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The aim of this work is the prediction of heat-related mortality for Germany under future, i.e. hotter, 
climate conditions. The prediction is made based on 2m temperature data from climate storyline 
simulations using machine learning techniques. We use an echo state network for linking the outputs 
of storyline climate simulations to the target data. The target data are all-cause mortality rates of 
Germany for all ages. The network is trained with present day climate model outputs. Model outputs 
of future, i.e. 2K and 4K warmer, storylines are used to predict mortality rates under such climatic 
conditions. We find that we can train an echo state network with recent temperature data and 
mortality and make plausible predictions about expected developments of mortality in Germany based 
on future climate storylines. The trained network can successfully predict mortality rates for future 
climate conditions. We find increased mortality during the summer months which is attributed to the 
presence of more severe heat waves. The mortality decrease found during winter can be explained 
milder winters leading to fewer deaths caused by respiratory diseases. However, mortality in winter is 
largely influenced by other factors such as influenza waves or vaccination rate and explainability due to 
temperature is limited.
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Machine learning (ML) has become a helpful tool in many areas of science and medicine1,2. It comprises 
algorithms for revealing non-linear relationships between input and output variables and can be helpful in many 
classification tasks or regression problems.

In medicine, ML can teach researchers new ways of studying diseases, producing medicines or treating 
patients and can be applied for early disease detection where severe conditions are likely to manifest at a later 
time2–4 used a gradient boosting model to predict the likelihood of acute myocardial infarction for patients.5 
trained a deep neural network for classification of skin lesions into skin cancer risk categories.

Mortality prediction has been conducted in various fields of medicine and for different diseases such as 
Chronic Obstructive Pulmonary Disease6, COVID-197, neonatal mortality8, or general mortality risk in 
populations with coronary artery disease9 or general elderly populations10. Taylor et al.11 predict mortality of 
hospitalized patients with sepsis in a data-driven ML-approach. The impact of climate change on mortality due 
to various diseases have been studied with the help of ML, e.g. for Malaria12, myocardial infarctions13, or chronic 
obstructive pulmonary disease6.

Impacts of climate change and increasing numbers of death from heat disorder have been studied, e.g. by14–17. 
Lee et al.18 investigated the influence of heat exposure on mental health and connected implications following 
climate change. This includes mortality due to suicides, mental disorders, and violence among others. Hirano 
et al.19 developed a ML-based model for mortality prediction for heat-related illnesses on the base of data from 
hospitalized patients in Japan. Kim & Kim20 used a random forest model for heat-related mortality prediction in 
a detailed area within a city with various climatic, demographic and socio-economic sectors. Winklmayr et al.21 
employ a generalized additive model for the estimation of heat-related deaths in Germany for the period 1992–
2021. They can characterize long-term trends and quantify the effect of heat on mortality over the years. Mistry 
et al.22 compare results of mortality models based on temperature measurement data at a number of weather 
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stations to models based on global reanalyses of weather observations and climate models by the European 
Centre for Medium-Range Weather Forecasts (ECMWF). They find that reanalysis data are a valid alternative 
source in temperature-related health risk studies.

In this study we predict the mortality rate in Germany for two different climate storylines computed in the 
project SCENIC using an echo state network (ESN). We show that the network can be trained on five years of 
monthly maximum temperature input data and monthly mortality rates for Germany as target data. With the 
trained network we can reliably predict mortality rates in Germany for the two given future climate storylines.

Method
Background
Artificial neural networks (ANN) are inspired by biological examples23. Neurons in the brain are interconnected 
and capable of fulfilling enormous cognitive tasks with utmost precision. An ANN consists of a large number 
of artificial neurons that mimic the behavior of connected neurons in the brain. The artificial neurons have an 
activation threshold above which they pass on information and weights that encode the importance of the neuron 
connection. Several neurons are organized in a layer and many layers make up a neural network. The input layer 
receives information from the outside world, a number of hidden layers further processes the information from 
the input layer, and the output layer transforms the information from the network into a result. The shape of the 
result depends on the purpose the network is designed for. There are numerous kinds of layered networks for 
purposes of , e.g., classification, regression, clustering or object detection.

In the training phase the weights of an ANN are adjusted. In supervised learning this is achieved by providing 
input samples with the corresponding known output. Through iterative back-propagation techniques the weights 
of the ANN nodes are adjusted to minimize the misfit between the network output and the known result. The 
challenge is to avoid over-fitting and obtain an ANN that performs well on unknown data. Unsupervised learning 
uses only input data to learn the distribution of the input variables. It is useful for clustering, compression, or 
feature extraction23.

A recurrent neural network (RNN) is a network with cyclic connections in which the neurons can send 
feedback signals to each other24. They are more powerful than acyclic feed forward neural networks (FNNs) 
in that they can create and process memories of arbitrary sequences of input patterns25. Therefore, while FNNs 
represent functions, RNNs represent dynamical systems which may develop a self-sustained temporal activation 
even in the absence of input26. Supervised Long Short-Term Memory (LSTM) RNNs can discover and memorize 
events that happened thousands of time steps ago25. Training of RNNs, however, is challenging. The well-known 
feed-forward back-propagation algorithm cannot be directly used because of the cyclic nature of the reservoir. 
One simple solution to overcome this difficulty is to neglect all indirect pathway (i.e. such containing cycles). 
However, this is a rather coarse approximation of the optimization problem27. There exist two basic ways for 
calculating the exact gradient fo the output with respect to the weights: forward and backward methods27. The 
forward method solves a linear dynamical equation system for the effect of a small change in a weight on the 
network state trajectory. While this can be calculated concurrently with the network dynamics the computational 
costs are quite high. In the backward method the causes of the output error are computed backward in time. In 
case of discrete time steps this can be achieved by setting up a multi-layer feed-forward network for unrolling 
the multi-step evolution of the network. More comprehensive overviews over RNNs and training algorithms are 
given by26–29.

The echo state network
The ESN is a special form of a recurrent neural network that was introduced independently by30,31. Originally, 
it incorporates an algorithm for supervised learning in which only the output layer is modified27. A schematic 
of an ESN is shown in Fig. 1. ESNs consist of an input layer, a reservoir, and an output layer. The output layer is 
connected to the reservoir and the input layer. The reservoir contains cyclic and recurrent connections. It should 
be large, sparse and randomly connected26 . This allows the network to process information from earlier inputs 
than the current step since input information can cycle in the reservoir and influence later steps as well. Another 
important property is the so-called echo state. This means that the effect of input data vanishes gradually over 
time. This way an ESN can simulate a dynamic system and learn complex and time dependent connections 
between input data and target values. In this study it learns the connection between temperature distributions 
and mortality.

Our network realization is based on the description in32. The input weights are initialized randomly from a 
uniform distribution over the interval [−0.5, 0.5]. The reservoir weights are initialized by the same procedure 
and in addition a fraction (1− c) of the weights, where c ∈ [0, 1] is the connectivity of the reservoir, is set to zero. 
During the training process, the reservoir weights remain unchanged. Only the neuron activations are updated 
based on training input. The neuron activation determines whether a neuron is important and will be activated 
or not. The activation values are updated using

	 xn = (1− α)xn−1 + α tanh(Win[1;un] + Wxn−1)� (1)

where xn are the neuron activations at step n, Win is the input weight matrix, u is a vector containing the input 
data at step n, [·; ·] denotes a vertical vector concatenation, W is the recurrent weight matrix of the reservoir, and 
α ∈ (0, 1] is the leakage parameter. The leakage parameter determines the proportion of the neuron activation 
update due to new input data at step n. Finally, the output weight matrix is determined by a ridge regression that 
minimizes the misfit between outputs and targets in a least squares sense. The ESN is described in more detail 
by32. The ESN parameters used in this study are given in Table 1.
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The trained network can then be used to either forecast new values of the time series of input data from the 
known inputs in the past or to compute the response to new inputs. Here, we use the latter functionality since the 
goal is to predict socio-economic parameters for new given inputs (i.e. in warmer world scenarios). The output 
is then determined by

	 yn = Wout[1;un;xn]� (2)

where Wout is the matrix of output weights, [·; ·; ·] denotes the vertical concatenation of vectors, un is the input 
vector, and xn is the vector of neuron activations. Thus, the output at a certain time step is determined by both, 
the state of the reservoir and directly by the input data at that time. As indicated in Fig. 1, an error measure is 
calculated from the predictions and the target values. We choose the root-mean-square (RMS) error.

As the network is initialized with random values, the network state after training can be different for each 
realization. Therefore, we compute an ensemble of trained ESNs and predictions and calculate the arithmetic 
mean from the ensemble of predictions. The ensemble size is 25. The statistics of the ensemble are used to 
estimate the robustness of the approach.

Data
As input data for training the ESN we used outputs of global climate simulations. The used simulations are so-
called climate storyline simulations. They recreate extreme weather events in climate models by keeping some 
boundary conditions (in this case winds in the higher troposphere) close to states of the atmosphere observed 
in the past during those events. This process is called nudging. When different climate conditions (e.g. elevated 
CO2 concentrations) are applied to the climate model with the same nudging, it is possible to study how the 
extreme event would enfold under those new conditions. The storyline simulations are computed using a model 
developed at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). The model 
is called AWI CM1 and a description can be found in33. From the various outputs of the AWI CM1 model we use 
temperature fields at 2m above ground level as input data for the network.

For the current time scenario the tropospheric winds in the climate model are nudged to ECMWF weather 
reanalysis data (ERA5). The two additional future climate conditions considered are elevated concentrations of 

Parameter Reservoir size α rs c λ
Value 9000 0.5 1.25 0.5 1e-8

Table 1.  Parameters of the echo state network used in this study. α is the leakage parameter, rs is the spectral 
radius of the reservoir weights matrix, c is the connectivity of the reservoir, and λ is the regression coefficient 
in the ridge regression of the output weights matrix.

 

Fig. 1.  Schematic of an echo state network. The input layer is connected to a reservoir. In the reservoir there 
are connections between some of the nodes, including recurrent connections. The output layer is connected 
to the reservoir and to the input layer. After adaption of the neuron activations in the reservoir, the output 
weights are determined by a regression that minimizes the misfit, E, between prediction and target.

 

Scientific Reports |        (2024) 14:26074 3| https://doi.org/10.1038/s41598-024-77398-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


CO2 that result in increased global mean temperatures of +2K and +4K scenarios w.r.t. pre-industrial times, 
respectively. The method for computing climate storylines is described in detail in34.

The climate storyline simulations that constitute our training data are available in a period from 2015 to 
2021. The warmer world storylines that are used for the mortality rate predictions are available in a period from 
2017 to 2021. In order to exclude excess mortality due to the COVID-19 pandemic we restrict the training and 
the prediction to before 2020. From the AWI CM1 model we used hourly 2m temperature fields from which we 
compute monthly maximum values. The data have a 1◦ × 1◦ spatial resolution. We consider a region within the 
longitudinal range from 10◦W to 40◦E and the latitudinal range from 30◦N to 65◦N. This covers a region large 
enough to include all influences on people in Germany but reduces the computational effort compared to using 
the global data set. The temperatures are normalized such that the interval [−13◦C, 47◦C] maps to [0,1]. The 
temperature data used as inputs in this study have been published by35. An example of a temperature field before 
normalization used as input is given in Fig. 2.

Figure 3 shows examples of temperature time series at four locations in Germany. Even though the global 
mean temperature is only 2K or 4K higher than in pre-industrial times, the local maximum temperature 
difference can be much higher.

The target data are monthly mortality values published by the German Federal Statistical Office. They are 
available under the code 12613-03-01-4-B at https://www.regionalstatistik.de37. The data are all-cause mortality 
values over all ages. The mortality was scaled by the population of each federal state to yield the mortality per 
100,000 inhabitants. The population statistics are available at the same website under the code 12411-05-01-4-

Fig. 2.  Example of temperature input data. Shown are the monthly maximal values at each grid point for 
July 2017. The input data consist of one 2D distribution of the 2m temperature for each input month. For the 
analysis, temperatures are normalized such that all values lie in the interval [0,1] over the whole investigation 
period. The red diamonds denote the locations of temperature time series shown in Fig. 3. This figure was 
produced with GMT 6.4.036.
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B. The population data have annual values so monthly values were obtained by linear interpolation where the 
annual values were assigned to the middle of each year.

Results
With the described ESN we are able to predict mortality rates in Germany from monthly maps of maximum 2m 
temperatures in Europe. Figure 4 shows the time series of the target values used for training the network (left 
part) and the subsequent test predictions (right part, red circles). In the test months, the prediction of mortality 
is very accurate given the short training period. The RMS error is 1.7, i.e. ≈ 1.9% in the test period.

In Fig. 5, we show the mortality rate prediction for the two climate storylines investigated in this study. We 
calculate ensembles of trained ESNs and predictions to test the robustness of the approach since the initialization 
of the ESN’s input layer and reservoir are performed with random numbers. The ensemble size is 25. The blue 

Fig. 4.  Training of the echo state network. This panel shows the five years of target data used for training and 
testing. The test period is seven months from June to December 2019 in the right part of the panel. The RMS 
error in the test period is 1.7, i.e. ≈ 1.9%.

 

Fig. 3.  Examples of monthly maximum temperature development over time for all considered scenarios. The 
locations of the profiles are shown in Fig. 2. The temperature differences between current and future scenarios 
can be much larger than the average difference.
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and red shaded areas indicate the ensemble spread, i.e. the mean ± one standard deviation (SD), while the circles 
represent the mean values for each month. The SD for the +2K runs ranges between 0.42 and 1.0, for the +4K 
runs between 0.64 and 1.32, respectively. This is in the range of 0.5 to 1% of the target values, showing that the 
results are robust.

The difference between the predictions for the +2K and +4K scenarios and the target values representing the 
current mortality rates is shown in Fig. 6. During the summer months, the values are elevated while in winter the 
values are lower than in the reference period. The increase in mortality rate in the summer months is negligible 
for +2K storyline and 4-5 per 100,000 people for the +4K storyline. The latter corresponds to about 3,200–4,000 
additional fatalities in Germany per month.

Discussion
The storyline simulations from which input data for the ESN training are taken where computed for certain 
global CO2 levels. These CO2 levels correspond to mean global temperature increase of +2K and +4K w.r.t. pre-
industrial time. The temperature increase may vary for different regions. However, storyline simulations are used 
investigate how extreme events enfold under climate conditions that represent certain global warming levels. 

Fig. 6.  Differences between predictions and current mortality rates. Shown are the +2K scenario (red) and 
+4K scenario (blue). The intervals with the orange highlighted background are the summer months (June–
August).

 

Fig. 5.  Mortality rate predictions for warmer climate storyline scenarios. Here, we show the prediction of the 
mortality rate for the warmer world scenarios: +2K in red and +4K in blue, along with the target values of the 
recent climate scenario on which the network was trained (black). The shaded areas represent one standard 
deviation from the ensemble mean values. The periods highlighted with orange background are the summer 
months (June–August). The warmer world scenarios are available only from 2017.
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In that sense the results obtained here also correspond to the global warming levels while regional temperature 
increase for heat waves can be much higher than on average (cf.34 ). This is also illustrated in Fig. 3 for four 
different locations in Germany.

The predictions of mortality rates in warmer world scenarios show elevated values in summer months and 
decreased values in winter months. We interpret those results as higher mortality due to higher heat stress in 
summer. High day temperatures in combination with high temperatures at night are a major cause of fatality38.

A decrease of mortality in winter time is plausible since warmer winters may lead to less severe influenza 
waves. However, this is hard to quantify since the impact of a influenza wave also depends on many other 
factors such as vaccination rate, effectiveness of the vaccination, etc. Therefore, this study’s analysis is focused 
on the summer months and heat-related mortality. Even with heat related mortality there are factors other 
than the ambient temperature. After the 2003 heatwave in Europe with thousands of fatalities among elderly 
people as reported by39 preventive measures have been taken in many European countries. This has lead to a 
reduced number of fatalities in the severe 2006 heatwave in comparison to the previous heatwaves without those 
measures40. However, 21 show that despite the evident adaption to heat, high temperature periods in summer still 
pose a significant thread to human health in Germany.

In order to reduce computational costs we used only monthly maximum temperatures as input data. However, 
the results show that our network is able to model the connection between temperature inputs and mortality on a 
very accurate level. The spatial extend of input data is significantly larger than the investigated domain. Spatially 
extended high temperature distributions allow the conclusion that the temporal extend at one location in or 
near the center is also high since the weather conditions would not change very quickly if high temperatures are 
observed all over the domain. Also, in the literature the influence of minimum temperature on cardiovascular 
diseases and mortality has been shown to be important41,42. We have run experiments using maximum values 
of daily minimum temperatures per month as additional input. This did not further improve the results for 
Germany. Therefore, the use of monthly maximum temperatures is a reasonable choice. Furthermore, humidity 
does not play a significant role for our results. We ran experiments using the maximum web-bulb temperature 
but the network training was not improved. However, should the method be applied to other regions where 
either the night temperatures or wet-bulb temperature is of more importance, it is straightforward to include 
them as input data for the ESN.

Another interesting question is how results would differ for different subregions of Germany. However, 
this is out of the scope of the state-of-the-art climate simulations (CMIP6 model, with horizontal resolution 
of approximately 100 km), whose resolution is still too low and does not allow that kind of investigation. 
Nevertheless, our study can be a first step in this area of knowledge that can be updated when the CMIP7 models 
are available.

Taking those facts into consideration, this analysis gives a hint as to what the impact of future climate change 
concerning mortality could be. Society and politics have to take the appropriate measures not only to prevent the 
warming as far as possible but also to reduce the risk of death under such climate conditions should they occur.

One drawback of ESN is that techniques that attribute the outcome to specific (parts of) the input data such as 
layer-wise relevance propagation cannot be used due to the cyclic nature of the network. However, the advantage 
of yielding robust results with short input data time series outweighs that disadvantage of lack of interpretability.

Data availability
The target mortality and population data used in this study are publicly available on the website of the German 
statistical service (see reference numbers in “Data” section of the main text). The climate model outputs used as 
input data for the network training and mortality prediction are available at https://zenodo.org/record/8014199. 
The R code used in this project is available from the authors upon request. Please contact R. Schachtschneider 
(reyko.schachtschneider@gfz.de) for further information.
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