Permafrost and Active Layer Temperature and Freeze/Thaw Timing Reflect Climatic Trends at Bayelva, Svalbard


Contact
inge.gruenberg [ at ] awi.de

Abstract

Permafrost warming has been observed all around the Arctic, however, variations in temperature trends and their drivers remain poorly understood. We present a comprehensive analysis of climatic changes spanning 25 years (1998–2023) at Bayelva (78.92094°N, 11.83333°E) on Spitzbergen, Svalbard. The quality controlled hourly data set includes air temperature, radiation fluxes, snow depth, rainfall, active layer temperature and moisture, and, since 2009, permafrost temperature. Our Bayesian trend analysis reveals an annual air temperature increase of 0.9 ± 0.5°C/decade and strongest warming in September and October. We observed a significant shortening of the snow cover by −14 ± 8 days/decade, coupled with reduced winter snow depth. The active layer simultaneously warmed by 0.6 ± 0.7°C/decade at the top and 0.8 ± 0.5°C/decade at the bottom. While the soil surface got drier, in particular during summer, soil moisture below increased in accordance with the longer unfrozen period and higher winter temperatures. The thawed period prolonged by 10–15 days/decade at different depths. In contrast to earlier top-soil warming, we observed stable temperatures since 2010 and only little permafrost warming (0.14 ± 0.13°C/decade). This is likely due to recently stable winter air temperature and continuously decreasing winter snow depth. This recent development highlights a complex interplay among climate and soil variables. Our distinctive long-term data set underscores (a) the changes in seasonal warming patterns, (b) the influential role of snow cover decline, and (c) that air temperature alone is not a sufficient indicator of change in permafrost environments, thereby highlighting the importance of investigating a wider range of parameters, such as soil moisture and snow characteristics.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Publication Status
Published
Eprint ID
59514
DOI 10.1029/2024jf007648

Cite as
Grünberg, I. , Groenke, B. , Westermann, S. and Boike, J. (2024): Permafrost and Active Layer Temperature and Freeze/Thaw Timing Reflect Climatic Trends at Bayelva, Svalbard , Journal of Geophysical Research Earth Surface, 129 (7), e2024JF007648-e2024JF007648 . doi: 10.1029/2024jf007648


Download
[thumbnail of [2024-10-29] File added by Maria Daniela Picon Quintero in a redeposit operation from Symplectic Elements.]
PDF ([2024-10-29] File added by Maria Daniela Picon Quintero in a redeposit operation from Symplectic Elements.)
Permafrost and Active Layer Temperature and Freeze Thaw Timing Reflect Climatic.pdf - Other
Restricted to Staff Only

Download (3MB)

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Citation

Research Platforms

Campaigns
Arctic Land Expeditions > NO-Land_2021_Bayelva


Actions
Edit Item Edit Item