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Tropical cyclones become increasingly nonlinear and dynamically unstable in high-resolution models. 
The initial conditions are typically sub-optimal, leaving scope to improve the accuracy of forecasts with 
improved data assimilation. Simultaneously, the lack of real ground-based GNSS observations over the 
ocean poses significant challenges when evaluating the assimilation results in oceanic regions. In this 
study, an Observation System Simulation Experiment is carried out based on a tropical cyclone case. 
Assimilation experiments using the WRF-PDAF framework are conducted. Conventional and GNSS 
observation operators are implemented. A diverse array of synthetic observations, encompassing 
temperature (T), wind components (U and V), precipitable water (PW), and zenith total delay (ZTD), 
are assimilated utilizing the Local Error-Subspace Transform Kalman filter (LESTKF). The findings 
highlight the improvement in forecast accuracy achieved through the assimilation process over the 
ocean. Multiple observation types further improve the forecast accuracy. The study underscores the 
crucial role of GNSS data assimilation techniques. The assimilation of GNSS data presents potential for 
advancing weather forecasting capabilities. Thus, the construction of ground-based GNSS observation 
stations over the ocean is promising.
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Data assimilation (DA) plays a crucial role in improving the accuracy and reliability of numerical weather 
prediction (NWP) models. DA helps to bridge the gap between model simulations and real-world observations. 
It enhances the accuracy, skill, and reliability of the atmosphere simulations, providing valuable information 
for a range of applications, including weather forecasting, climate studies, and environmental assessments1,2. 
Global Navigation Satellite System (GNSS) data, such as those provided by the Global Positioning System 
(GPS), Galileo navigation satellite system (Galileo), global navigation satellite system (GLONASS), and BeiDou 
navigation satellite system (BDS), have gained significant attention in recent years due to their potential for 
improving atmospheric models and weather forecasting. Assimilating GNSS data into atmospheric models using 
techniques like Ensemble Kalman Filtering (EnKF) has shown significant impact on improving the accuracy and 
performance of the models3 in different applications as outlined below.

Improved Initial Conditions: Assimilating GNSS data helps in refining the initial conditions of atmospheric 
models by incorporating real-time and high-resolution (e.g., 5-min series in the Nevada Geodetic Laboratory 
(NGL)4 product (http://geodesy.unr.edu, last accessed: 27 July 2024) information about atmospheric parameters 
such as water vapor content. This leads to a better representation of the current state of the atmosphere and 
reduces the uncertainties associated with the initial conditions5. Positive impacts on weather forecasting, 
particularly for short-term (up to 6 h)6 and short-range (48 h)7 forecasts have been shown. The assimilation 
helps in capturing mesoscale weather phenomena such as convective systems, thunderstorms, and localized 
rainfall patterns8. It contributes to the better representation of atmospheric processes and improves the skill of 
weather forecasts, especially in regions where traditional observations are sparse or limited.

Enhanced Moisture Analysis: GNSS data assimilation plays a crucial role in improving moisture analysis 
in atmospheric models. It provides high-temporal and spatial resolution observations of precipitable water 
vapor and zenith total delay, which are vital for understanding the moisture distribution in the atmosphere. 
Assimilating GNSS data leads to a more accurate representation of moisture fields, enabling improved forecasts 
of precipitation and humidity patterns9.
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Vertical Profiling: GNSS data assimilation enables improved vertical profiling of atmospheric parameters, 
which is crucial for understanding the vertical structure of the atmosphere. By assimilating GNSS data, the 
vertical distribution of water vapor and other variables can be accurately estimated, aiding in the analysis of 
atmospheric stability, moisture transport, and cloud formation processes10.

Real-time Assimilation: One of the key advantages of GNSS data is its availability in real-time. Assimilating 
GNSS data in real-time allows for timely updates of atmospheric models, leading to improved nowcasting and 
short-term/range forecasts. Data of zenith total delay (ZTD) and precipitable water (PW) are available within 
1 h from the moment the original satellite signal is received by the ground-based station. This latency period 
encompasses both data processing and transmission times. Real-time assimilation enables the models to capture 
rapidly changing atmospheric conditions, providing valuable information for severe weather events and rapid 
weather developments11.

Some of the most important challenges for the assimilation of GNSS data include the required greater 
sophistication of forward models to allow using the indirect observations PW and ZTD, the need to analyze a 
range of hydrometeors, the need to account for the flow-dependent multivariate “balance” between atmospheric 
water and both dynamical and mass fields, and the inherent non-Gaussian nature of atmospheric water 
variables12–14. Furthermore, GNSS observations over the ocean have gained significant attention in recent years, 
as reported by Ji et al.15 and He et al.16. Nevertheless, establishing real ground-based GNSS stations on the sea 
remains challenging, leading to insufficient GNSS data availability. Consequently, the employment of idealized 
cases serves as an alternative approach to assess the influence of this observation type.

The objective of this study is to assess the impact of assimilating ground-based GNSS data within an idealized 
tropical cyclone scenario using an ensemble-based Kalman filter. This is achieved by integrating the Weather 
Research and Forecasting Model (WRF)17 with the Parallel Data Assimilation Framework (PDAF; http://pdaf.
awi.de, last access: August 1, 2024)18 and performing and analyzing idealized assimilation experiments. Our 
goal is to gain insights into the potential benefits of utilizing ground-based GNSS data over the sea to enhance 
the accuracy and reliability of tropical cyclone predictions. For GNSS observations we focus on the online 
assimilation of PW and ZTD data, which are critical for improving tropical cyclone predictions. Compared to 
previous studies, we assimilate multiple observations, including temperature (T), horizontal wind components 
(U and V), and the additional variables PW and ZTD, using the localized error subspace transform ensemble 
Kalman filter (LESTKF)19. To implement this approach, we develop ground-based GNSS observation operators 
within the WRF-PDAF framework. These operators enable the seamless integration of GNSS data into the 
assimilation process. We then conduct a twin experiment over the ocean, based on a mesoscale idealized case 
of a tropical cyclone. By analyzing the assimilation results, we expect to gain valuable insights into the impact 
of ground-based GNSS data on tropical cyclone predictions. This study contributes to the ongoing efforts to 
improve the accuracy and reliability of tropical cyclone forecasting systems, ultimately leading to better decision-
making and mitigation strategies for communities at risk.

The remainder of the study is structured as follows. “Methodology” introduces ensemble filters and the 
observation operators for the DA. The setup and configuration of the DA system are outlined in “Setup of data 
assimilation program”. “Experimental design” discusses details of the experimental design for the idealized case 
studies. “Results and analysis” examines the parallel performance of the DA system build by coupling WRF 
and PDAF, the assimilation behavior of an example application with WRF. Finally, conclusions are drawn in 
“Discussion and conclusions”.

Methodology
Ensemble Kalman filters (EnKFs, see e.g., Vetra-Carvalho et al.20) are data assimilation methods that combine 
the information from an ensemble of model states with observations to update the model state variables. In 
EnKFs, ensemble members are generated by perturbing the model initial conditions, and the assimilation is 
performed by computing analysis increments based on the ensemble spread and the observation-model misfit. 
Here, ensemble spread is the ensemble standard deviation (STD), which provides a measure of the distribution 
of the ensemble members around the ensemble mean. The analysis increments are subsequently added to the 
ensemble members to obtain the updated state variables. EnKF variants are particularly suitable for assimilating 
GNSS data due to their ability to handle non-linear dynamics of atmospheric models, like the LETKF21 and the 
LESTKF [28, and also non-Gaussian distributions, like the NETF22 and the LKNETF23.

In this section, we introduce the WRF-PDAF model, the GNSS data for DA, the LESTKF assimilation 
scheme, and the observation operators.

WRF-PDAF
The WRF model is a widely used numerical weather prediction system, providing a versatile platform for 
simulating a broad spectrum of atmospheric processes suitable for both regional and global weather simulations. 
Developed by Shao and Nerger24, WRF-PDAF integrates WRF-ARW version 4.4.1 with PDAF version 2.0 to 
facilitate robust data assimilation. This integration enables the incorporation of profile data into WRF, enhancing 
its initial conditions and contributing to improved forecast accuracy. The online coupling strategy of WRF-
PDAF, in which PDAF is directly coupled to WRF, utilizes a fully parallel structure for data assimilation. Here, 
the data assimilation program integrates all model states concurrently utilizing a sufficient number of processes 
and the data assimilation is performed without the need of restarting the model. This approach guarantees the 
model’s consistent temporal advancement, resulting in highly efficient data assimilation.

In this study, the model setup is the three-dimensional equivalent of case considered by Rotunno and 
Emanuel25. The domain size is 3000  km × 3000  km × 25  km, containing 200 × 200 × 20 grid points with a 
horizontal grid spacing of 15 km and a vertical grid spacing of 1.25 km. The Kessler microphysics scheme and 
the YSU boundary-layer physics are employed, while radiation schemes are not utilized. A capped Newtonian 
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relaxation scheme is used on potential temperature25 which is a crude approximation for longwave radiation. 
This scheme is useful for idealized studies of maximum tropical cyclone intensity. The simulation spans a 
period of six days, starting from September 1, at 00:00 UTC (010000) and ending on September 7, at 00:00 UTC 
(070,000). The model time step is set to 60 s.

To initialize the simulation, both initial and boundary conditions are required. For our idealized tropical 
cyclone case the initial horizontally homogeneous environment is specified via a sounding data. The initial state 
is motionless (u = v = 0) and horizontally homogeneous, except an analytic axisymmetric vortex in hydrostatic 
and gradient-wind balance is added. The lateral boundary conditions are periodic to facilitate the simulation 
process. The default setup may not be optimal for complicated diagnosis of precipitation. These parameters 
of the default setup are adjustable to accommodate various requirements and preferences. Shao and Nerger26 
applied WRF-PDAF to conduct assimilation experiments of temperature profiles at different densities. The main 
difference in this study is the additional assimilation of PW and ZTD data. Additionally, we have supplemented 
the experiments with single-point experiments.

GNSS Data for DA
GNSS data, such as PW and ZTD observations, provide information about atmospheric moisture and can be 
assimilated using EnKFs to improve the representation of moisture fields in the model27,28. GNSS signals are 
bent, attenuated and delayed both by the ionosphere and troposphere. The ionospheric delay can be mostly 
reduced by linear combination of double-frequency observations. The water vapor content is responsible for the 
“wet” delay in the troposphere. A prevalent approach involves mapping the GNSS signal in the zenith direction 
and integrating it over a specified time period to derive a vertical column of tropospheric delay above each 
station, commonly referred to as the ZTD29. GNSS signals transmit through the troposphere and the signal 
delays are caused. The observed ZTD can be split into two parts: Zenith Hydrostatic Delay (ZHD) and Zenith 
Wet Delay (ZWD). The ZHD is estimated with the Saastamoinen30 formula. In real cases, Precipitable Water 
vapor (PW) is retrieved from the ZWD as follows:

 PW = Q · ZWD  (1)

 ZWD = ZTD − ZHD  (2)

 
Q = 106

461.525(375463Tm
+22.9726)  (3)

 
Tm =

∑l=lte
l=lts

el
Tl
∆hl∑l=lte

l=lts
el
T2
l

∆hl
 (4)

 ZHD = 0.0022767P
1−0.00266cos(2φ)−0.00000029h  (5)

Here Q is the proportionality factor. Tm denotes the vertical weighted mean temperature (in K) of the atmosphere. 
el, Tl and ∆hl denote the average vapor pressure (in hPa), average temperature (in K) and the thickness of the 
atmosphere at the l− th layer, respectively. l is the layer index, ranging from the bottom layer lts to the top layer 
lte, specifically depending on the datasets used, such as ERA529,31. P , φ and h are pressure, latitude and height 
of the station, respectively.

The GNSS data originates from ground-based stations, with real-time ZTD and PW data available on an 
hourly basis from these stations. Both the station’s geographical location and the temporal resolution of the ZTD 
and PW data have to taking into account. For the data assimilation, the synthetic PW and ZTD observations 
are calculated hourly by the observation operators for PW and ZTD, respectively, acting on different model 
fields, as described in "PW and ZTD Observation operators". The two-dimensional ZTD/PW observations are 
positioned on all of the horizontal grid points. Synthetic U, V, and T observations represent sounding profile 
observations. In terms of profile data, the operators for T, U, and V directly operator on the model grid locations 
without any interpolations. Each profile consists of a vertical column of observations of T, U, and V located on 
grid points. It is usually impossible in the real scenario, even on land. However, this is precisely the purpose of 
our implementation of OSSE. We want to understand how data assimilation performs under this assumption.

LESTKF
The LESTKF has been applied in different studies to assimilate satellite data into atmosphere models32, ocean 
models33, atmosphere–ocean coupled models34,35 and hydrological models36. The LESTKF is an efficient 
formulation of the EnKF, reviewed here to be able to discuss the particularities of the DA with respect to the 
ensemble filter. The analysis Eqs.  (6)–(13) transform the forecast ensemble Xf  of Ne model states into the 
analysis ensemble Xa:

 
Xa = Xf

(
w1TNe

+ W̃
)
+ x̃f1TNe

 (6)

 w = TA
(
HXfT

)T
R−1(y −Hx̃f)  (7)

 W̃ =
√
Ne − 1TA1/2TT  (8)

 A−1 = α (Ne − 1) I +
(
HXfT

)T
R−1HXfT  (9)
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 USUT = A−1  (11)

 A = US−1UT  (12)

 A1/2 = US−1/2UT  (13)

Here, x̃f  is the forecast ensemble mean state and 1TNe
 is the transpose of a vector of size Ne holding the value one 

in all elements. w is a vector of size Ne, which transforms the ensemble mean and W̃  is a matrix of size Ne ×Ne

, which transforms the ensemble perturbations. T  is a projection matrix into the error subspace with j = Ne 
rows and i = Ne − 1 columns. H  is the observation operator. R is the observation error covariance matrix. A is 
a transform matrix in the error subspace. α with 0 < α ≤ 1 is the forgetting factor37. U  and S are the matrices 
of eigenvectors and eigenvalues, computed from the eigenvalue decomposition of A−1.

A local analysis is performed by updating the model fields at each grid point of the model independently. 
Only observations within horizontal and vertical localization radii are considered when updating a grid point. 
Consequently, the observation operator is local and computes an observation vector within the influence radius 
based on the global model state. Additionally, each observation is weighted according to its distance from the 
grid point21. The localization weight for the observations is computed using a fifth-order polynomial with a 
shape resembling a Gaussian function38. The weighting is applied to the matrix R−1 in Eqs. (7) and (9). So, the 
localization process results in individual transformation weights w and W̃  for each local analysis domain.

PW and ZTD Observation operators
Observation operators are used to transform model variables into observation space, thus computing the model 
equivalent to the actual observation. Specifically related to GNSS data the operator for PW is

 PW (i, j) =
∑k=kte

k=kts (ρ (i, j, k) q (i, j, k)∆hk)  (14)

where i, j are horizontal model node indices. k is the index of the model layer, and kts=1 and kte=20 are the 
bottom layer and the top layer index as defined in "WRF-PDAF", respectively. ρ is air density (kg/m3), q is 
specific humidity (1), and ∆h is the height difference between two consecutive model layers (m).

The observation operator for ZTD is

 

ZTD (i, j) =
0.0022767psfc(i,j)

1−0.00266cos(2φ)−0.00000029hsfc(i,j)

+
∑k=kte

k=kts

(
2.2110−7p(i,j,k)q(i,j,k)

t(i,j,k) + 3.7310−3p(i,j,k)q(i,j,k)
t2(i,j,k)

)
∆hk
0.622.

 (15)

Here, hsfc is the height of the model surface (m), p is pressure (Pa) and t is temperature (K). q, t and ∆h are 
calculated from the model fields of WRF as follows:

 q = qv
1+qv  (16)

 t = (th + 300)×
(

p
100000

)0.286  (17)

 
∆h = ∆

(
ph+phb
9.81

)
 (18)

The model fields used in these functions are the perturbation geopotential (ph, m2/s), perturbation potential 
temperature (th, K), water vapor mixing ratio (qv, kg/kg), perturbation pressure (p, Pa), and base-state 
geopotential (phb, m2/s).

The observation operators of PW and ZTD are constructed based on the traditional approach. Our 
contribution lies in more explicitly formulating the equations within the WRF-PDAF system, thereby enabling 
accurate implementation. In one hand, since the operators of ZTD and PW are different, the results of the 
data assimilation should not be the same. Comparing the two different results is meaningful. In another hand, 
assimilating PW and ZTD should yield similar performance, which can be used to demonstrate the correctness 
of the construction of the observation operator and the assimilation process, making the results convincing.

Setup of data assimilation program
To enable the data assimilation, PDAF is coupled into the existing WRF framework. This coupling allows for the 
assimilation of GNSS data into WRF to improve its initial conditions and subsequently enhance its forecasts.

PDAF is a freely available open-source software developed to facilitate the implementation and application 
of ensemble and variational DA methods. It offers a generic framework that includes fully implemented and 
parallelized ensemble filter algorithms such as the LETKF, LESTKF, NETF, and LKNETF, along with related 
smoothers. PDAF provides functionality for adapting the model parallelization for parallel ensemble forecasts 
and includes routines for parallel communication between the model and filters. Like many large-scale 
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geoscientific simulation models, PDAF is implemented in Fortran and parallelized using the Message Passing 
Interface (MPI) standard39 and OpenMP40, ensuring optimal compatibility with such models. It can also be used 
with models implemented in other programming languages such as C and Python.

The online coupling strategy for DA is selected here utilizing the fully parallel structure. For this 
implementation, the time stepping for all ensemble states are is computed concurrently utilizing a sufficient 
number of processes on a compute cluster. With this, each model task integrates only one model state and the 
model is always going forward in time.

In this study, all of the variables needed by PDAF are inserted from WRF into the state vector. There are the 
x-wind component (u, m/s), y-wind component (v, m/s), z-wind component (w, m/s), perturbation geopotential 
(ph, m2/s), perturbation potential temperature (th, K), Water vapor mixing ratio (qv, kg/kg), Cloud water 
mixing ratio (qc, kg/kg), Rain water mixing ratio (qr, kg/kg), Ice mixing ratio (qi, kg/kg), Snow mixing ratio 
(qs, kg/kg), Graupel mixing ratio (qg, kg/kg), perturbation pressure (p, Pa), density (ρ, kg/m3) and base-state 
geopotential (phb, m2/s). Note that the variables p, ρ and phb are only used by the observation operators, but will 
not be updated by PDAF. So, only the rest of the variables will be updated and returned to WRF.

Experimental design
In the ideal cases, synthetic observations are used and generated from the model variables via observation 
operators. In this study, all synthetic observations were generated by adding Gaussian errors directly at the grid 
points without any interpolations. The standard deviations of the Gaussian errors were set to 1.2 K, 1.4 m/s, 
1.4 m/s, 1 cm, and 4 cm for T, U, V, PW, and ZTD, respectively, following Bao and Zhang41, 32.Pawel et al.42 and 
Li et al.43. Therefore, the conventional observation operators, including U, V, and T, are just acting on the location 
of the model grid. For PW and ZTD, the model state variables are transformed into the observation space using 
the appropriate GNSS observation operators introduced in "PW and ZTD Observation operators". The PW and 
ZTD observations are then assimilated into the WRF model using the LESTKF.

In this section, the details of the ideal tropical cyclone case, the design of a single point experiment, and the 
experimental design of GNSS DA are described.

The tropical cyclone case
Tropical cyclones, also known as hurricanes or typhoons depending on the region, are powerful and destructive 
weather phenomena that form over warm ocean waters near the equator. These intense storms derive their 
energy from the latent heat released when moist air rises and condenses into clouds and precipitation. The 
Coriolis effect causes the storm to spin, with the direction of rotation determined by the hemisphere in which 
the cyclone forms. Tropical cyclones can have devastating impacts on coastal communities and infrastructure. 
Forecasting and monitoring tropical cyclones are essential for mitigating their impacts.

The test case used here is the idealized tropical cyclone case provided by WRF, which serves as a simplified 
representation of real-world atmospheric conditions. It provides a controlled environment for evaluating the 
performance of data assimilation methods utilizing identical twin experiments. This test case here we use is the 
same with Shao and Nerger24, where one can find more details about the idealized tropical cyclone.

The atmospheric state variables, such as temperature, humidity, and wind fields from a forward run of 
the model create the known true state for comparison with assimilation results. This truth is used to generate 
synthetic observations. A control state is generated separately for the period September 3, at 12:00 UTC (031,200) 
to September 7, at 00:00 UTC (070,000) using the same initial fields as the truth. Therefore, the control state and 
true state are identical in all aspects except for their respective start times. The control simulation provides initial 
state estimate for the data assimilation. The flowchart of the cases is shown as Fig. 1.

Synthetic observations were generated hourly from the true state starting from 040,800 and ending at 051,400. 
The observations were generated for both single-point experiments and cycled DA experiments assimilating 
multiple variables. For the single-point experiments, only one set of observations of U, V, and T was generated 
at 040,800. These observations were located at the horizontal center of the model domain and vertical level 5, 

Fig. 1. The flowchart of the twin experiments. The black line represents the true state, and the blue line 
represents the control state.
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corresponding to a height of 10 km. In the cycled DA experiments assimilating multiple variables, a total of 
30 hourly observations of U, V, T, PW, and ZTD were generated. The U, V, and T observations were generated 
at all grid points in the model domain. On the other hand, PW and ZTD observations were generated from 
each vertical column of the model using the observation operators. In addition, Gaussian noise with standard 
deviation as described on "Experimental design". The generated observations are free of bias.

For the twin experiments, an initial perturbation is added to the control state at 031,200 to generate 40 
ensemble members. The ensemble is spun up for 20 h. Subsequently, in the cycled DA, the observations are 
assimilated hourly into the ensemble during the analysis period from 040,800 to 051,400. Finally, an ensemble 
forecast is run without further assimilation from 051,400 until 070,000.

Single-point experiments
The single point experiments focus on assimilating observations at a specific location within the model 
domain. The design involves selecting a grid point of interest and assimilating observations at that point. These 
experiments allow for a detailed assessment of the assimilation impact on the model state variables at a specific 
location. Here, T is used to denote potential temperature th. As depicted in Table 1, the assimilation of a single 
observation of T, U and V located at the specific location was carried out in three separate experiments, namely 
exp.1, exp.2 and exp.3. The observations T, U, and V have offsets of 1 k, 1 m/s, and 1 m/s, respectively, relative 
to the control fields. These observations were assimilated to compute a multivariate update of U, V and T. To 
determine the optimal localization distance, the different horizontal distances 800 km, 150 km, and 50 km are 
tested in each experiment. Localization distances of 200 km and 100 km were also tested for tuning, but not 
shown here. The vertical localization radius is identical in all cases matching the height of the model top. The 
purpose of these tests was to select the localization distance that yielded the best results. To facilitate analysis and 
verification, there is no radius for PW or ZTD.

In this study, a forgetting factor of α = 0.97 was used in Eq. (9). The forgetting factor is a scaling parameter 
applied to the ensemble spread in order to avoid underestimation of the forecast uncertainty. The ensemble 
variance is inflated by 1/α. The forgetting factor was determined based on the ensemble spread, which reflects 
the variability or uncertainty within the ensemble members. By appropriately adjusting the forgetting factor and 
setting observation errors, the assimilation process can effectively incorporate the available information from 
observations and ensemble members, resulting in improved forecast accuracy and reliability.

Experimental design for cycled DA
The experimental design for DA with multiple observations involves assimilating synthetic conventional and 
GNSS observations into the WRF model. The GNSS DA experiment aims to enhance the representation of 
moisture fields through the integration of GNSS observations. This assimilation process aims to utilize 
the precision PW and ZTD data to refine and correct the model predictions of humidity and other related 
atmospheric variables. The ultimate objective is to achieve a more accurate representation of moisture fields, 
thereby enhancing the overall accuracy and reliability of weather predictions. The impact of assimilating these 
observations on the model representation of atmospheric moisture is evaluated through a comparison between 
the assimilated and true states. By conducting these experiments on an idealized case, the performance and 
effectiveness of WRF-PDAF in assimilating observations and improving the model representation of atmospheric 
variables can be evaluated.

Table 2 provides an overview of the experiments performed here. Two single runs were used to generate the 
true state (Exp. 4, ‘True’) and control state (Exp. 5, ‘CTRL’), as described in "The tropical cyclone case". These 
distinct states served as the basis for further analysis and experimentation in the study. To generate the initial 

Exp Name Member(s) Assimilated obs DA-Cycles

4 True 1 – –

5 CTRL 1 – –

6 ENS 40 – –

7 daUVT 40 U, V, T 30

8 daPW 40 PW 30

9 daZTD 40 ZTD 30

10 daUVTPW 40 U, V, T, PW 30

11 daUVTZTD 40 U, V, T, ZTD 30

Table 2. The design for DA experiments.

 

Exp Assimilated obs offset Updated vars Localization(km)

1 T 1 K U, V, T 800, 150, 50

2 U 1 m/s U, V, T 800, 150, 50

3 V 1 m/s U, V, T 800, 150, 50

Table 1. The design for single-point experiments.
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ensemble, perturbations were generated using second-order exact sampling37 from the model variability of hourly 
snapshots from 010000 to 031,200. These perturbations were added to the control state at 031,200 to generate an 
ensemble of 40 states. Subsequently, a free ensemble run of the 40 members (Exp. 6, ‘ENS’) was conducted. The 
purpose of this ensemble run was to generate a collection of model states that encompassed a range of possible 
variations and uncertainties. The same initial ensemble members were utilized in the assimilation experiments. 
Starting from the initial ensemble, assimilation experiments were conducted over 30 analysis cycles. Different 
experiments assimilating the conventional observations U, V, T, or separately the GNSS observations PW or 
ZTD, as listed in Table 2, were performed. In addition, the experiments 10 and 11 assimilated a combination of 
direct observations alongside with GNSS observations. PW and ZTD are assimilated separately to assess how 
far these observations have different effects. This integration leverages the complementary nature of the two 
datasets. These different assimilation experiments were carried out to evaluate the impact of assimilating specific 
types of observations on the model state.

Results and analysis
Single-point experiments
Figure  2 shows the increments resulting from the single-point assimilation experiments detailed in Table 1. 
Note that each assimilation of T, U, and V observations can affect all of the U, V, and T model fields through the 
multivariate DA update. In contrast to the isotropic increments of 3DVAR and 4DVAR, the increments used in 
LESTKF are anisotropic due to the flow-dependent features of the background error covariance.

If there is no localization, the increments will be distributed throughout the entire simulation region. However, 
increments far from the observation are generally unreliable, and the correlations between the observation point 

Fig. 2. The spatial distribution of the T, U and V increments of the single-point experiments at 031,200 with 
different localization distances 800 km, 150 km, and 50 km ((a–c: results of exp. 1 assimilating T; (d–f): results 
of exp. 2 assimilating U; (g–i)): results of exp. 3 assimilating V). The shade represents the T increments (K), 
while the arrows represent the wind velocity (combined U and V) increments (m/s).
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and distant grid points were considered spurious. To address this concern, selecting an appropriate localization 
distance becomes crucial. Past research often made such choices or even developed adaptive schemes based 
on the root mean square error (RMSE). However, in our study, since the dynamics are known in the ideal 
case, we aim to determine the localization distance from the dynamic perspective. A well-suited localization 
distance should accurately reflect the relationships between temperature and wind while also avoiding spurious 
correlations. When the localization distance was set to 800 km, the region with spurious correlations reduced 
compared to using no localization, but some areas with spurious increments remained (Fig.  2, column (1). 
When the localization distance was further reduced to 150 km, the increments were only distributed closely 
around the single observation point (Fig. 2, column (2). The fifth-order polynomial mentioned in "LESTKF"  
resulted in decreasing increments as the distance from the observation point increases. Moreover, positive T 
increments caused cyclonic-type wind increments, while negative T increments caused anticyclonic-type wind 
increments, consistent with the gradient-wind balance. The localization distance of 50 km led to even smaller 
areas of increments around the single observation point (Fig. 2, column (3). However, the area of increments 
was too limited to clearly observe the relationship of the gradient-wind balance, especially in Fig. 2f,i. Despite 
the reduced spurious correlations, the extremely localized increments hindered the ability to capture the meso-
scale flow patterns and relationships. Based on the results and observations provided, a localization distance of 
150 km was chosen as the most suitable for the assimilation experiments in this study.

Cycled GNSS DA
In Fig. 3a, the RMSE of specific humidity (Qv) from the different experiments listed in Table 2 is displayed. 
The RMSE of the ensemble forecast (ENS) is lower than that of the control run from the true state (True). This 
means that the ensemble members generated using second-order exact sampling represent the range of possible 
atmospheric states and the ensemble mean properly represents the most likely forecast. The RMSE when 
assimilating U, V, T data (UVT) is lower than that of ENS, indicating that the assimilation process improves the 
accuracy of the model prediction. The RMSEs from the experiments daPW and daZTD appear to be similar, 
with the RMSE of daZTD is slightly lower than daPW. The RMSEs from the experiments daUVT, daUVTPW, 
and daUVTZTD are similar. However, the RMSEs from daUVTPW and daUVTZTD are lower than that of 
daUVT. Among all the experiments, the lowest RMSE is observed in daUVTZTD.

In Fig.  3b, the STD of the ensemble of Qv is shown for the different experiments. The STD provides an 
estimate of the uncertainty in the state estimate. The STD of the experiment daPW is slightly lower than that of 
ENS. The STD of experiment daZTD is lower than that of daPW. This suggests that the assimilation of either PW 
or ZTD data has helped to reduce the uncertainty among the ensemble members, leading to a more consistent 
forecast. The experiments daUVT, daUVTPW and daUVTZTD have almost the same STD, which is lower 
than the others. This suggests that the assimilation of conventional data and of multiple observations (U, V, T, 
PW/ZTD) in these experiments have led to a similar reduction in the spread of specific humidity among the 

Fig. 3. Upper row: Time series of RMSE (a) and STD (b) of Qv from 031,200 to 070,000. Lower row: Vertical 
profile of time-average of Qv RMSE (c) and STD (d). The blue dotted lines in (a) and (b) show the start time of 
the DA process, while the red dotted lines represent the its endpoint).
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ensemble members, contributing to a more constrained forecast. The pattern of the STDs is similar to the RMSEs 
during the analysis period, indicating, as expected, that the ensemble STD is influenced by the assimilation 
process. Lower RMSEs correspond to lower STDs. An approach to evaluate the capability of an ensemble system 
in quantifying prediction uncertainty is by examining the relationship between the spread among the forecasts 
of individual ensemble members and the skill of their mean forecast, known as the spread-skill relationship44. 
Several methods exist to quantify this relationship. Talagrand45 argued that a statistically consistent ensemble 
should have an average STD matching the RMSE of its mean forecast. We observe that, indeed, the STD and 
RMSE generally correspond quite well. However, all of the STDs become closer during forecast period, especially 
at the later time of the experiment. In Fig. 3c,d, it can be observed that the decreases in RMSEs and STDs of Qv 
are primarily seen at the middle and low levels (below level 12). This suggests that the assimilation process has a 
more significant impact on improving the accuracy and reducing the variability of Qv at these levels. However, 
the results of T, U, and V show the decreases in RMSEs and STDs of these variables at all levels (figures omitted). 
Figure 3 provides insights into the performance of different data assimilation experiments in improving the 
accuracy and reducing the STD of Qv, T, U, and V variables during the specified time period (from 031,200 to 
070,000).

With the aid of flow-dependent cross-variable background error covariances, the assimilation of U, V, and T 
yields Qv corrections, resulting in an improved state compared to assimilating PW or ZTD alone. This could be 
attributed to the nature of the observations themselves. The U, V, and T observations are direct measurements 
and represent three-dimensional variables, providing a comprehensive and detailed information about the 
atmospheric conditions. On the other hand, the PW and ZTD observations are indirect two-dimensional data, 
which may have some limitations in capturing the complete atmospheric state. The direct and three-dimensional 
nature of U, V, and T observations likely contributes to their larger impact on the assimilation process and the 
resulting improvements in the state. Furthermore, the assimilation of GNSS data generates slight wind and 
temperature corrections through the same flow-dependent mechanism (figures omitted). Additionally, the 
assimilation of multiple data types (U, V, T, PW/ZTD) contributes to an enhanced initial cyclone circulation. This 
improvement can be credited to the assimilation of diverse data types, which effectively corrects the temperature, 
wind, and Qv fields. This indicates that despite the significant improvements achieved through conventional 
observations, the inclusion of GNSS observations can offer additional valuable information, leading to further 
enhancements in cyclone simulation.

In the idealized case, the primary distinction between PW and ZTD stems from the different observation 
operators outlined in Eqs. (14–15). Simultaneously, due to varying observational errors, the RMSE exhibits 
different performances. This discrepancy is also reflected in the lower RMSEs and STDs of U, V, and T from 
daUVTZTD compared to daUVTPW. In previous real case studies14,46, opinions vary on whether assimilating 
PW or ZTD yields better results. From our perspective, the superiority of either depends on the quality of the 
data itself. In real cases, ZTD is derived first, followed by the derivation of PW from ZTD. It is crucial to note 
that the value of PW does not solely depend on the ZTD but is also influenced by the additional variables (p, t) 
in Eqs. (1–5). If the quality of ZTD surpasses that of p and t, the quality of PW may be inferior to that of ZTD, 
and vice versa.

To assess the estimate model fields, we show the ensemble means for the ensemble experiments as it is 
common practice in ensemble DA. The spatial distribution of T, U, and V at the 850mb level at the initial time 
(031,200) are shown in Fig. 4. Figure 4a represents the true state, showing the actual distribution of T, U, and V. 
Figure 4b represents the control run, which is similar to the ensemble run (Fig. 4c), but both differ significantly 
from the true state. Figure 4d displays the difference obtained by subtracting the true state from the ensemble 
mean. The differences of T are positive in the outer areas but negative in the central region, while most wind 
velocities exhibit an anticyclonic pattern. As a result of the distinct start times, the cyclone in the true state has 
progressed for 60 h, whereas the control state’s cyclone remains at its earlier stage. During the development of the 
cyclone, the temperature in the central region increases, while it decreases in the outer areas. Concurrently, the 
wind field intensifies over time. This phenomenon can be attributed to the interplay between thermodynamics 
and dynamics within the cyclonic system.

Given its lowest RMSE, the daUVTZTD experiment is selected for further comparative analysis in this study. 
At this first analysis step of the DA process the analysis state gets closer to the true state compared to CTRL and 
ENS. The misfit between daUVTZTD and True is smaller than that between ENS and True at the initial time 
(figures omitted). However, the difference is larger compared to the final assimilation time. The larger error 
after the first analysis is mainly due to the substantial magnitude of the prescribed observation errors. Thus, the 
impact of the observations may not be immediately evident or prominent. However, by incorporating model 
observational information over time, the state estimate is gradually improved.

Figure  5 represents the 30th DA cycle and final assimilation time, which is 50  h after the start time of 
control run. In the control run (Fig. 5b), T is lower, and the cyclone is weaker than in the true state (Fig. 5a). In 
ENS (Fig. 5c), T is higher than in the true state, whereas the cyclonic circulation remains weaker. An evident 
underestimation of temperature is observed at the cyclone center, whereas the temperature is overestimated 
in the areas outside the cyclone edge. The analysis state (Fig. 5d) is closest to the true state. The overall DA-
induced change in the model state, depicted in Fig. 5e, demonstrate the impact of DA. The improvements of T 
are predominantly concentrated at the center of the cyclone and the surrounding area outside the edge of the 
cyclone. The differences between the analysis and the true state (Fig. 5f) are very small across the model domain.

Next to the effect on the temperature and velocity fields, we assess the effect of the DA on Qv in Fig. 6. At 
051,400, Qv in the control run (Fig. 6b) appears to be higher than that in the true state (Fig. 6a) across the 
entire region. In contrast, the ensemble run (Fig. 6c) shows a lower Qv compared to the control run, yet it lacks 
accuracy in simulating the cyclone pattern around its center. Similar to the temperature, the Qv distribution of 
the analysis state (Fig. 6d) is the closest to the true state. The DA-induced change, depicted in Fig. 6e, illustrates 
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the impact of the DA on the Qv field, with adjustments evident throughout the domain but predominantly 
concentrated at the cyclone’s center. The resulting misfits between the analysis state and the true state (Fig. 6f) 
are generally very small across the entire simulation region.

As the assimilation cycles progress, an increasing amount of information is assimilated into the background 
field. With more observations being incorporated, the analysis field progressively approaches the true field. At 
the 30th assimilation cycle, all available observations have been assimilated, resulting in the analysis field being 
the closest approximation to the true field (see Fig. 5). After a subsequent 20 h forecast without DA, the T and Qv 
patterns of the control run are significantly different from the true state, and the cyclone is still weaker than in 
the true state. T of the ensemble run near the center is lower than the true state, and the cyclone remains weaker 
than that in the true state. The analysis state is still closer to the true state than CTRL and ENS, but the misfits 
between daUVTZTD and the true state are larger than those at the time of final assimilation (figures omitted). 
In the absence of observation constraints, the simulated values in the assimilation experiments gradually deviate 
from the real values. However, despite this deviation, the assimilation experiments consistently outperformed 
the control state over time. For the limited spread of analysis ensemble, the 40 ensemble realizations for the 
daUVTZTD show similar behavior. It is worth noting that at 051,400, several isolated points emerge in both the 
T (Fig. 5f) and the Qv (Fig. 6f) fields, particularly in the surrounding area outside the cyclone edge.

In addition, we assess the impact of the DA on rainfall, focusing on the 24-h accumulated precipitation. At 
051,400, the maximum precipitation in the control run (Fig. 7b) is less than that of the true state (Fig. 7a). The 
patterns of their distribution are notably distinct. The ensemble run (Fig. 7c) exhibits an even lower rainfall 
level than the control run, and it continues to miss the cyclonic pattern centered around its core. In line with 
the findings for other variables, the distribution of rainfall in the analysis state (Fig. 7d), aligns most closely with 
the true state.

Table 3 shows that the mean RMSEs of Qv, T, U, and V in all vertical levels, as well as 24 h rainfall for the 
ensemble forecast (ENS) are similar to those of the single control run (CTRL) at the initial time. At the 1st DA 
cycle, RMSEs for the ensemble forecast are smaller than those of the control run, and the RMSEs for the analysis 
are smaller than those for the ensemble run. At the 30st DA cycle—the final assimilation time—the RMSEs 
for daUVTZTD are the smallest among all experiments and assimilation times. After 20-h free forecast, the 
RMSEs for the ensemble forecast are still smaller than those for the control run. The RMSEs for assimilation 
run daUVTZTD are smaller than those for ENS, but larger than those for the analysis at the 30st DA cycle. In 
contrast to the results from previous studies47,48, the RMSEs in our study show significant reductions by the DA, 
primarily attributed to the inclusion of additional conventional data and a higher assimilation rate of GNSS data. 
These enhancements have collectively contributed to reducing the forecast errors and increasing the accuracy 
of our simulations.

Fig. 4. Spatial distribution of T, U, and V at the 850 mb level at initial time 031,200 of the control run (single 
state for True and Ctr; ensemble mean for the ensemble experiment). The shade represents the temperature 
(K) distribution, while the arrows represent the wind velocity (m/s). 4 (a): True; 4 (b): CTRL; 4 (c): ENS; 4 (d): 
difference between ENS and True.
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Discussion and conclusions
In this study, a tropical cyclone twin experiment was conducted to evaluate the effect of assimilating 
conventional and GNSS data in different configurations. The assimilation results provide valuable insights into 
the performance of the ensemble Kalman filter LESTKF applied in WRF-PDAF, the developed GNSS operator, 
the impact of GNSS DA on the model forecast accuracy, and the behavior of the analyzed fields. A suitable 
localization distance needs to be selected to balance the assimilation impact with the preservation of meso-
scale flow patterns. Specifically, the localization distance chosen for this study was determined based on the 
model dynamics, rather than solely relying on numerical values of the RMSE. This decision was made due to the 
evident correlation between temperature and wind in the idealized scenario, which provides a more physically 
meaningful basis for selecting the localization distance. However, the localization distance is case-dependent and 
not a general value. In practical applications, a typical localization radius of 1000 km is commonly used for global 
modeling and data assimilation systems49. However, for convective weather systems utilizing high-resolution 
models and observations, a much shorter radius of 10 km has been found to be more appropriate50. Nonetheless, 
experiments with real data conducted by Dong et al. (2011) suggest that a smaller localization radius is necessary 
to achieve better analysis accuracy with denser observing networks. Periáñez et al.51 determined an optimal 
localization radius through heuristic arguments, assuming a uniform observing network, and also recommend 
using a smaller localization radius for denser observations. Kirchgessner et al.52 proposed a scheme for adaptive 
localization without tuning. These studies indicate a potentially complex relationship between observing 
networks and localization radii. However, in real-world applications, the localization radius may be influenced 
by other factors. For instance, it is known that localization affects the balance in the model state, and a longer 
localization radius will have a smaller impact on the balance. Consequently, one might prefer a longer localization 
radius in multivariate assimilation applications. Additionally, when assimilating real observations, biases can 

Fig. 5. T, U and V at level 850mb at 30th DA time 051,400. The shade represents the temperature (K) 
distribution, while the arrows represent the wind velocity (m/s). 5 (a): True state; 5 (b): CTRL; 5 (c): ENS; 5 
(d): daUVTZTD; 5 (e): difference between daUVTZTD and ENS; 5 (f): difference between daUVTZTD and 
True.
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occur, and the observation error covariance matrix might be inaccurately estimated. It remains unclear to what 
extent these factors necessitate adapting the localization radius to achieve overall optimal assimilation results. 
Therefore, tuning is still necessary. Perhaps, the effective spatial resolution53 of the model54 could be applied to 
determine the localization. Corresponding to "PW and ZTD Observation operators", assimilating PW and ZTD 
yields similar results. This proves that the construction of the assimilation operator and the implementation 
of the assimilation process are reliable. From another perspective, different operators of PW and ZTD caused 
differences in the DA performance. The DA results are influenced by the magnitude of the observation errors. In 
real cases, the superiority of either also depends on the data quality as described in "Cycled GNSS DA".

This study outperforms previous research55–60 by achieving the most accurate assimilation results, evidenced 
by the lowest RMSEs and the most similar distributions with the true state. This superior performance can be 
attributed to the utilization of high-fidelity synthetic observations, which are not only precise but also have a 
high spatial resolution, characterized by a full 100% density on model grids. However, assimilating observations 
at lower density can still have a significant effect, at least for conventional observations as was shown by Shao and 
Nerger26. The analysis step significantly improves the accuracy of the model forecast compared to the control 
run or ensemble forecast. Assimilating the conventional observations U, V, and T, leads to increments that 
align with expected atmospheric features, such as cyclone patterns in this ideal case. Compared with previous 
studies, multiple observations, such as T, U, V, as well as PW and ZTD, which are derived from GNSS data, were 
assimilated using the LESTKF. This generally improved the forecast accuracy, compared to assimilating either 
conventional or GNSS data. The lower RMSEs compared to previous studies show the effectiveness of the applied 
assimilation method and the selected observed variables.

The key findings are significant as they contribute to the understanding of the impact of assimilating ground-
based GNSS data on the forecast accuracy of tropical cyclone. They highlight the effectiveness of the assimilation 
process in improving the accuracy of the forecast and provide insights into the behavior of analyzed fields in 
a tropical cyclone. Additionally, the study identifies the benefits of assimilating multiple observation types. 

Fig. 6. The spatial distribution of Qv at level 850mb at 30th analysis time 051,400. The shade represents 
the distribution of Qv (g/kg), while the contours delineate the differences in Qv with an interval of 1 g/kg. 
Specifically, Fig. 6 (a) depicts the true state, 6 (b) shows CTRL, 6 (c) represents ENS, 6 (d) displays the results 
of daUVTZTD, 6 (e) illustrates the increments between the daUVTZTD and the ENS simulations, and 6 (f). 
depicts the misfits between the daUVTZTD and the true state.
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Assimilating ground-based GNSS data, such as PW and ZTD, offers several benefits in the tropical cyclone 
simulation. Ground-based GNSS data provide valuable information about atmospheric water vapor and can 
improve the representation of moisture fields in numerical weather prediction models. Assimilating ground-
based GNSS data can hence improve the initialization of water vapor fields, and help capture mesoscale features 
related to atmospheric moisture. The findings of this study highlight the potential applications of assimilating 
ground-based GNSS data in improving weather forecasts in marine areas and demonstrate that it is essential 
to establish real ground-based GNSS observation stations over the ocean. By understanding the behavior of 
analyzed fields and the impact of assimilation, researchers and meteorologists can enhance forecast accuracy.

In conclusion, this research demonstrates the effectiveness of ground-based GNSS data assimilation using the 
ensemble Kalman filter LESTKF in improving tropical cyclone simulation accuracy. The findings emphasize the 
benefits of assimilating multiple observation types, and the potential applications of assimilating ground-based 
GNSS data. The construction of ground-based GNSS observation stations over the ocean is highly promising 
and essential. The utilization of the flow-dependent, cross-variable background error covariances in the LESTKF 
enables us to fully leverage the advantages of this data. By further advancing the LESTKF and incorporating 
GNSS operators in the data assimilation process, we can enhance simulation capabilities for tropical cyclones 
and have the opportunity to provide more accurate and reliable predictions for various applications, including 
network design, weather monitoring, disaster management, and climate studies. However, the study should 
acknowledge potential limitations, such as the use of an idealized twin experiment with synthetic observations. 

Time Experiment Qv (g/kg) U (m/s) V (m/s) T (K) Rainfall (mm)

031,200
CTRL 0.534 1.922 1.859 1.195 0

ENS 0.538 1.927 1.869 1.180 0

040,800
(Start of DA)

CTRL 0.612 2.155 2.125 0.951 16.708

ENS 0.606 1.986 1.967 0.922 15.413

daUVTZTD 0.557 0.852 0.808 0.529 14.484

051,400
(End of DA)

CTRL 0.622 1.909 2.075 1.096 17.165

ENS 0.507 1.760 1.894 0.953 12.500

daUVTZTD 0.188 0.238 0.238 0.188 3.746

061,000
(20 h forecast)

CTRL 0.639 1.912 2.245 1.162 22.648

ENS 0.501 1.659 1.855 0.715 12.831

daUVTZTD 0.391 0.690 0.724 0.569 7.188

Table 3. Mean RMSEs of Variables of experiments in all the vertical levels, as well as 24 h rainfall, at initial 
time 031,200, 1st DA cycle 040,800, 30st DA cycle 051,400 and 20 h forecast time 061,000. The minimum 
values for each element at each time point are in bold.

 

Fig. 7. The spatial distribution of 24h cumulative precipitation (in mm) at the 30th analysis time 051,400. 
Shown are the (a) true state, (b) CTRL, (c) ENS, (d) daUVTZTD.
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Representation and model errors are not present here. The inherent non-Gaussian nature of atmospheric 
water variables are also not considered. Future research directions may involve investigating alternative data 
assimilation methods, in particular nonlinear methods, to address the limitations and challenges encountered. 
Investigating advanced techniques, such as adaptive localization or ensemble-based adaptive observation 
strategies, can potentially enhance the assimilation process.

Data availability
Dataset can be download at https://doi.org/https://doi.org/10.5281/zenodo.10335684.
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