Fast stratospheric ozone chemistry for climate models: The polar SWIFT model

Ingo Wohltmann¹, Ralph Lehmann¹ Markus Rex¹

¹Alfred Wegener Institute for Polar and Marine Research, Potsdam

Motivation

Importance of ozone-climate interactions has long been recognized

- \blacktriangleright E.g. Effect of changes in polar stratospheric vortex and ozone on surface temperature trends in Antarctica (Thompson and Solomon, Science, 296, 895, 2002)
- \blacktriangleright E.g. Changes in tropospheric wave driving and the Brewer-Dobson circulation (Rex et al., GRL, 33, doi:10.1029/2006GL026731, 2006)

E.g. In the IPCC CMIP5 models (IPCC, 2013) It is desirable to account for ozone-climate interactions on a decadal scale in climate models.

 \triangleright Not applicable to scenarios where long-term runs and multiple scenarios are needed

Ozone is usually prescribed in climate models, since a detailed calculation is computationally very expensive.

Existing approaches

Chemistry Climate Models (CCMs): Coupling of a full stratospheric chemistry model to a GCM (slow)

Existing fast ozone schemes like the Cariolle scheme (e.g. Cariolle and Deque, JGR, 91, 10825, 1986) or Linoz (e.g. McLinden, JGR, 105, 14653, 2000) based on Taylor series expansion around mean state have several disadvantages

- \triangleright Do not model the actual physical and chemical processes
- \triangleright Only based on current state of atmosphere and not on history
- \triangleright Can't cope well with non-linearities

► Lagrangian transport and mixing from the ATLAS CTM (in development)

The SWIFT model

SWIFT is a fast yet accurate chemistry scheme for calculating the chemistry of stratospheric ozone in climate models which consists of two parts:

- \triangleright The polar SWIFT model is based on a small set of differential equations, which simulate time evolution of polar vortex averaged mixing ratios of ozone and key species
- ► Extrapolar SWIFT (see poster Kreyling et al.) is based on evaluating a polynomial for the rate of change of ozone (lower stratosphere) or ozone itself (upper stratosphere), which is a function of 9 parameters (including latitude, temperature and chemical families like HOx or NOx).
- SWIFT can run with three transport schemes:
- \triangleright No transport and temperature-based transport parameterization (finished)
- \triangleright Transport by the ECHAM6 GCM (W. Dorn, in development)

- \triangleright Denitrification by sedimenting particles
- \triangleright Deactivation of chlorine in the southern hemisphere by Cl + CH₄
- ^I ...
- \blacktriangleright Proportionality constants of the individual terms are empirical parameters trained on chemical reaction rates from a Chemistry Transport Model (ATLAS CTM) for two Arctic and two Antarctic winters
- \triangleright Driven by only 2 time series: FAP (fraction of vortex where polar stratospheric clouds can form) and FAS (fraction of vortex exposed to sunlight)

SWIFT has been successfully coupled to two models, preliminary results are available, development is ongoing

- ► Coupling to ECHAM6 at AWI (see poster Dorn et al.)
- ► Coupling to EMAC at FU Berlin

Advantages Polar SWIFT

 \blacktriangleright Fast

- \triangleright Parameterization based on real atmospheric processes
- \triangleright Behaves realistically under wide range of conditions
- \triangleright Able to cope with non-linearities
- \triangleright Takes meteorological history into account

Polar SWIFT: Overview

- \blacktriangleright Model for vortex averaged polar ozone loss
- \triangleright Only 4 prognostic equations per altitude (vortex means)
- \blacktriangleright Large time step possible (1 day)
- \blacktriangleright Fast: seconds per model year on 1 processor
- \triangleright Solves system of differential equations for key species
	- \triangleright O₃
	- \blacktriangleright HNO₃ (total)
	- \blacktriangleright HNO₃ (gas phase)
	- \triangleright HCl
	- \triangleright CIONO₂
- \triangleright ClO_x
- \blacktriangleright Includes terms for the overall net effect of chemical and physical mechanisms rather than one term for each reaction. Equations are physically justified (no Taylor expansions etc.). Terms include e.g.
	- \triangleright Chlorine activation by heterogeneous reaction HCl + ClONO₂
	- ▶ Ozone loss by CIO dimer cycle

- \triangleright Fit is not based on observational data, but on model results
- \triangleright ... but ATLAS validated with observations, agreement is good

References:

- ▶ Original version: Rex et al., Atmos. Chem. Phys., 14, 6545, 2014
- \blacktriangleright This version: Wohltmann et al., in preparation

Validation of Polar SWIFT as a chemistry module in the ATLAS Chemistry and Transport Model driven by ECMWF ERA Interim reanalysis data. Vortex means for the southern hemisphere winter 2006. Left: Time evolution of the vortex means for the ATLAS-SWIFT model. Right: Time evolution from MLS satellite measurements. Top: HCl volume mixing ratios. Bottom: Ozone concentrations.

Interannual variability of vortex averaged ozone mixing ratios in early spring shortly before vortex breakup in the northern hemisphere at 46 hPa. Ozone mixing ratios simulated by Polar SWIFT as a chemistry module in ATLAS driven by ECMWF ERA Interim reanalysis data (blue) and observed mixing ratios by the MLS satellite instrument (red). Dates in different years differ due to the different breakup dates of the vortex and availability of satellite data. Chlorine loading changes according to EESC.

Interannual variability of vortex averaged ozone mixing ratios on 1 October in the southern hemisphere at 46 hPa. Ozone mixing ratios simulated by Polar SWIFT as a chemistry module in ATLAS driven by ECMWF ERA Interim reanalysis data (blue) and observed mixing ratios by the MLS satellite instrument (red). Chlorine loading changes according to EESC.

−0.05

0

[ppb/day]

species like $CIONO₂$ limited

 \triangleright Detailed look into processes

Disadvantage:

Left: Example training of Term F.

Top: Vortex averaged rates of all significant reactions changing HCl in the northern hemisphere winter 2004/2005 deduced from a full chemistry run of the AT-LAS CTM. The green line is the net chemical change of HCl.

Bottom: Vortex averaged rate of the ClO+OH reaction from a full chemistry run of the ATLAS CTM (blue) and the fitted parameterization for Term F (red).

Effect of denitrification

OH in sunlit part

NO in sunlit part

 ClO_x is everything not in reservoir gases

Partitioning $HNO₃$ (gas / clouds)

ingo.wohltmann@awi.de

 $[ClO_x] = [Cl_y] - [HCl] - [ClONO₂]$ [HNO₃gas]=[HNO₃total](1-FAP_s)+z[HNO₃total]FAP_s $[OH_{day}]$ =sqrt $([H_2O][NO_{day}]$ FAS) [NO_{day}]=[HNO₃gas]FAS⁴/([O₃]+ α FAS)

Diagnostic

 $d[HNO₃total]/dt=-e[HNO₃total]FAP_s$

d[HCl]/dt= c_1 [ClO_x]FAS²/[O₃]+c₂[ClONO₂]FAS³/[O₃] $+ f[ClO_x][OH_{dav}]FAS$ -a{[HCl]}[ClONO₂][HNO₃total]^{2/3}FAP -I[CIO_x][H₂O]FAS[HCI][HNO₃total]^{2/3}FAP -k[HCl][OH_{dav}]FAS

-a{[HCl]}[ClONO₂][HNO₃total]^{2/3}FAP -h[ClONO₂][HNO₃total]^{2/3}FAP

> Chlorine deactivation by $Cl + CH_a$ into HCl (SH) HCl formation by ClO+OH Chlorine activation by $HCI+CIONO₂$ (heterogeneous) Chlorine activation by HOCl+HCl (heterogeneous) Activation by HCl+OH (gas phase)

Chlorine activation by $HCI+CIONO₂$ (heterogeneous) Chlorine activation by $CIONO₂+H₂O$ (heterogeneous)