driven effects on transport, fate and biogeochemistry of trace element contaminants in coastal marine ecosystems
Human activities and climate change substantially threaten coastal areas, impacting ecosystem functions, services, and human-wellbeing. Trace elements, from both natural and anthropogenic sources, can contaminate coastal regions, and at high concentrations may become toxic to marine biota. Climate change is likely to affect the sources, sinks and cycling of trace elements in coastal systems: for example, riverine runoff is set to increase as precipitation in the Arctic intensifies, and more frequent extreme floods are expected to activate previously deeply buried trace elements. Furthermore, changes in human activity under a warming climate, such as increased Arctic shipping and potential geoengineering projects such as ocean alkalinity enhancement, will likely introduce more trace elements to coastal ecosystems. Advancing our understanding of trace element cycling is at present limited by factors including lack of data coverage in the Global South, challenges in studying multi-stressor effects and ecosystem responses, lack of long-term data, and the difficulty in parametrizing robust models in coastal environments.