Peter Köhler¹, Luke C. Skinner², Florian Adolphi¹

1: AWI Bremerhaven; 2: University of Cambridge

09 October 2024 ETH Zürich: Seminar "Current topics from Accelerator Mass Spectrometry and its applications"

Earth and Planetary Science Letters (May 2024), doi: 10.1016/j.epsl.2024.118801.

Radiocarbon cycle Simulated radiocarbon cycle revisited Bipolar seesaw Benthic ¹⁴C data

Applied model

Results

Radiocarbon cycle Simulated radiocarbon cycle revisited Bipolar seesaw Benthic ¹⁴C data

Applied model

Results

Radiocarbon cycle Simulated radiocarbon cycle revisited Bipolar seesaw Benthic ¹⁴C data

Applied model

Results

Radiocarbon cycle

Radiocarbon Cycle in a Nutshell

(Heaton et al., 2021)

(Köhler et al., 2022)

OM

(Köhler et al., 2022)

@.W

(Köhler et al., 2022)

© M

(Köhler et al., 2022)

©.WI

¹⁴C Production Rate Q: C Cycle Models vs ¹⁰Be Data

(Köhler et al., 2022)

© AVI

¹⁴C Production Rate Q: C Cycle Models vs ¹⁰Be Data

(Köhler et al., 2022)

©**`**AVI

¹⁴C Production Rate Q: C Cycle Models vs ¹⁰Be Data

(Köhler et al., 2022)

©'NVI

Simulated radiocarbon cycle revisited

Calibration curve (14C-yr vs cal-yr) is a function of atmospheric Δ^{14} C which depends on

- ¹⁴C production rate (upper atmosphere)
- C cycle (mainly air-sea gas exchange and ocean circulation)

Setup for Calibration Curve IntCal04/09/13

(Reimer et al., 2004)

Data

Calibration Curve

Revised Setup for Calibration Curve IntCal20

(Reimer et al., 2004)

@**`**MI

LSG, BICYCLE = f(CO₂, atm Δ^{14} C)

Revised Setup for Calibration Curve IntCal20

C cycle models LSG-OGCM and BICYCLE have been used in IntCal20 and Marine20

Calibration Curve IntCal20 and Marine20

(Heaton et al., 2020)

Ø.

1600

Model largely based on 18 years old paper...

(Köhler et al., 2006)

A model-based interpretation of low-frequency changes in the carbon cycle during the last 120,000 years and its implications for the reconstruction of atmospheric Δ^{14} C

Peter Köhler

Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, P.O. Box 120161, D-27515 Bremerhaven, Germany (pkochler@awi-bremerhaven.de)

Raimund Muscheler

Climate and Global Dynamics Division—Paleoclimatology, National Center for Atmospheric Research, Boulder, Colorado, USA

Now at Climate and Radiation Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA (raimund@climate.gsfc.nasa.gov)

Hubertus Fischer

Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, P.O. Box 120161, D-27515 Bremerhaven, Germany (hufischer@awi-bremerhaven.de)

Model largely based on 18 years old paper...

(Köhler et al., 2006)

Main shortcomings:

- no solid Earth fluxes
- missing bipolar seesaw

A model-based interpretation of low-frequency changes in the carbon cycle during the last 120,000 years and its implications for the reconstruction of atmospheric $\Delta^{14}C$

Peter Köhler

Full Article

> Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, P.O. Box 120161, D-27515 Bremerhaven, Germany (pkochler@awi-bremerhaven.de)

Raimund Muscheler

Climate and Global Dynamics Division—Paleoclimatology, National Center for Atmospheric Research, Boulder, Colorado, USA

Now at Climate and Radiation Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA (raimund@climate.gsfc.nasa.gov)

Hubertus Fischer

Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, P.O. Box 120161, D-27515 Bremerhaven, Germany (hufischer@awi-bremerhaven.de)

- a: atmospheric $\Delta^{14}C$
- b: Greenland (NGRIP) $\delta^{18}{\rm O}$

c: 231 Pa/ 230 Th @ Bermuda Rise (AMOC): Atlantic Meridional Overturning Circ. is reduced during each stadials

- d: Antarctic (WDC) δ^{18} O
- e: atmospheric CO₂

- a: atmospheric $\Delta^{14}C$
- b: Greenland (NGRIP) $\delta^{18}{\rm O}$

c: ²³¹Pa/²³⁰Th @ Bermuda Rise (AMOC): Atlantic Meridional Overturning Circ. is reduced during each stadials with H event

d: Antarctic (WDC) δ^{18} O

e: atmospheric CO₂

- a: atmospheric Δ^{14} C
- b: Greenland (NGRIP) $\delta^{18}{\rm O}$

c: ²³¹Pa/²³⁰Th @ Bermuda Rise (AMOC): Atlantic Meridional Overturning Circ. is reduced during each stadials with H event and without H event

- d: Antarctic (WDC) $\delta^{18}{\rm O}$
- e: atmospheric CO₂

- a: atmospheric Δ^{14} C
- b: Greenland (NGRIP) δ^{18} O

c: ${}^{231}Pa/{}^{230}Th$ @ Bermuda Rise (AMOC): Atlantic Meridional Overturning Circ. is reduced during each stadials with H event and without H event GRIP

0°

- c: Alternative AMOC proxy: Iberian Margin SST (Davtian & Bard, 2023)
- d: Antarctic (WDC) δ^{18} O

e: atmospheric CO₂

Benthic ¹⁴C data

Marine Reservoir Age (MRA) of the deep ocean

Data on ¹⁴C age

Marine Reservoir Age (MRA) of the deep ocean (Skinner et al., 2023; Heaton et al., 2021)

© NI

$$\mathsf{MRA} = 8033 \cdot \mathsf{ln}\left(\frac{\frac{\Delta^{14}\mathsf{C}_{\mathsf{IntCal20}}}{1000} + 1}{\frac{\Delta^{14}\mathsf{C}_{\mathsf{sample}}}{1000} + 1}\right)$$

Summary of Approach

(Heaton et al., 2020, 2021, Reimer et al. 2020, Skinner et al., 2023)

Q.W.

Summary of Approach

(Heaton et al., 2020, 2021, Reimer et al. 2020, Skinner et al., 2023)

Q.W.

Applied model — BICYCLE-SE

What is in the BICYCLE-SE model?

(Köhler et al., 2020, 2022, 2024)

Ø.

What is in the BICYCLE-SE model?

(Köhler et al., 2020, 2022, 2024)

©'AVI

How important are abrupt AMOC changes for the 14 C cycle?

What is in the BICYCLE-SE model?

(Köhler et al., 2020, 2022, 2024)

©'AVI

Using Iberian Margin SST (Davtian & Bard, 2023) to prescribe AMOC

Results

Deep ocean ¹⁴C Surface ocean ¹⁴C Atmospheric ¹⁴C Atmospheric CO₂

Deep Ocean ¹⁴C Age (in model: >1 km)

O'AVI

Deep Ocean ¹⁴C Age (in model: >1 km)

© AVI

#1: AMOC of 0-2 Sv @ Heinrich 1 event agrees best with deep Atlantic data

Deep Ocean ¹⁴C Age (in model: >1 km)

@.WI

#1: Heinrich 1 event: AMOC of 0-2 Sv agrees with deep Atlantic data (scenario A3) #2: The deep LGM ocean is \sim 700 ¹⁴C yr "older" than at preindustrial

Deep Ocean 14 C Age (in model: >1 km)

©'N/

Surface Ocean Marine Reservoir Age

© AVI

Surface Ocean Marine Reservoir Age

Surface Ocean Marine Reservoir Age

Errors in Marine20 (Surface Ocean Marine Reservoir Age) (Heaton et al., 2020)

Errors in Marine20 (Surface Ocean Marine Reservoir Age) (Heaton et al., 2020)

Atmospheric Δ^{14} C

Atmospheric Δ^{14} C

#4: Millennial-scale changes in atm Δ^{14} C of 10-30% related to AMOC reductions (*Q* constant) (increases agreement with IntCal20, H1 is special, no non-HS vs HS difference in IntCal20)

Atmospheric Δ^{14} C ... in detail more difficult ...

W

Atmospheric Δ^{14} C ... in detail more difficult ...

© NI

Atmospheric CO₂

(Ahn & Brook, 2014)

@ AVI

Atmospheric CO₂

(Ahn & Brook, 2014)

©'WI

#5: CO₂ falls by 10-30 ppm during AMOC shutdown — opposite to ice core data \Rightarrow responsible process not connected to AMOC (proxies: SO physics and biology)

Atmospheric CO₂

(Ahn & Brook, 2014)

Ø.

#5: CO₂ falls by 10-30 ppm during AMOC shutdown — opposite to ice core data \Rightarrow responsible process not connected to AMOC (proxies: SO physics and biology) #6: Physical pump explains 85 ppm of glacial CO₂ drawdown

60 ppm from circulation + sea ice (14 C-related), 25 ppm from ocean cooling

- #1: Massive AMOC reduction during Heinrich 1 event agrees best with benthic ^{14}C data
- #2: The deep LGM ocean is ${\sim}700$ ^{14}C yr "older" than at preindustrial
- #3: Abrupt AMOC \Rightarrow offset in non-polar surface age (Marine20) by < 100 ^{14}C yr
- #4: Millennial-scale changes in atm Δ^{14} C (IntCal20) are related to AMOC reductions
- #5: AMOC shutdown during Heinrich stadials \Rightarrow fall of simulated CO₂ by 10-30 ppm \Rightarrow SO processes (or land carbon) responsible for ice core CO₂ rise in Heinrich stadials
- #6: Physical carbon pump explains 85 ppm of glacial CO_2 drawdown

