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ABSTRACT: The spectral description of the energy of oceanic internal gravity waves is generally represented by the
Garrett–Munk (GM) model, a function with a power-law decrease of spectral energy in wavenumber–frequency space.
Besides the slopes of these power laws, the spectrum is expressed as a function of energy and a bandwidth parameter that
fixes the range of vertical modes excited in the respective state. Whereas concepts have been developed and agreed upon
of what processes feed the wave spectrum and what dissipates energy, there is no explanation of what shapes the spectral
distribution, i.e., how the power laws come about and what sets the bandwidth. The present study develops a parametric
spectral model of energy and bandwidth from the basic underlying energy balance in terms of forcing, propagation, refrac-
tion, spectral transfer, and dissipation. The model is an extension of the IDEMIX (Internal Wave Dissipation, Energy and
Mixing) models where bandwidth was taken as a constant parameter. The current version of the model is restricted to
single-column mode and the slopes of the spectral power laws are fixed. A coupled system of predictive equations for
energy and bandwidth (for up- and downward propagating waves) results. The equations imply that bandwidth relates
to energy by a power law with an exponent given by the dynamical parameters. It agrees favorably with energy, band-
width, and slope data from previously published fits of the GM model to Argo float observations. Numerical solutions
of the coupled energy–bandwidth model in stand-alone modus are presented.
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1. Introduction

Half a century ago, Christopher Garrett and Walter Munk
provided the first unified picture of the internal wave field in
the ocean by synthesizing a model [later dubbed the Garrett–
Munk (GM) model] of the complete wavenumber–frequency
spectrum of the wave motion on the basis of linear theory and
the available observations (Garrett and Munk 1972). This
model (and its extensions) is believed to reflect the spectral
features of the internal wave climate in the deep ocean and to
possess a certain global validity. Most data obtained later
were in good agreement with the model or could be incorpo-
rated by modifications, the most severe was the step from
the top-hat wavenumber spectrum (GM72) to a sloping one
(GM75 and GM76) (Garrett and Munk 1975; Cairns and
Williams 1976; Munk 1981; Levine 2002). In 1973, the experi-
ment IWEX (Internal Wave Experiment) was performed in
the Sargasso Sea to test the GM model. IWEX results were
found in good agreement with GM (Müller et al. 1978), al-
though small but significant deviations were revealed, in partic-
ular a vertical asymmetry of wave energies at low frequencies.

The GM spectrum is based on various types of measure-
ments from current meter and thermistors (as a proxy of the
vertical displacement). It represents within a factor of about
3 most internal wave properties observed in the World Ocean:
the spectral form in wavenumber–frequency space, the spatial
coherence of the wave field, and the rms velocities and

vertical displacements, but also the vertical dependence of
these quantities. Energy is found mainly at low frequencies
and large vertical scales while the shear spectrum is concen-
trated in small vertical scales. Larger deviations from GM are
found in singular places such as in the vicinity of extreme
topographic features (seamounts, canyons; see, e.g., Eriksen
1982). Moreover, the GM spectrum does not adequately rep-
resent the spectral peaks at the inertial frequency and energy
at the tidal frequencies are ignored entirely. These peaks have
a high variability in time and space and generally also show a
vertical asymmetry between up- and downward propagating
waves whereas the GM model is symmetric. Near-inertial
waves mostly propagate downward, hinting at a likely genera-
tion by the wind (Alford et al. 2016; Olbers et al. 2020a). Like-
wise, baroclinic tidal constituents of the wave field generally
propagate upward from their generation site at deep-sea to-
pography (see, e.g., Bell 1975; Garrett and Kunze 2007). In re-
gions under the direct influence of such forcing processes or
complicated topography, the internal wave spectrum is hence
expected to deviate from the GM model. Outside of these re-
gions, however, and after the wave field has lost the imprint
of specific forcing features by interactions with surrounding
features or triad wave–wave interactions, the GM model is
considered a good (if somewhat smoothed) representation of
the ocean’s internal wave field (Olbers 1983; Müller et al. 1986).

The GM model is therefore widely used as a reference for
spectral features of the ocean’s internal wave field. The pa-
rameters of the model spectrum, which are energy level, spec-
tral slopes, and bandwidth, are expected to depart from the
model constants depending on the local conditions. RegionalCorresponding author: Dirk Olbers, dirk.olbers@awi.de
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deviations are documented by Polzin and Lvov (2011), who
fitted the GM model to datasets from various locations, and
the global the analysis of Pollmann (2020) based on Argo
float profiles (Riser et al. 2016) and of Le Boyer and Alford
(2021) based on moored velocity records, open a view on the
broad geographic variability of these parameters.

Despite the widespread use of the GM model in combina-
tion with observations and theoretical concepts, only little
progress has been made over the past 50 years to explain the
spectral form of the spectrum. The overall GM energy level
can be adjusted in most studies to a good agreement with
forcing and dissipation scenarios; see, e.g., the discussions in
Munk (1981), Olbers (1983, 1986), and Polzin and Lvov
(2011). On the other hand, the shape of the spectrum, deter-
mined by the slopes in wavenumber–frequency space and the
bandwidth of excited (equivalent) vertical modes, has no ex-
planation so far in terms of the wave field’s dynamics. Both
dominant forcing mechanisms, by wind and by tidal conver-
sion, inject for the most part low modes. The spreading of bar-
oclinic tidal energy in low modes over the spectral range of
wavenumbers and frequencies by wave–wave interactions has
a complicated transfer pattern and is fairly weak (Olbers et al.
2020b), not immediately leading to the continuous 22 slope
in wavenumber–frequency space that the GM model predicts.
Further nonlinear transfers with specific properties are neces-
sary but have not been pinned down. It is also unknown how
in detail wind-forced waves would spread their energy over
the range of the GM continuum. The number of excited
modes is usually measured by the roll-off mode number or
wavenumber, j? or m?, of the spectral shape function. The ob-
served values of this quantity vary substantially: Polzin and
Lvov (2011) report fits to the kinetic energy spectra at various
locations, producing roll-offs j? ranging from 3 to 20, with
lower-amplitude frequency spectra being characterized by
larger values of j?. An understanding of this behavior is ab-
sent. A dynamical concept of how the GM roll-off (or band-
width) is established in terms of forcing, interactions, and
dissipation does not exist. It is the topic of the present study.

We develop a dynamical predictive model for the energy level
and the modal bandwidth (or roll-off parameter) from the basic
radiative energy balance of the wave field, which includes}
besides wave forcing at top and bottom of the ocean}
propagation, refraction, nonlinear interactions, and dissipation
in a wave field with vertical asymmetry. As such, the model
is an extension of the IDEMIX (Internal Wave Dissipation,
Energy and Mixing) concept, starting with Olbers and Eden
(2013) and put forward in various papers by the authors. The
energy–bandwidth model is reduced to the simplest setting in
the present study: a horizontally homogeneous ocean without
mean flow. The basic kinematic and dynamic concepts of such
setting are introduced in section 2 and the essential mathemat-
ics of the GM class of spectra in section 3. The coupled energy–
bandwidth model is derived by a parametric technique first in-
troduced by Hasselmann et al. (1973, 1976) in the context of
surface gravity waves. Its specific application to the internal
wave problem is described in section 4. In section 5 a funda-
mental relation between bandwidth and energy is derived. It in-
cludes a confirmation of the model results by the data of the

GM fit to Argo observations by Pollmann (2020). Numerical
solutions of the model equations are discussed in section 6.
Finally, a summary section concludes the study’s approach
and results.

2. Kinematics and dynamics of small-scale internal waves

In the present study we assume that the oceanic internal
waves are essentially linear disturbances of the wave-carrying
medium: once they are generated they propagate almost
freely along their rays, slowly changing by coupling to their
supporting background and nonlinear effects, thereby slowly
losing attributes acquired during their particular generation
process. Strongly nonlinear effects such as breaking occur
only as very localized events in space and time. The waves
should have small scales such that a WKBJ approach may be
used for spatial scales [meaning essentially that the vertical
wavelength should be small compared the scales on which the
Brunt–Väisälä frequency N(z) varies in the vertical] and for
the temporal variations of the wave amplitudes (they should
vary only little over the wave period). In a realistic geophysi-
cal situation, the wave field can described by a superposition
of a great number of such wave packets, each localized in
physical space and having a dominant wavevector, frequency,
and amplitude, which slowly change as a consequence of
propagation, refraction, reflection, and interactions. Under
such conditions the spectral distribution of wave energy is the
central property to be determined by observations and ex-
plained by dynamical considerations. The aim is thus to ac-
quire knowledge of the energy power spectrum E(K, X, t),
which is the density of energy in wavenumber space K5 (k,m),
appropriate at spatial positionX5 (x, z) and time t.

The energetics of a random wave field with the above prop-
erties are usually presented by a radiation balance equation
(Hasselmann 1968)

­tA 1 =X ? (ẊA) 1 =K ? (K̇A) 5 S/v

5 (Sgen 1 Sww 1 Sdiss)/v (1)

for the action spectrum A(K, X, t)5 E(K, X, t)/v, where
v 5 V(K, X) is the intrinsic frequency. Here S is a source of en-
ergy where Sgen describes the generation of waves by external
processes in the water column, Sww represents the energy in the
spectrum due to wave–wave interactions (WWI), and Sdiss stands
for dissipation terms which eliminate wave energy. The fluxes of
action in physical and wavenumber space (phase space) are deter-
mined by the group velocity Ẋ 5­KV and refraction rate
K̇ 52­XV. We will not work in the Cartesian coordinates of the
phase space but use (v, m, f) for the wavenumber part where f

is the angle of horizontal direction of k and k5 |k| is transformed
to v. Note that v is now a coordinate but V is still the dispersion
function, for internal waves given by

V(K, z) 5 N(z)2k2 1 f 2m2

k2 1 m2

[ ]1/2
(2)

with a z-dependent Brunt–Väisälä frequency N and constant
Coriolis frequency f.
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The present study is restricted to horizontal homogeneous
conditions, which means that a single-column model will be
considered. In that case ḟ 5 0 and = 5 0 (horizontal deriva-
tive). We also assume the absence of a mean flow. The energy
spectrum E 5 E(v, m, f, z, t) is then governed by the simpli-
fied radiation balance

­tE 1­zżE 1­mṁE 5 S (3)

and the following ray equations apply,

ż 52‘(v)/m and ṁ 52n(v)dN
dz

: (4)

The expressions contain the frequency functions

‘(v) 5 (v2 2 f 2)(N2 2 v2)
v(N2 2 f 2) and n(v) 5 N

v

v2 2 f 2

N2 2 f 2
: (5)

The vertical wavenumber m thus changes along the ray but
the horizontal wavenumber k remains constant. Note that in
spite of horizontal homogeneity the waves still propagate hor-
izontally with their associated horizontal group velocity. The
vertical group velocity ż is opposite to the vertical wavenum-
ber m. We will use the notation s 5 6 for up- or downward
propagating waves, i.e., s 5 2sign(m).

The vertical energy flux F 5 żE must be specified at the top
and bottom boundaries, assuming for simplicity that these are
horizontal surfaces. At the surface

F(v, m, f) 1 F(v, 2m, f) 5 Fsurf(v, m, f) at z 5 0

(6)

must hold, and similarly for the bottom with a net flux
Fbot(v, m, f). The condition accounts for reflection, in which
a wave with vertical wavenumber m is reflected into one with
2m, and an energy source Fsurf(v,m, f) by a wave-maker sit-
uated at the surface as e.g., wind stress fluctuations, or by tidal
conversion at the bottom in case of Fbot(v, m, f). If horizon-
tal boundaries are considered then reflecting flux conditions
must be implemented there as well.

3. GM spectral model

The knowledge about the structure and importance of the
oceanic internal wave field is strongly based on experimental
evidence of the wave motion. The first attempt to provide a
unified picture of the oceanic internal wave field was made by
Garrett and Munk (1972), now 50 years ago, who synthesized
a model of the complete wavenumber–frequency spectrum
(GM model) of the motion in the deep ocean on the basis of
linear theory and the available observations by horizontally
or vertically separated moored instruments or dropped
sondes. The model underwent a few and relatively modest
modifications (Garrett and Munk 1975; Cairns and Williams
1976; Müller et al. 1978; Munk 1981; Levine 2002) and has
been widely used to represent the deep ocean’s internal wave
climate ever since. In a broad brush view the GM spectrum,

as density of (v, m), is characterized by a v22 decay of energy
power in frequency space with a minor peak at v 5 f (generally
underrepresenting the actual near-inertial peak at most sites)
and a m22 decay in vertical wavenumber space with a roll-off
at wavenumber m5m? to a plateau at low wavenumbers. GM
is horizontally isotropic and of the factorized form shown be-
low with a vertically symmetric wavenumber spectrum. This
model version is referred to as GM76.

In the present study we consider the GM spectrum in the
generalized form

EGM(v, m, f, z) 5EGM(z) 1
2p

A(m)B(v) with

A(m) 5 1
2
Ã(|m|/m?, s)

m?

(7)

having a total energy EGM(z) at depth z and depending on
the shape parameters m?, a wavenumber scale, and a spectral
slope s of the wavenumber distribution. The shape function
Ã(l, s) and B(v) are normalized to one,

�‘

0
Ã(l, s)dl 5 1 and

�N

f
B(v)dv 5 1, (8)

and the factors 1/2p and 1/2 in Eq. (7) then derive from hori-
zontal isotropy and vertical symmetry. The vertical wavenum-
ber spectrum A(m) is thus defined as two-sided (its integral
taken only over positive wavenumbers is unity).

For the frequency spreading function B(v) we consider the
original GM form

B(v) 5 nB
|f |

v(v2 2 f 2)1/2 for f # v # N(z): (9)

The Coriolis frequency is here implemented for clarity as
modulus; the signs of absolute value, however, will generally
be omitted in the following. The normalization nB is 2/p for
N/f .. 1, its general form is given in appendix A. The wave-
number distribution of the GM spectral model is given by the
generalized form

Ã(l, s) 5 nA(s)
1

1 1 ls
for l‘ # l # lc, (10)

where l 5 |m|/m?, specifying now s as slope1 at high wave-
numbers. For s 5 2 the wavenumber shape is that of the stan-
dard model GM76 (Cairns and Williams 1976). Some physical
quantities, such as vertical shear or vertical energy flux, need
a low (at l 5 l‘ ,, 1) or a high (at l 5 lc .. 1) wavenumber
cutoff such that Ã(l)5 0 for 0# l# l‘ 5m‘/m? and
l $ lc 5mc/m?. In this case the normalization is nA(s5 2)5
(arctanlc 2 arctanl‘)21. The normalization nA(s) for a general
slope is given appendix A.

1 Note that we use positive values for slope. The actual slope of
the spectrum is2s.
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For the standard GM76 model the parameter values are
EGM 5 3 1023 m2 s22, m? 5 0:01m21, and s 5 2, to be used
for simple order of magnitude calculations. Depending on
when, where, and how the ocean’s internal wave field is ob-
served, departures from the standard GM76 parameters are
to be expected (e.g., Polzin and Lvov 2011; Le Boyer and
Alford 2021). Pollmann (2020) fitted the GM spectral model
with parameters E, m?, and s to 12 years’ worth of Argo data.
Contrary to single research cruises or dedicated observation
programs, the Argo database offers a nearly global coverage,
is not biased toward certain areas or seasons, and, with more
than 20 years of operation, provides a sufficiently long obser-
vation period to characterize the background internal wave
climate of the ocean that the GM model is meant to represent
(rather than a snapshot).

Argo floats collect temperature, salinity, and pressure infor-
mation at a vertical resolution of a few meters. Following the
first steps of the fine-structure method (Gregg 1989; Kunze
et al. 2006; Whalen et al. 2012; Polzin et al. 2014), vertical
wavenumber spectra of strain can be obtained. The polariza-
tion relations link spectra of strain and energy

E(v, m) 5 v2

m2

N2 2 f 2

v2 2 f 2
Sjz (v, m), (11)

where Sjz (v, m) denotes the strain spectrum. By integrating
this relation over all frequencies and assuming that the fre-
quency-dependent part of E(v, m) follows exactly the GM
model’s form Eq. (9), the Argo-derived strain spectra Sjz (m)
can be used to estimate the parameters m* and s of the GM
vertical wavenumber energy spectrum A(m) (Pollmann et al.
2017; Pollmann 2020). The details of the method as well as
the fitting procedure are described in Pollmann (2020).

It is important to remember that owing to the relatively
coarse resolution of the fine-structure observations, the resul-
tant energy levels, dissipation rates, or spectral parameter fits
have a higher uncertainty than, e.g., those estimated from
microstructure observations. Such high-resolution observa-
tions are, however, not available in such numbers that allow a
nearly global mapping of internal wave characteristics, which
makes the fine-structure method applied to the Argo database
(with the above caveat in mind) an invaluable tool to outline
the geographic variability of the GM model parameters and
as such a central benchmark for IDEMIX modeling.

In the upper ocean, the internal wave energy levels vary by
about two orders of magnitude from pole to equator, with the
GM76 reference value of EGM 5 3 3 1023 m2 s22 mainly
found at latitudes equatorward of 608 or 408 in the northern
and southern hemispheres, respectively (Fig. 1a). There is a
similar variability in wavenumber scalem∗ (Fig. 1b). The spec-
tral slope variation, on the other hand, is rather weak and
ranges only from 1.6 to 2.4 (Fig. 1c). GM76 reference values
of m? 5 0:01m21 and s 5 2 are found mainly in the Southern
Ocean and in the vicinity of maxima in the northwest Pacific,
the North Atlantic, and the tropical Indian Ocean. Figure 2
shows the relation between two of the three parameters while
keeping the third fixed. The curve describing their interde-
pendence is either a power law [log(m?) versus log(E)], a

curved line [log(m?) versus s], or a point cloud [log(E) versus s].
The first of these relations, the decrease of the roll-off m? with
increasing energy, was reported by Polzin and Lvov (2011), using
a collection of kinetic energy spectra at various locations. An un-
derstanding of such correlation between m? and E, however, re-
mained absent. The relevance of the parameter correlations will
become clear in the following sections.

4. A model of spectral energy and shape

To extend the energy equations developed in the IDEMIX
models (Olbers and Eden 2013; Eden and Olbers 2014), we
develop a concept for computing the spectral bandwidth for
internal gravity waves from a prognostic equation, derived
from a general definition of bandwidth as a functional of the
local spectrum, and the wave radiation balance. The analytical
derivations are along the IDEMIX framework, but here we
exploit a general parametric approach. The approach is uti-
lized to derive a fully coupled model for energy and band-
width of the GM class of spectra. To simplify the problem we
restrict the analysis to single column physics without mean
flow.

Let E(v, m, f, z, t) be the actual spectrum and assume that
we have at any position and time a good approximation by
a parametric form Ê (v, m, f; a1, a2, …, an), characterized by
free parameters a1, a2, … , an, which are functions of (z, t).
The spectrum Ê is here the GM class of spectral forms, de-
scribed in the preceding section, and, e.g., a1 would be the
energy of upward propagating waves in the wave field and
a2 that of the downward propagating waves, other para-
meters may be bandwidth, slope, etc. Clearly, the functional
Ê (v, m, f; a1, a2, …, an) can only represent a subclass of possi-
ble spectra and the projection on this subclass can only be mean-
ingful if the evolution of the true spectrum E(v, m, f, z, t)
stays close to this subclass during its evolution. We now follow
Hasselmann et al. (1973, 1976) to construct equations of mo-
tion for the spectral parameters by a well-defined projection
of the radiation balance.

a. Hasselmann’s parametric approach

To approximate E(v, m, f, z, t) by a member of Ê(v, m, f;
a1, a2, …, an) an algorithm Fi must be introduced for each
parameter ai that defines a best-fit ai 5Fi(E). A variation dE
(e.g., in time) of E leads to a variation of the parameter ai,

dai 5 F′
i (dE) 5 Fi(E 1 dE) 2 Fi(E), (12)

where the functional derivative F′
i is by construction a

linear operator. Consider an example: a1(z, t)5F1(E)5�0
2‘

dm
�
dv

�
dfE(v, m, f, z, t) is an estimator of the energy

of the upward propagating waves. Here, F1 is linear (integration
over frequency and wavenumber) and hence F′

1 is the same
operator as F1. For other parameters this may not hold.

Considering a specific variation of a spectrum from the
parametric subclass, dE 5 (­Ê /­aj)daj (sum convention is as-
sumed), we find aiF

′
i (­Ê /­aj)aj so that the relation

F′
i (­Ê /­aj) 5 dij (13)
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must hold. The term dij is the Kronecker tensor. The operator F
′
i

is then used to project the radiation balance on the parameter ai.
For instance, we insert below the parametric spectral form2 into
the single-column version Eq. (3) of the IW energetics,

­Ê
­aj

­taj 1­zżÊ 1­mṁÊ 5 Ŝ , (14)

and apply the projection operatorF′
i with the orthogonality prop-

erty Eq. (13), to obtain the rate of change of the parameter ai,

­tai 1 F′
i­z(żÊ) 1 F′

i (­mṁÊ) 5 F′
i (Ŝ): (15)

Note that F′
i operates on the (v, m, f) dependence only, not

on the parametric variables of the spectrum and not on the
space and time coordinates. For our example a1, the projec-
tion of ­mṁÊ in Eq. (14) yields zero3 and we end up with the
IDEMIX equations for the single column models, as devel-
oped in Olbers and Eden (2013). In the following section, we

FIG. 1. Spectral parameters (a) energy level E, (b) wavenumber scale m*, and (c) slope s as
estimated by Pollmann (2020) from Argo float profiles and averaged between 300- and 500-m
depth. The processed data are available from Pollmann (2022).

2 All hatted variables are parametric.

3 For spectral models with cutoffs in wavenumber space this
does not hold.
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generalize this model to include spectral parameters other
than energy, and use the parametric approach.

b. The parametric approach applied to the GM class

Our parametric model is an extended form of the GM spec-
trum presented in section 3. We use

Ê(v, 7|m|, f, z, t) 5 Â
6(m, f)B(v)

5 e6
Ã(|m|/m6

? , s
6)

m6
?

B(v) S(f), (16)

with l 5 |m|/m?. In Eq. (16), B(v) is the usual normalized fre-
quency shape function Eq. (9) of the GM class and Â

6(m; f)
is the wavenumber spectrum with the function Ã given by
Eq. (10). The difference to the conventional GM model is
that the parameters e6, m6

? , and s6 take different values for
the wavenumber branchesm, 0 (upward propagating waves)
and m . 0 (downward propagating waves). In the parametric
model there are two scale parameters e6 and there are four
shape parameters m6

? and s6. Note that Ã(|m|/m6
? , s

6)/m6
?

describes the spectrum on both sides with the same shape
function but different bandwidths and slopes. It is normalized
by integrating over the wavenumber half-space.

Although the actual spectrum will certainly go beyond the
limits l‘ and lc in Eq. (10) we regard these ranges as not occu-
pied by internal waves (in the same sense that fluctuations
with frequencies outside [f, N(z)] are not internal waves).
In general, we assume l‘ ,, 1,, lc. We must distinguish
in the expression of Eq. (16) between “parameters” and
“coefficients,” which both shape the appearance of the spec-
trum. The first specie, the aj, j 5 1, … , n, form the fundament
of the parametric model; they have a (z, t) dependence. The
second specie, basically the Coriolis frequency f, the Brunt–
Väisälä frequency N, and the cut-offs l‘ and lc, are coeffi-
cients with fixed values. We refer to the so described spectral
function as GM class.

In the present study we simplify and assume that the slopes
s6 are constant, in most applications they are even identical in
the up–down compartments (but not fixed to 2 as in GM76).
Predictive slope equations will be considered in a future
study. The aim of our project is to develop parametric model

equations for e and m?, in the present study for zero mean flow.
In that case we can choose S(f) 5 1/2p isotropic and the
parametric spectrum Eq. (16) may be integrated over f and
similarly the radiation balance Eq. (3). In the following anal-
ysis we thus consider the balance of the actual wavenumber
spectrum

G(m) 5
�
df

�
dvE(v, m, f) 5

�
dfA(m, f), (17)

which is given by

­tG 2­z‘G/m 2­mn
dN
dz

G 5

�
df

�
dvS 5 Q: (18)

Here ‘ and n are the frequency-averaged coefficients with re-
spect to weighting by B(v), they are given in appendix A. The
source term Q derives from S by the indicated integration. In-
tegrating the parametric spectrum over f and v yields the
parametric form of the wavenumber distribution,

Ĝ(m) 5
�
dfÂ

6(m, f) 5 e6
Ã(|m|/m6

? , s
6)

m6
?

: (19)

1) PROJECTING ON ENERGY

We estimate the compartmental energies by

e6 5

�6

dm G(m) 5 F6
e (G) (20)

with projector

F′
e
6(g) 5

�6

dm g (21)

with
�2

dm5
�mc

m‘

dm as integral for downward waves (which
have positive wavenumbers) whereas

�1
dm5

�2m‘

2mc
dm is for

upward waves (which have negative wavenumbers). We in-
sert the model Ĝ for the actual spectrum A into Eq. (18) and
project,

­te 2 ­z
‘e

m?

F′
e(Ã/m) 2 dN

dz
ne
m?

F′
e(­mÃ) 5 F′

e(Q̂) 5 Q: (22)

FIG. 2. Scatterplot for data for the depth range 300–500 m: (a) s sliced in bins 2.3–2.5, 2.7–2.9, and 3.1–3.3; (b) E sliced with log10(E) in
bins from 23.0 to 22.8, from 22.9 to 22.7, and from 22.8 to 22.6; (c) m sliced with log10(m) in bins from 22.6 to 22.5, from 22.0 to
21.9, and from 21.6 to 21.5. Data with red colored dots are displaced by a factor 10, those in yellow by a factor 100 on the respective
vertical axis.
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Here Q is the projection of the model source Q̂. The respec-
tive parameters e and m? carry their 6 (up–down compart-
ments) indices, which are here and in most of the following
relations omitted. We detail all projections in Eq. (22) in
appendix B.

2) PROJECTING ON BANDWIDTH

Though an estimator of the wavenumber scale m? can be
set up, we prefer a slight detour, mainly because an equation
directly predicting m? also needs physically motivated bound-
ary conditions, which are not at all intuitive. We thus consider
the parameter

a6 5

�6

dm G2(m) 5 F6
a (G), (23)

which turns out to be a6 5 (e6)2/[h(s)m6
? ] for the GM class.

Here h(s) is a function of slope, given in appendix A. We will
refer to the parameter a as “squared energy.” Once energy
and squared energy are predicted the wavenumber scale can
be simply diagnosed.

The projection operator associated with this parameter is

F′
a
6(g) 5 2

�6

dm Ĝg 5 2
e

m?

�6

dm Ãg: (24)

Projection yields, taking the integrated form Eq. (18) of the
balance,

­ta 2 F′
a ­z

‘e

m?

Ã/m

( )
2

dN
dz

ne
m?

F′
a(­mÃ) 5 F′

a(Q̂) 5 Y,

(25)

and again we detail the evaluation of the projection terms to
appendix B.

As a side note we mention that the parameter m? is often
referred to as spectral bandwidth of GM. However, such a
conflation becomes questionable when variations of the slope
are considered: spectra with same m? but different s have a
greatly differing apparent width. A convenient definition of
bandwidth, taking care of such dependencies, is the band-
width functional

mb 5

�
dm G

( )2
�
dm G2

: (26)

It has the property that bandwidth multiplied by a spectrally
averaged energy spectrum yields the total energy, i.e., mb

times the integral of the energy spectrum, weighted by G/
�
G,

equals
�
G. Such an estimator is of advantage where quadratic

and higher moments of the spectrum do not exist. It turns out
that mb 5 e2/a5 hm?. Differences are subtle, and we con-
tinue to callm? bandwidth.

3) PROJECTION OF SOURCES AND SINKS

The source terms Q and Y on the right-hand sides of Eqs. (22)
and (25) must still be derived in parametric form. In the present

study we ignore interior (in the ocean water column) sources
and sinks of energy other than those due to WWI and dissipa-
tion such that Q5Qww 1Qdiss. A parametric model of these
terms is required in order to perform the projections. We base
a model on the findings in Eden et al. (2019) for the parameter
dependence of the WWI source term,

Q̂ww(|m|, f) 5 1
2p

fE2M2
?

N2(s 2 1)3 cw(|m|) 5 1
2p

E
tE

cw(|m|): (27)

Here cw(|m|) is the shape function of the transfer in m space.
The time scale

tE(E, s, N) 5 N2(s 2 1)3
fEm2

?

(28)

of nonlinear WWI enters this expression (for the standard
GM values it is about 15 days). We use total (up plus down)
energy E 5 e1 1 e2 and energy asymmetry D 5 e1 2 e2, as
before in IDEMIX publications.4

For an asymmetric spectrum, as assumed in the parametric
model, the scaling of the WWI source term requires an asym-
metric form of Eq. (27) which is unknown. A plausible extrap-
olation is

Q̂ww(m, f) 5 1
2p

[Ec s
w(m) 1 Dca

w(m)]/tE
c s
w(m) 5 1

2
[cw(m) 1 cw(2m)] and

ca
w(m) 5 1

2
[cw(m) 2 cw(2m)]: (29)

We assume the corresponding form for Q̂diss but with a differ-
ent shape function cd(m). Straightforward application of the
parametric projection then leads to

Q 52
1
2
(m0E 1 sm1D)

1
tE

and Y 52
e

m?

(m2E 1 sm3D)
1
tE

(30)

with coefficients m0, m1, m2 and m3 given below.
The coefficient m0 derives from the spectrum of dissipation

and the associated source term Qdiss(m, f) is parameterized
as the WWI term. For the latter, however, a symmetric form
is here sufficient with shape function cd(m) which is only non-
zero in the dissipation range |m|. md. Then

m0 522
�‘

md

cddm: (31)

The other coefficients are found as integrals of cw,

m1 522
�‘

0
cq
wdm, m2 522

�‘

0
Ãc s

wdm,

m3 522
�‘

0
Ãc a

wdm: (32)

4 Note that we have changed the notation for the energy asym-
metry D from that in previous IDEMIX papers.
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Except for the gross structure of cw(m), as found in Olbers
(1976) and Eden et al. (2019), we know only little about the
shape functions: they should reflect a transfer from low to
high wavenumbers and, with the notion that spectral asymme-
tries should be small, the symmetric part c s

w is much larger
than the asymmetric part ca

w. Obviously m0 . 0 since dissipa-
tion extracts energy at high wavenumbers (cd is negative).
Furthermore, we assume m1 . 0 such that asymmetric energy
D is damped by WWI. Also m2 is positive because of the
weighting of c s

w by decaying Ã in the integral. Note that
Eq. (30) leads to a net dissipation2m0E/tE of total energy E
and damping2m1D/tE of energy asymmetry D by with the re-
spective time scales tE/m0 and tE/m1, and correspondingly for
the variables of squared energy.

c. The equations of the coupled model

The balance equations for energy and squared energy,
Eqs. (22) and (25) now read

­te 1 s­z
‘g1nAe
m?

( )
1 Te 52

1
2
(m0E 1 sm1D)

1
tE

, (33)

­t
e2

hm?

1 snAe­z
‘g2nAe
m2

?

( )
1 Ta 52

e

m?

(m2E 1 sm3D)
1
tE

:

(34)

Turning point transfers have been introduced:

Te 52s
dN
dz

nnAe
m?

and Ta 52s
dN
dz

nn2Ae
2

m2
?

: (35)

These terms arise by straightforward projection, as explained
in appendix B. They are attributed to turning point effects be-
cause they represent an exchange of energy between up and
down waves due to a varying Brunt–Väisälä frequency. The
exchange in the form Eq. (35) is, however, not energy con-
serving, which turning point physics should obey. To this ex-
tent the projection has to be formulated in an upstream form,
see appendix B. We use the energy conserving form later in
section 6. A number of coefficients have entered the paramet-
ric model, all of which are well defined as integrals of the
shape functions of the GM class. All coefficients are found in
Eqs. (31) and (32) and appendix A.

It is a simple matter to eliminate ­te between Eqs. (33) and
(34) and derive a predictive balance for the bandwidth m?. It
is given in appendix C for later reference. We will not use the
bandwidth balance in a predictive way but rather determine
m? as a diagnostic from the solution of Eqs. (33) and (34).

To complete the parametric equations Eqs. (33) and (34)
boundary conditions (BC) must be specified. For any of the
up or down version of energies [e6 or (e6)2/m6

? ] there are
conditions to be satisfied at either top z 5 0 or bottom z 5 2h,
which follow from the BC Eq. (6) of the radiation balance.
Boundary conditions for energy follow the same rationale as in
the previous IDEMIX treatments as in Olbers and Eden (2013)
but we repeat it here.

1) BOUNDARY CONDITIONS FOR ENERGY

The flux of e1 is J1 5 ‘g1nAe
1/m1

? and correspondingly for
e2 where we have J2 5 2‘g1nAe

2/m2
? . Hence, J1 . 0 and

J2 , 0. At the surface J1 is unrestricted and would transport
energy e1 out of the water column but we require conserva-
tion of total energy e1 1 e2. As consequence, the flux into
the water by J2 must be

J2 52J1 1Fsurf at z 5 0: (36)

The convention is here that Fsurf , 0 for the net surface
flux. We thus diagnose J1 5 ‘g1nAe

1/m1
? at the surface and

set the downward (inward) J2 accordingly. At the bottom
the situation is similar: Here we diagnose the incident
J2 5 ‘g1nAe

2/m2
? at the bottom and put

J1 52J2 1 Fbot at z 52h (37)

with the convention Fbot . 0 for the net bottom flux. In both
cases the BCs may be formulated as conditions of the flux
J1 1 J2 5 Fsurf or Fbot of total energy at the corresponding
boundaries.

2) BOUNDARY CONDITIONS FOR SQUARED ENERGY

What do we learn from this exercise for the BCs to be
posed for the squared energy parameter e2/m?? The appropri-
ate expression for the flux is identified from Eq. (34). The flux
of (e1)2/(hm1

? ) is L1 5 ‘nAg2(nAe1)2/(m1
? )2 and similarly,

the flux of (e2)2/(hm2
? ) is L2 52‘g2(nAe2)2/(m2

? )2. And
again L1 . 0, L2 , 0. But the L6 are not independent of the
J6, in fact we have

L6 56z(J6)2 with z 5 g2/(‘g21): (38)

5. The bandwidth–energy relation

We now look for analytical solutions of the parametric
model for steady-state conditions. The following approach
leads to a relation between bandwidth and energy, which is
then used to find solutions for the energy balance.

a. An exact integral

The source terms (WWI and dissipation) in Eqs. (33) and
(34) have a similar structure and with the simple and reason-
able assumption m2 5 mnAm0, m3 5 mnAm1 they may be put
into identical form and thus can be eliminated between the
two equations. The factor m should be of order 1 and may de-
pend on s (the common factor nA simplifies the following
equations). The analysis of the Argo data in the next section
justifies this setting. Hence, assuming steady state and taking
the difference the complicated WWI and dissipation terms
cancel and we find

s‘n2Ag2­zln
‘nAe
m2

?

( )
2 2s‘n2Ag1m­zln

‘nAe
m?

( )
1

m2
?

e2
Ta

2 2mnA
m?

e
Te 5 0: (39)
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The turning point terms combine to 2sn2A(12 2m)n(dN/dz)
and the equation reduces to

­zln
‘nAe
m2

?

( )g2
‘nAe
m?

( )22mg1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 5 (1 2 2m) n

‘

dN
dz

: (40)

Surprisingly, the turning point term can be included in the
logarithmic flux because

n

‘
5

1
2
1
C

­

­N
C with C 5

�N

f

�����������
v2 2 f 2

√
v2 (N2 2 v2)dv:

(41)

The C function is a logarithmic function of N/f and given in
appendix A. Finally, we arrive at

­zln
‘nAe
m2

?

( )g2
‘nAe
m?

( )22g1m

C(2m21)/2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 5 0, (42)

which is readily integrated,

(‘nAe)g222mg1 (m?)22g212mg1C(2m21)/2 5 const, (43)

with a z-independent but dimensioned constant. The roll-off
parameterm? is related to the energy e by a power law,

m? 5 G(‘nAe)kCl 5 G(‘kCl)(nAe)k, (44)

with the exponents

k 5
1
2
g2 2 2mg1
g2 2 mg1

and l 5
1
4

2m 2 1
g2 2 mg1

: (45)

The constant G in Eq. (44) is depth independent but may be
dependent on slope. The exponents k and l can have either
sign, depending on the values of s and m, as shown in Fig. 3.
The contribution of the C term comes from turning point
transfers. Note that m?, e, ‘, and C are z dependent. In the
second relation in Eq. (44) we have separated the dependence
of m? on e from the z dependence in the Brunt–Väisälä fre-
quency terms ‘ and C.

Equation (44) is only part of the solution: it must be in-
serted into the energy balance to find the energy e in terms of
forcing and dissipation. To this extent we must get a handle
on the constant G in Eq. (44), which is not a free coefficient
but rather given by BCs. With knowledge of the values of
L6 5 L6

0,2h at the boundaries we use Eq. (44) to find

G2 5
1
|L|

‘g2n
2
Ae

2

(‘nAe)2kC2l
5

g2
‘|L| (‘nAe)

2(12k)C22l at z 5 0, 2h,

(46)

where all quantities have to be taken with their respective
index 6 at the respective boundaries where the respective
BCs apply. The full problem of energy and bandwidth is solved
in section 6.

b. Relations of bandwidth, energy, and slope from
Argo data

The power law Eq. (44) enables us to interpret the spectral
parameters obtained from the Argo data in terms of the para-
metric model, in particular the data correlations shown in
section 3. Our first attempt to use the full power law, i.e., the
energy data e together with the Brunt–Väisälä frequency de-
pendent quantities ‘ and C, failed completely to reproduce
the E-sliced correlation in Fig. 2 (center panel). The depen-
dence of ‘ and C on the Brunt–Väisälä frequency, entering
our model, reflects in the Argo-based data only the horizontal
variations of N, which are substantial on the global scale of
the analysis. Our parametric model and the resulting power
law, on the other hand, are based on vertical propagation and
vertical variations of N, which are not resolved in the Argo
data that we used.

To this extent we abandon the explicit dependence on ‘

and C and write Eq. (44) in logarithmic form

logm? 5 k(s)log[nA(s)e] 1 g(s), (47)

establishing a linear relation between the data m? and nAe
and the power-law exponent k and an offset g. These latter
data are functions of the slope s. The question then is whether
the model Eq. (47) reproduces the data correlations in section 3

FIG. 3. (a) The exponent k as given in Eq. (44) as function of s and m. Red contours are for negative values and black
for positive. The contour step for full lines is 0.1 and for dashed lines 2. (b) As in (a), but for the exponent l.
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with a reasonable choice of the coefficient m introduced in the
previous section.

The data in Eq. (47) are meant for up and down waves but
the fit performed by Pollmann (2020) to Argo-derived strain
spectra does not distinguish between these wave branches. It
resulted in estimates for the total energy of the GM spectrum
and a mean wavenumber scale and a mean slope. We are
bound to use these estimates as data in Eq. (47) and will thus
not differentiate between up and down variables. Further-
more, the relation Eq. (47) should be valid in the whole water
column but with the exception of a few recently introduced in-
struments not considered in the fits of Pollmann (2020) the
Argo floats only cover the upper 2000 m of the ocean.

Our fitting procedure is then as follows: the coefficients k

and g result from a least squares fit of the linear relation
Eq. (47) to the Argo data of m? and nAe, using data from all
oceans but specific depth ranges (300–500 m, 500–1000 m, and

1000–2000 m). We concentrate on the fit for the 300–500-m
depth range (results from the other depth ranges are similar
but contain more noise; they are not shown here). For this to
work the data m? and nAe are sliced (binned) into narrow
ranges of slope s (we use bins of Ds 5 0.2 for the slope range
1.6–4.2). The s-binned data are displayed in terms of scatter-
plots of logm? versus log nAe in Fig. 4 (left panels; together
with the fit to be discussed below). The plots reflect the correla-
tion envisioned in Fig. 2, showing a decrease of logm? with in-
creasing modified energy log nAe. Figure 5 shows the E-binned
correlations in a similar slicing. In both cases the general pattern
is masked by a substantial amount of noise.

There is an enormous change of the data number in the
s bins: for low s values the number exceeds 10 000 points (for
s 5 1.9) while higher values are represented by much less
data (of order 100 for s 5 2.9). The scatter clouds for the low
s values may thus hide correlation pattern that are not modeled

FIG. 4. (left) Scatterplots of the data logm? vs log nA« for the s-binned slicing. The bin values (lower limit of bin) are in the title of each
panel. The red curves in each panel represent the fitted model Eq. (47). (center) Same data plotted as histograms. Grid intervals are
equally spaced for the logarithmic values, the number of grid intervals is given in the title. (right) Smoothed version of the histogram data
as contour plots. Data are from the depth range 300–500 m. The center and right plots contain the fitted linear regression (which is always
performed with the scattered data in the left panel).
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by the above linear regression. For this reason we show the
data in two other versions, a histogram for sufficiently resolved
grid, and a contour plot of smoothed histogram data. These
are displayed in the center and right panels of Fig. 4. Only
three cases of s bins are displayed, slopes are s 5 1.9, 2.5,
and 2.9. The histograms sometime reveal more than one
concentration center, but the pattern generally supports the
linear regression.

To establish the least squares form we add a noise term q

to the right-hand side of Eq. (47). We determine k and g by
the least squares assumption hq2i 5 min. The least squares fit
is made for each bin separately and estimates of k(s) and g(s)
for the specific slice values of s are obtained. The result is
shown in Fig. 6: we find negative k for all slope values, almost
constant and approximately 20.2. The associated parameter
m is very close to 1 (see bottom panel) in agreement with our
assumptions. The fitted model is included with the red lines
in the scatterplots Fig. 4 (left panels) for each separate s bin.
In a corresponding way we plot the model in the E-binned
scatterplots Fig. 5 (right panels), and the complicated correla-
tion is reproduced successfully.

The large amount of noise in the Argo fits ofm? and e dete-
riorates the fit of the model coefficients but does not prevent
to extract the power-law properties. We have calculated the
coefficient of determination R2 (see, e.g., von Storch and
Zwiers 1999) for the fit; see top panel of Fig. 6. It measures
the extent to which the linear law on the right-hand side of
the regression equation Eq. (47) (with the noise term added)
determines the left-hand side. We found fairly low values of
0.1–0.3. This is the amount of variance explained by the fitted
model (70%–90% is attributed to noise and only 10%–30%

to the linear model). The low values are, however, not an indi-
cation of model failure because the error pattern shows that
there is no systematic deviation from the model. The top
panel of Fig. 6 also displays the 95% confidence interval of
the k estimate, computed as described in von Storch and
Zwiers (1999). In correspondence to the large scatter in the
data the interval is quite large.

6. Numerical solutions of the energy–bandwidth
equations

The problem of the scale and shape parameters of the inter-
nal wave spectrum is reduced to the functional Eq. (44), giv-
ing “bandwidth” in terms of energy by a power-law relation,
to be implemented in the balance of energy Eq. (33). Replac-
ingm? by the steady-state power law of energy implies the no-
tion that bandwidth adjusts faster than energy. But note that
in practice solutions of Eq. (33) are required for coupling with
an ocean model only in a floating quasi-steady state. The aim
is to solve the set of equations Eqs. (33) and (44), extending
the IDEMIX model of Olbers and Eden (2013) to nonconst-
ant bandwidth. The equations are coupled and nonlinear in a
complicated way: remember that G6 depends on the bound-
ary values of energies e6; also the time scale tE depends on
energy. There are two BCs at either of z 5 2h, 0 where en-
ergy fluxes are prescribed, as described above.

To achieve a numerical solution we follow the route de-
scribed in the IDEMIX papers as, e.g., Olbers and Eden
(2013). The energy balances for e6 are reformulated to yield
the balances for total energy E 5 e1 1 e2 and energy asym-
metry D 5 e1 2 e2. The latter is assumed steady, accounting

FIG. 5. Scatterplots of the data logm? vs s for the E-binned slicing. The E-bin intervals are in the title of each panel. The red curves in each
panel represent the fitted model Eq. (47). Data are from the depth range 300–500 m.
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for the heavy damping in the equation for D (see below). This
enables us to reduce the two advective equations to a diffu-
sion equation for E. We pursue this route, including turning
point physics which has not been done before.

We use the energy balance Eq. (B7) with upstream turning
point term for the turning point transfer, as described in
appendix B,

­te 1 s­z
‘ge

m?

1 Te 52
1
2
(m0E 1 sm1D)

1
tE

Te 52sa‘ H(N′) e
2

m2
?

2 H(2N′) e
1

m1
?

[ ]
(48)

with the abbreviations a‘ 5 nAn|N′| and g 5 g1nA. Taking
sum and difference leads to the balance of total energy E and
energy asymmetry D,

­tE 1­z‘g(aE 1 bD) 52m0
E
tE

,

­tD 1­z‘g(aD 1 bE) 1 T1
e 2 T2

e 52m1
D

tE
, (49)

with

a 5
1
2
m2

? 2m1
?

m1
? m2

?

and b 5
1
2
m2

? 1m1
?

m1
? m2

?

: (50)

The turning point term becomes

T1
e 2 T2

e 522a‘[sign(N′)(bE 1 aD) 2 (aE 1 bD)]: (51)

To proceed to the diffusive limit it is necessary to assume
aD ,, bE, which is reasonable because a and D are both dif-
ferences of positive quantities and b and E are the respective
sums. Hence, we continue with

­tD 1­z(‘gbE) 2 2a‘[sign(N′)bE 2 aE]

52
m1

tE
1 2a‘b

( )
D 52

D

t1
: (52)

Adjustment occurs with the time scale t1, which is small (of
order 10 h for typical ocean conditions) compared to the time
scale tE (a few days) of dissipation and nonlinear transfer.
For times large compared to t1 the time tendency term in
Eq. (52) can be neglected so that the balance of total energy
becomes an advection–diffusion equation for total energy,

­tE 1­z‘gaE 1­z{‘gb2t1a‘[sign(N′)b 2 a]E}
2­z(‘gbt1­z‘gbE) 52m0

E
tE

: (53)

For the case of zero turning point transfer (a‘ 5 0) and fixed
symmetric m? the equation is that of the IDEMIX model of
Olbers and Eden (2013). Here we show the behavior of
Eq. (53), comparing the reference IDEMIX case with the
solution for nonzero a‘ and with the varying bandwidth, given

FIG. 6. The fitted coefficients k and g for the model Eq. (47) as function of the s-bin values.
(top) Shown are k (blue dotted), the coefficient of determination R2 (red dashed), and
the 95% confidence interval of the k estimate (black dashed). (bottom) Shown are g/10
(red dotted) and the value of m (blue dotted) obtained from inverting the theoretical relation
for k given by Eq. (45).
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by the power-law solution Eq. (44), which enters via the coef-
ficients a and b. All solutions shown in the following have the
same standard parameters: m0 5 1, m1 5 5,k 5 20.1, l 5 0.1;
the forcing is Fsurf 5 21026 m3 s23, Fbot 5 1026 m3 s23

(switched on or off in the different experiments); the Brunt–
Väisälä frequency profile is exponential N(z) 5 N0e

z/b with
N0 5 5.25 3 1023 s21, b 5 1300 m, with an ocean depth of
3000 m, f is taken at 308 latitude. All solutions are for a slope
s 5 2 (dependence on the slope value is minor). The time
scale tE is evaluated from Eq. (28) with a constant energy E
and wavenumber scale m? (GM values, see section 3) for the
value entering t1 but with the actual E for the tE in the dissi-
pation term. This way the model follows Olbers and Eden
(2013) where the dissipation is quadratic in E but the damping
coefficient of energy asymmetry D is independent of E.

The reference case (shown in Fig. 7) is similar but not iden-
tical to the simulations of the IDEMIX model of Olbers and
Eden (2013). The parameters slightly differ and, in addition,
the wavenumber scalesm? in those simulations were explicitly
depth dependent [via N(z)] whereas here they are constant.
The system comes to a steady state after roughly 10–20 days
(due to damping by the tE time scale). The surface-forced
case shows energies that increase from the surface to mid-
depth and then strongly decrease with depth. With bottom
forcing present E increases with depth in the whole water col-
umn and a deep minimum develops close to the bottom, sig-
nificantly modifying the structure in the lower water column.
It can be shown that these features arise due to the strong de-
crease of the Brunt–Väisälä frequency with depth (a constant
N yields a parabolic decrease of E from the surface for surface
forcing and from the bottom for bottom forcing, and a sym-
metric parabola for both forcing terms with a minimum at
middepth; not shown). Note that the overall level of the ener-
gies is lower than the canonical GM value. This can be easily
adjusted by increasing the forcing amplitude (see Fig. 8).

If turning point transfers are switched on (Figs. 7g–l) the
simulations reveal an overall decrease of energies with depth
right from the surface to the bottom. The values in the upper
water column are increased. Bottom forcing modifies this
structure with a deep minimum as in the previous reference

case. The approach to the steady state is faster due to the
smaller time scale of the turning point physics (not shown).

If the bandwidth becomes predictive (see Fig. 8) by switch-
ing on the power-law formulation, the overall decrease of en-
ergies with depth is seen in all three simulations. The deep
maximum is largely overwritten. The wavenumber scales
(right panels) now change with depth: they are, however, al-
most constant in the vertical but differ significantly in their
overall values in the three cases. For all forcing cases the scale
m2

? for downward waves exceeds the one m1
? for upward

waves. This feature is explained by theN(z) profile decreasing
with depth and its impact on the power-law amplitudes (for a
“both forcing” case in a constant N profile up and down scales
are identical, not shown). Also well documented is the increase
of energy E with increasing forcing amplitude and the associated
decrease of the wavenumber scales which, of course, is due to
the power-law relation between bandwidth and energy.

7. Summary and conclusions

We have described a new member of the IDEMIX (Inter-
nal Wave Dissipation, Energy and Mixing) hierarchy of inter-
nal wave models which extends the energy prediction of the
previous models to one of the most important spectral shape
parameters: the bandwidth of the number of excited equiva-
lent vertical modes. A closed set of equations predicting wave
energy and bandwidth is derived by parametric projection of
the complete energy balance equation (and boundary condi-
tions) in phase space. This balance includes wave propagation
and refraction in a prescribed stratification, nonlinear interac-
tions, dissipation, and forcing by wind and tides. The coupled
energy–bandwidth equations show the impact of all these pro-
cesses, though, admittedly, in a simplified parametric way.
Further, the present model is restricted to horizontally homo-
geneous conditions, but, as in all IDEMIX models, the model
is viewed as a frame to host alternative or more complicated
physical parameterizations of internal wave processes.

The model is formulated along the previous IDEMIX con-
cept (see Olbers and Eden 2013), using energy compartments
for up- and downward propagating waves, now equipped with

FIG. 7. (a)–(f) Reference case and (g)–(l) with turning point transfer active. Parameters are as described in the text. Surface, bottom,
and both forcing functions are shown in the left, center, and right panels for each case group. (top) The total energy E (solid red) and the
up–down energies «1 (dotted) and «2 (dashed) at the end of the integration. (bottom) Energy asymmetry D. All energies are multiplied
by the factor 103. The wavenumber scalesm1

? are held constant and equal in these cases.
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the associated up and down bandwidth parameters. It thus con-
sists of four coupled partial differential equations with boundary
conditions at the ocean’s top and bottom where there is energy
inflow by wind and tidal forcing. In the present setup of the
model these equations are formulated for energy compartments
(up and down) and for a “squared” energy variable (also up and
down), depending on bandwidth. Though an equation predicting
bandwidth directly from the interplay of the above-mentioned
processes can be readily derived, the setup in terms of “energy”
compartments is preferred because boundary conditions are eas-
ily formulated from physical grounds for advective conservation
equations in a more transparent way than for bandwidth.

The parametric projection uses a spectral model class of the
energy distribution in wavenumber–frequency space as back-
bone, in our case the GM (Garrett–Munk) model class. Back-
bone means that the actual spectral state of the ocean wave
field should be within reach of the model spectral class, i.e., it
should be well approximated by specifying a set of model

parameters (in our case total energy and bandwidth). All pro-
jections result from suitably formulated integrations of the en-
ergy balance for this class. A number of model coefficients
arises in these integrations, all of which represent well-defined
integrals of the spectral model class: there are no tuning pa-
rameters, except that some of the coefficients are not precisely
known because they arise from spectral properties that are
largely unknown, as, e.g., spectral asymmetry.

A central question put to the model is what specific pro-
cesses lead to specific values for the bandwidth. For the same
question with respect to energy the answer is as expected:
there is forcing of preferentially low modes by wind and/or
baroclinic tides with a subsequent transfer by wave–wave in-
teractions to high wavenumbers, where wave breaking and
energy dissipation can be become effective. Because wave–
wave interactions conserve energy in an integral way there is
no immediate sign of this process in the balance of total en-
ergy in the IDEMIX models. The only impact of the process is

FIG. 8. As in Fig. 7, but with turning point transfer and power law active. The panels show E, D, and the wavenumbers scales m6
? for

five simulations with different forcing: the forcing at the bottom and the surface is multiplied by factors [0.1, 0.3, 1, 3, 10] (from blue to
green, the standard case 1 has the color red). The bottom row showsm1

? (dashed) andm2
? (solid); the values are multiplied by 102.
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seen in the integrated vertical energy flux in physical space (the
water column), which is partly set by damping of vertical asym-
metries by nonlinear transfer in wavenumber space. Energy con-
servation of the nonlinear processes among waves is thus an
important aspect of the IDEMIX models and it is quite easily
implemented, avoiding any complicated parameterization.

But what sets the bandwidth? The answer is unspecific in a
similar way: the bandwidth establishes its magnitude by the
interplay of vertical propagation of the waves, structuring the
vertical energy flux, and nonlinear transfer and dissipation,
handling the spectral extent at high vertical wavenumbers. By
simple reasoning with help of the balance equation of band-
width (given in appendix C) we could indeed show that the
wavenumber scale (bandwidth) of the GM class is largely
given by three factors: a vertical stratification variable ‘

(depending on the Coriolis frequency and Brunt–Väisälä
frequency), a vertical scale b of the bandwidth flux, and the
time scale tE of energy dissipation, resulting in

m? ≃
‘tE
b

: (54)

The relation may be rephrased as a matching of time scales: the
time bm?/‘ of propagating energy perturbations by the vertical
group velocity is thus of order of the dissipation time scale tE.

A more refined analysis reveals dependence on energy E,
spectral slope s (in wavenumber space), and Brunt–Väisälä
frequency N, and our further analytical treatment shows that
m? is given by a power-law relation in terms E and specific
functions of s and N. This power-law relation is the most im-
portant result of our study. It is well confirmed by the parameter
correlations among E, s, and m?, found in the Argo float data
analysis of Pollmann (2020), and it can be used to extend previ-
ous IDEMIX models, in which m? was taken constant, to a fully
predictive mode in which energy and bandwidth are coupled
and variable. These features of the study are well documented
and discussed. A better representation of internal wave energet-
ics and implied ocean mixing can thus be expected and is the
topic of future investigations with the new parametric model.
We intend to couple the energy–bandwidth model to a global
ocean circulation model as done with previous IDEMIXmodels.
We are also working to extend the model to include further
shape parameters of the GM class, namely, the wavenumber
slope, and to implement wave–mean flow interaction.
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APPENDIX A

Coefficients

The coefficients arising from frequency averaging can be
evaluated by analytical means. They are

‘ 5
fnB

N2 2 f 2

�N

f
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v2 2 f 2

√ (N2 2 v2)
v2 dv

5
fnB

x2 2 1
x2 1
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v2 dv

5
nB

x2 2 1
[x ln(x 1

���������
x2 2 1

√
) 2

���������
x2 2 1

√
], (A1)

where x 5 N/f. The normalization of the frequency distribu-
tion is

nB 5
2/p

1 2 2/parcsin(f /N) : (A2)

Note that f is here the modulus of the Coriolis frequency.
The C function in Eq. (41) is given by

C/f 2 5 ‘/(fnB)(x2 2 1): (A3)

The s-dependent coefficients in the parametric model are

nA(s) 5
�‘

l‘

1
1 1 ls

dl

( )21

, h(s) 5
�‘

l‘

n2A(s)
(1 1 ls)2dl

[ ]21

,

g1(s) 5
�‘

l‘

1
l(1 1 ls) dl, g2(s) 5 2

�‘

l‘

1

l(1 1 ls)2 dl:

(A4)

In all integrals we have extended the integration to infinite
wavenumbers as an appropriate approximation. The coeffi-
cients nA and h for zero cutoff, l‘ 5 0, are

nA(s) 5
s sinp/s

p
and h(s) 5 p

(s 2 1) sinp/s , (A5)

and we use these relations as sufficient approximations (correc-
tion to the above nA expression is 2l‘n

2
A 1 · · ·, which is small;

similar for h). The coefficients g1 and g2 have no finite value
for l‘ 5 0, however, they can be expressed in terms of elemen-
tary functions

g1(s) 5 [(1/s)ln(ls‘ 1 1) 2 lnl‘] "2lnl‘, (A6)

g2(s) 522 (1/s) 1
1 1 ls‘

2 ln(ls‘ 1 1)
[ ]

1 lnl‘

{ }
"22[1/s 1 lnl‘], (A7)

where the indicated limits are for l‘ ,, 1. Then g1 becomes
independent of s.
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APPENDIX B

Evaluation of the Projections

The projected terms in the parameter equation Eq. (22)
are

F′
e(Ã/m) 52s

�lc

l‘

Ã/l dl,

F′
e(­mÃ) 52sÃ(l)|lcl‘ : (B1)

Some of these expressions may be approximated: putting
lc 5 ‘ in the integral and assuming l‘ ; 0:1,, 1, lc .. 1.
Then

F′
e(Ã/m) ≃2snA(s)g1

F′
e(­mÃ) ≃ snA(s): (B2)

The energy balance becomes

­te 1 s­z
‘g1nAe
m?

2 snA
dN
dz

ne
m?

5 F′
e(Q̂): (B3)

The last term on the left-hand side describes turning point
transfers. The present form, derived by straightforward in-
tegration of ­mÃ, does not satisfy conservation of total en-
ergy e1 1 e2, which turning point physics should do. For
this to work the integration must be done upstream. Con-
sider for example a Brunt–Väisälä frequency profile such
that N′ 5 dN/dz . 0 in a certain depth range. Then part of
the downward waves, with energy e2, gets reflected and the
waves give their energy to upward waves with energy e1.
Total energy is conserved in this process. Hence

­te
2 1 … 52a‘e

2/m2
? ,

­te
1 1 … 5 a‘e

2/m2
? , (B4)

where a‘ 5 nnA|N′|. Similarly, if N′ , 0, the upward energy
is clipped and transfers that part to downward energy whereby

­te
1 1 … 52a‘e

1/m1
? ,

­te
2 1 … 5 a‘e

1/m1
? : (B5)

With use of the Heaviside function H the equations are
written as

­te
6 1 … 56a‘ H(N′) e

2

m2
?

2H(2N′) e
1

m1
?

[ ]
, (B6)

and the energy balance Eq. (B3) becomes
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For the balance Eq. (25) of squared energy we find the terms
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which lead to
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Also here the approximations are appropriate, hence

F′
a ­z
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F′
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e
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In Eq. (B10) we have neglected a term ;­zs arising from
interchanging 1/(1 1 ls) with the derivative ­z. The squared
energy balance then becomes

­ta 1 snAe­z
‘g2nAe
m2

?

2 sn2A
dN
dz

ne2

m2
?

5 F′
a(Q̂): (B11)

The integrals g1 and g2 can be reduced logarithmic expres-
sions which can be approximated to simple expressions (see
appendix A).

For the turning point term in Eq. (B11) the same argu-
ment applies as for the energy balance, hence with the up-
stream form,

­ta 1 snAe­z
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APPENDIX C

The Bandwidth Balance

An equation directly determining m? can be derived from
Eqs. (33) and (34) by elimination of ­te. This yields

­tm? 2 s
hm2

?

e
nA­z

‘g2nAe
m2

?

( )
1 2s

m?

e
­z

‘g1nAe
m?

( )
1 T 5 W,

(C1)

with

W 52
m?

e
[(m0 2 hm2)E 1 s(m1 2 hm3)D]

1
tE

,

T 52
hm2

?

e2
Ta 1 2

m?

e
Te 5 s

dN
dz

nnA(hnA 2 1), (C2)

taking in T for simplicity the nonconserving form of the
turning point transfers. All divergences and the T term can
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be converted to a logarithmic expression for the flux. One
finds

­t
m?

‘nA

( )
1s ­zln[(‘nAe)2g12hnAg2 (m2

?)2g11hnAg2C(hnA21)/2] 5 W

‘nA
:

(C3)

Contrary to the squared energy variable, the quantity m?/‘nA
thus satisfies a conservative balance, with a source term from
wave dissipation and asymmetry damping. m?/‘nA can be
viewed as an inverse mean group velocity. The source term
W, given by Eq. (C2), in the balance of bandwidth reveals
interesting properties: the contribution from energy dissipa-
tion (the m0E term) leads to a damping of bandwidth, the
time scale of this process is tE/m0. This feature is to be ex-
pected because dissipation shrinks the energy spectrum at
high wavenumbers and reduces the bandwidth. The contri-
bution from squared energy, on the other hand, the m2E
term is a source, increasing bandwidth with a time scale
tE/(hm2). With m2 ; m0 and h ≃ p, the net W term likely
represents a source that must be balanced by the flux
divergence.

A rough estimate of the magnitude of the bandwidth for
our model can be obtained from Eq. (C3): since the diver-
gence of the logarithmic flux is simply an (inverse) vertical
scale, say b, we arrive at (m?/‘nA) ≃ tE/(m0b). The time of
propagating energy perturbations in the vertical is thus of
order of the dissipation time scale.

REFERENCES

Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash,
2016: Near-inertial internal gravity waves in the ocean. Annu.
Rev. Mar. Sci., 8, 95–123, https://doi.org/10.1146/annurev-marine-
010814-015746.

Bell, T. H., Jr., 1975: Topographically generated internal waves in
the open ocean. J. Geophys. Res., 80, 320–327, https://doi.org/
10.1029/JC080i003p00320.

Cairns, J. L., and G. O. Williams, 1976: Internal wave observa-
tions from a midwater float, 2. J. Geophys. Res., 81, 1943–
1950, https://doi.org/10.1029/JC081i012p01943.

Eden, C., and D. Olbers, 2014: An energy compartment model
for propagation, non-linear interaction and dissipation of in-
ternal gravity waves. J. Phys. Oceanogr., 44, 2093–2106,
https://doi.org/10.1175/JPO-D-13-0224.1.

}}, F. Pollmann, and D. Olbers, 2019: Numerical evaluation of
energy transfers in internal gravity wave spectra of the ocean.
J. Phys. Oceanogr., 49, 737–749, https://doi.org/10.1175/JPO-
D-18-0075.1.

Eriksen, C. C., 1982: Observations of internal wave reflection off
sloping bottoms. J. Geophys. Res., 87, 525–538, https://doi.
org/10.1029/JC087iC01p00525.

Garrett, C., and W. Munk, 1972: Space-time scales of internal
waves. Geophys. Fluid Dyn., 3, 225–264, https://doi.org/10.1080/
03091927208236082.

}}, and }}, 1975: Space-time scales of internal waves: A pro-
gress report. J. Geophys. Res., 80, 291–297, https://doi.org/10.
1029/JC080i003p00291.

}}, and E. Kunze, 2007: Internal tide generation in the deep
ocean. Annu. Rev. Fluid Mech., 39, 57–87, https://doi.org/10.
1146/annurev.fluid.39.050905.110227.

Gregg, M. C., 1989: Scaling turbulent dissipation in the thermo-
cline. J. Geophys. Res., 94, 9686–9698, https://doi.org/10.1029/
JC094iC07p09686.

Hasselmann, K., 1968: Weak-interaction theory of ocean waves.
Basic Dev. Fluid Dyn., 2, 117–182, https://doi.org/10.1016/B978-
0-12-395520-3.50008-6.

}}, and Coauthors, 1973: Measurements of wind-wave growth
and swell decay during the joint North Sea wave project
(JONSWAP). Dtsch. Hydrogr. Z., 12, 1–95.

}}, W. Sell, D. B. Ross, and P. Müller, 1976: A parametric
wave prediction model. J. Phys. Oceanogr., 6, 200–228, https://
doi.org/10.1175/1520-0485(1976)006,0200:APWPM.2.0.CO;2.

Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M.
Thurnherr, 2006: Global abyssal mixing inferred from low-
ered ADCP shear and CTD strain profiles. J. Phys. Ocean-
ogr., 36, 1553–1576, https://doi.org/10.1175/JPO2926.1.

Le Boyer, A., and M. H. Alford, 2021: Variability and sources of
the internal wave continuum examined from global moored
velocity records. J. Phys. Oceanogr., 51, 2807–2823, https://
doi.org/10.1175/JPO-D-20-0155.1.

Levine, M. D., 2002: A modification of the Garrett–Munk internal
wave spectrum. J. Phys. Oceanogr., 32, 3166–3181, https://doi.
org/10.1175/1520-0485(2002)032,3166:AMOTGM.2.0.CO;2.

Müller, P., D. Olbers, and J. Willebrand, 1978: The IWEX spec-
trum. J. Geophys. Res., 83, 479–500, https://doi.org/10.1029/
JC083iC01p00479.

}}, G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear
interactions among internal gravity waves. Rev. Geophys., 24,
493–536, https://doi.org/10.1029/RG024i003p00493.

Munk, W., 1981: Internal waves and small-scale processes. Evolution
of Physical Oceanography, B. A. Warren and C. Wunsch, Eds.,
MIT Press, 264–291.

Olbers, D., 1986: Internal gravity waves. Landolt-Börnstein, J.
Sündermann, Ed., Numerical Data and Functional Relation-
ships in Science and Technology-New Series, Group V, Vol. 3a,
Springer, 37–82.

}}, and C. Eden, 2013: A global model for the diapycnal diffu-
sivity induced by internal gravity waves. J. Phys. Oceanogr.,
43, 1759–1779, https://doi.org/10.1175/JPO-D-12-0207.1.

}}, P. Jurgenowski, and C. Eden, 2020a: A wind-driven model
of the ocean surface layer with wave radiation physics. Ocean
Dyn., 70, 1067–1088, https://doi.org/10.1007/s10236-020-01376-2.

}}, F. Pollmann, and C. Eden, 2020b: On PSI interactions in in-
ternal gravity wave fields and the decay of baroclinic tides. J.
Phys. Oceanogr., 50, 751–771, https://doi.org/10.1175/JPO-D-
19-0224.1.

Olbers, D. J., 1976: Nonlinear energy transfer and the energy bal-
ance of the internal wave field in the deep ocean. J. Fluid
Mech., 74, 375–399, https://doi.org/10.1017/S0022112076001857.

}}, 1983: Models of the oceanic internal wave field. Rev. Geo-
phys., 21, 1567–1606, https://doi.org/10.1029/RG021i007p01567.

Pollmann, F., 2020: Global characterization of the ocean’s internal
wave spectrum. J. Phys. Oceanogr., 50, 1871–1891, https://doi.
org/10.1175/JPO-D-19-0185.1.

}}, 2022: Global characterization of the ocean’s internal gravity
wave vertical wavenumber spectrum from Argo float profiles.
Zenodo, accessed 7 May 2023, https://doi.org/10.5281/zenodo.
6966416.

}}, C. Eden, and D. Olbers, 2017: Evaluating the global internal
wave model IDEMIX using finestructure methods. J. Phys.

OLB ER S E T A L . 1353MAY 2023

Brought to you by STIFTUNG ALFRED WEGENER INST. F. POLAR | Unauthenticated | Downloaded 10/24/24 05:05 AM UTC

https://doi.org/10.1146/annurev-marine-010814-015746
https://doi.org/10.1146/annurev-marine-010814-015746
https://doi.org/10.1029/JC080i003p00320
https://doi.org/10.1029/JC080i003p00320
https://doi.org/10.1029/JC081i012p01943
https://doi.org/10.1175/JPO-D-13-0224.1
https://doi.org/10.1175/JPO-D-18-0075.1
https://doi.org/10.1175/JPO-D-18-0075.1
https://doi.org/10.1029/JC087iC01p00525
https://doi.org/10.1029/JC087iC01p00525
https://doi.org/10.1080/03091927208236082
https://doi.org/10.1080/03091927208236082
https://doi.org/10.1029/JC080i003p00291
https://doi.org/10.1029/JC080i003p00291
https://doi.org/10.1146/annurev.fluid.39.050905.110227
https://doi.org/10.1146/annurev.fluid.39.050905.110227
https://doi.org/10.1029/JC094iC07p09686
https://doi.org/10.1029/JC094iC07p09686
https://doi.org/10.1016/B978-0-12-395520-3.50008-6
https://doi.org/10.1016/B978-0-12-395520-3.50008-6
https://doi.org/10.1175/1520-0485(1976)006<0200:APWPM>2.0.CO;2
https://doi.org/10.1175/1520-0485(1976)006<0200:APWPM>2.0.CO;2
https://doi.org/10.1175/JPO2926.1
https://doi.org/10.1175/JPO-D-20-0155.1
https://doi.org/10.1175/JPO-D-20-0155.1
https://doi.org/10.1175/1520-0485(2002)032<3166:AMOTGM>2.0.CO;2
https://doi.org/10.1175/1520-0485(2002)032<3166:AMOTGM>2.0.CO;2
https://doi.org/10.1029/JC083iC01p00479
https://doi.org/10.1029/JC083iC01p00479
https://doi.org/10.1029/RG024i003p00493
https://doi.org/10.1175/JPO-D-12-0207.1
https://doi.org/10.1007/s10236-020-01376-2
https://doi.org/10.1175/JPO-D-19-0224.1
https://doi.org/10.1175/JPO-D-19-0224.1
https://doi.org/10.1017/S0022112076001857
https://doi.org/10.1029/RG021i007p01567
https://doi.org/10.1175/JPO-D-19-0185.1
https://doi.org/10.1175/JPO-D-19-0185.1
https://doi.org/10.5281/zenodo.6966416
https://doi.org/10.5281/zenodo.6966416


Oceanogr., 47, 2267–2289, https://doi.org/10.1175/JPO-D-16-
0204.1.

Polzin, K. L., and Y. V. Lvov, 2011: Toward regional characteriza-
tions of the oceanic internal wavefield. Rev. Geophys., 49,
RG4003, https://doi.org/10.1029/2010RG000329.

}}, A. C. Naveira Garabato, T. N. Huussen, B. M. Sloyan, and
S. Waterman, 2014: Finescale parameterizations of turbulent
dissipation. J. Geophys. Res. Oceans, 119, 1383–1419, https://
doi.org/10.1002/2013JC008979.

Riser, S. C., and Coauthors, 2016: Fifteen years of ocean observa-
tions with the global Argo array. Nat. Climate Change, 6,
145–153, https://doi.org/10.1038/nclimate2872.

von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Cli-
mate Research. Cambridge University Press, 503 pp.

Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial
and temporal variability of global ocean mixing inferred from
Argo profiles. Geophys. Res. Lett., 39, L18612, https://doi.org/
10.1029/2012GL053196.

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 531354

Brought to you by STIFTUNG ALFRED WEGENER INST. F. POLAR | Unauthenticated | Downloaded 10/24/24 05:05 AM UTC

https://doi.org/10.1175/JPO-D-16-0204.1
https://doi.org/10.1175/JPO-D-16-0204.1
https://doi.org/10.1029/2010RG000329
https://doi.org/10.1002/2013JC008979
https://doi.org/10.1002/2013JC008979
https://doi.org/10.1038/nclimate2872
https://doi.org/10.1029/2012GL053196
https://doi.org/10.1029/2012GL053196

