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Abstract

The Canary/Iberia region (CIR), part of the Canary Current Upwelling System, is well-known for
its coastal productivity and crucial role in enriching the oligotrophic open ocean through the
offshore transport of the upwelled coastal waters. Given its significant ecological and
socio-economic importance, it is essential to assess the impact of climate change on this area.
Therefore, the goal of this study is to analyze the climate change signal over the CIR using a
high-resolution regional climate system model driven by the Earth system model MPI-ESM-LR
under RCP8.5 scenario. This modelling system presents a regional atmosphere model coupled to a
global ocean model with enough horizontal resolution at CIR to examine the role of the upwelling
favourable winds and the ocean stratification as key factors in the future changes. CIR exhibits
significant latitudinal and seasonal variability in response to climate change under RCP8.5
scenario, where ocean stratification and wind patterns will play both complementary and
competitive roles. Ocean stratification will increase from the Strait of Gibraltar to Cape Juby by the
end of the century, weakening the coastal upwelling all year long. This increase in stratification is
associated with a freshening of the surface layers of the North Atlantic. However, modifications in
the wind pattern will play a primary role in upwelling source water depth changes in the
southernmost region of the CIR in winter and in the north of the Iberian Peninsula in summer.
Wind pattern changes are related to the intensification of the Azores High in winter and to a
deepening of the Iberian thermal low in summer months.

1. Introduction

The Canary Current Upwelling System (CCUS) is one
of the four large Eastern Boundary Upwelling Systems
(EBUSs) driven by equatorward alongshore winds.
The upwelled cold and nutrient-rich waters do not
only fuel the biological activity near the coast, but also
behave as shelf and slope waters being transported to
open ocean by active mesoscale structures (e.g. fila-
ments, fronts, eddies [1-3]).

The CCUS extends from the coast of West Africa
at 12° N to the northern tip of the Iberian Peninsula

© 2024 The Author(s). Published by IOP Publishing Ltd

at 43° N and constitutes the eastern boundary of
the North Atlantic subtropical gyre [4]. It is divided
into four different regions: the Mauritania-Senegalese
upwelling region (12° N-19° N), the permanent
upwelling region (21° N-26° N; PUR) and the
weak permanent upwelling region (26° N-33° N;
WPUR) extending south and north of the Canary
Islands, respectively, and the Iberian upwelling region
(35° N—43° N; IUR), dominated by a high sea-
sonal variability with upwelling favourable winds in
summer and downwelling favourable winds during
winter months [5-7].
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Since the major mechanisms underpinning
EBUSs originate from large-scale atmosphere-ocean
coupling [8], the magnitude and timing of the
EBUSs are sensitive and highly vulnerable to climate
variability [9]. Several studies based on historical
datasets analysis [6, 10—17] have striven to reveal the
EBUSs response under climate change showing con-
tradictory results, mainly due to the short duration
of most observational time series [8] and method-
ological inconsistencies (e.g. considering only the
upwelling season or annually averaged wind trends
[15]).

A CMIP5 (Coupled Model Intercomparison
Project) multi-model analysis of the upwelling
response to climate change [18] found in the CCUS
a robust relationship between the increase of the
land—sea temperature contrast and the upwelling
intensification in the twenty-first century (Bakun’s
hypothesis [19]). However, other studies suggested
that the alongshore winds may be more sensitive
to the intensity and position of the Azores High
rather than to changes in the continental thermal
low-pressure systems [20, 21]. In addition to wind
changes, there are reports of warming of the upper
ocean layer over the last decades, which leads to
increased vertical stratification and reduced upward
transport of nutrient-rich water to the surface [8,
22]. Thus, an increase in ocean stratification due to
global warming would play a key role where deeper
water might be less connected with the wind stress,
shallowing the upwelling source water depth [23, 24]
and becoming the main driver of changes in EBUSs
during the 21st century (e.g. [23] in the Humboldt
Upwelling System). As for CCUS, its future beha-
viour is still uncertain and both stratification and
wind changes may play a complementary or compet-
itive role [25].

However, the coarse spatial resolution (around
1° x 1°) of CMIP (both CMIP5 and CMIP6) mod-
els is not enough to resolve the latitudinal variabil-
ity and to reproduce the mesoscale features or the
shelf dynamics of the upwelling systems with enough
detail [8, 26, 27]. Regional climate system models are
able to account for mesoscale processes, which are not
resolved by the global climate models [28, 29]. This
ability to reproduce the mesoscale processes allows
to assess the impact of climate change on CCUS in
a more realistic way, given the importance of the
eddies and coastal filaments that enrich the oligo-
trophic open waters [30-32].

The main objective of this work is to study the
potential future impact of climate change over three
northern regions (Canary/Iberia region; CIR) of the
CCUS (figure 1) with a high resolution regional
climate system model (the Mauritania—Senegalese
upwelling region has been evaluated in a previous
work [33]). For this purpose, this study aims to: (i)
understand the impact of climate change on the wind
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field, identifying the main driver of future changes in
the alongshore winds, and (ii) assess the impact of
changes in ocean stratification due to global warming
on coastal upwelling.

2. Material and methods

2.1. ROM configuration

We use the regional coupled system model ROM
[34], composed of a global ocean model (MPIOM)
coupled to an atmospheric regional model (REMO)
via OASIS3 coupler [35]. ROM (REMO-OASIS-
MPIOM) includes the lateral freshwater fluxes at
the land surface through the Hydrological Discharge
(HD) as part of REMO and the relevant carbon stocks
of the atmosphere, ocean, and sediments through
the Hamburg Ocean Carbon Cycle as a MPIOM
subsystem [36, 37]. The ROM model has previously
been evaluated over the CIR for the present climate
in [29].

The oceanic component of ROM features a cur-
vilinear grid with two poles, over North America
and Northwestern Africa, yielding a grid size from
5 to 10 km in the CIR. This horizontal resolu-
tion is enough to reproduce some frontal meso-
scale processes associated to the upwelling (i.e. eddies
and filaments) while maintaining a global domain
[29]. The model comprises 40 z-coordinate ver-
tical levels with increasing level thickness towards
the ocean bottom [33, 38]. REMO is integrated
over a rotated regular grid with a horizontal resolu-
tion of 25 km and its domain includes the Eastern
Tropical Pacific, the Mediterranean Sea and the North
Atlantic (figure 1(b)), being the only model com-
ponent of ROM run in regional configuration. In
this work, ROM is driven by the low-resolution ver-
sion (1.5° x 1.5°) of the Max Planck Institute Earth
System Model (MPI-ESM-LR) in two runs: first, a
historical run from 1950 to 2005 and second, the
climate projection from 2006 to 2099 under the
Representative Concentration Pathway 8.5 (RCP8.5)
CMIP5 scenario.

2.2. Upwelling analysis

To assess future changes in the seasonality and
intensity of the coastal upwelling, we split the his-
torical reference period (defined as 1976-2005;
ROM_PI; 30 year climate normal) and the future
climate (defined as 2070-2099; ROM_P2) into
winter (December—January—February, DJF) and
summer (June—July—August, JJA) seasons. These sea-
sons correspond to upwelling peak (JJA) and min-
imum (DJF). Additionally, trends for the whole
RCP8.5 simulation period (2006-2099) were cal-
culated. We use monthly data of near-surface
air temperature (T2m), mean sea level pressure
(MSLP), wind stress, seawater temperature and
salinity.
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Figure 1. (a) Illustrative figure of ROM bathymetry (bottom), 2 m air temperature (T2m) and sea surface wind (top; vector field)
fields for the ROM_P1 period in the three studied regions: Iberian upwelling region (IUR; 35° N-43° N), weak permanent
upwelling region (WPUR; 26° N-33° N) and permanent upwelling region (PUR; 21° N-26° N). It shows the conceptual
upwelling mechanism (thin black arrows) generated by the Ekman transport (red arrows). (b) MPIOM variable resolution
bipolar curvilinear grid (black lines, drawn every 10th) and REMO domain (red line).

To quantify the upwelling intensity, we calculated
the upwelling index (UI) derived from [39]:

Q.= ﬁ (1)
Q = ;pz )

Ul=—sin (62 ) Qctcos(6-2)Q ()

where Qy, Q, and 7y, 7, are the zonal and meridi-
onal components of the horizontal Ekman transport
(m? s71) and the wind stress vector (kg m~! s72),
respectively; po is the reference sea water dens-
ity (1025 kg m~3); f is the Coriolis parameter
(s7') and 6 is the angle between the coastline
and the equator. Positive (negative) values of Ul

correspond to upwelling-favourable (downwelling-
favourable) conditions.

However, the use of the UI overlooks the implica-
tion of the geostrophic flow in upwelling. Indeed, the
cross-shore geostrophic transport can substantially
alter the vertical transport relative to wind-based
only estimates [40—43], and the inclusion of the geo-
strophic component is also important to understand
how future changes in wind (e.g. [20]) will trans-
late to changes in upwelling (e.g. [44]). Therefore, we
define the Coastal Upwelling Transport Index (CUTI
[45];) as the sum of UI and the cross-shore geo-
strophic transport (U%®), an approach previously
applied to coastal upwelling systems [42, 43, 45]. First,
cross-shore geostrophic velocity (#8%°) is estimated
from the alongshore sea surface height (SSH) gradient
according to:
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where g is the gravitational acceleration, ASSH is
the difference between the coastal SSH values at the
northernmost and southernmost points in each cell,
and doqs 1s the distance (m) between these points.
Second, the cross-shore geostrophic transport is cal-
culated for the mixed layer:

geo

(4)

Ut = 4#°MLD (5)

where mixed layer depth (MLD) is calculated using
a density difference criterion (density increase by
0.125 kg m—> compared to the value in the surface
[46]) and taken from standard ROM outputs. In
equation (5), it is assumed that cross-shore geo-
strophic velocity is constant throughout the MLD.
Note that positive cross-shore geostrophic transport
corresponds to offshore transport and negative to
onshore transport.

Finally, we calculated the CUTI as the sum of Ul
and U#®°. The CUTI is estimated within a 100 km
wide band along the CIR [29, 30] and it is expressed as
the oceanward flow of surface waters per km of coast-
line (m® s~ km™!, [47]).

The coastal upwelling stratification is character-
ized through the Brunt-Viisild frequency (N; s™1),
where larger values indicate strong stratification, and
values close to zero a well-mixed water column:

N2 =— £ @ (6)
po Oz
being z the depth and p the potential density.

Once the impact of the climate change on wind
patterns and the ocean stratification is analyzed indi-
vidually, we calculate the source water depth (Ds) to
estimate the depth of the water that reaches the sur-
face in the coastal upwelling region. Ds gives us fur-
ther insight into the mechanisms that drive the coastal
upwelling in the future, clarifying the role of the wind
pattern and the coastal ocean stratification as comple-
mentary or competitive mechanisms. This parameter
is defined in [48] as follows:

[CUTI
Ds = Cs{| —— (7)
N

where Cs = (4/Ce)"? = 8.16 for Ce = 0.06, which is
the efficiency factor used in [48, 49]. Note that we
have modified the equation for source water depth
used in [48] to incorporate the influence of geo-
strophic transport on the source depth.

In this context, there are different methods to
identify the source water depth with more accuracy,
such as the use of Lagrangian particles (e.g. [44, 50,
51]) or the concentration of passive tracers (e.g. [52])
as source water markers. However, the temporal res-
olution of ROM model output (monthly) is too low
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to apply such approaches offline. Therefore, we resor-
ted to this diagnostic to assess the source depth, which
is simpler but allows a straightforward estimation of
the relative contribution of wind and stratification
changes to source water depth changes.

3. Results

3.1. Climate change signal of the coastal upwelling

winds and its latitudinal variability

The significant seasonality of CIR poses a chal-
lenge in terms of assessing the impact of climate
change. In this regard, we analyzed the CUTI in
the historical simulation (ROM_P1) for DJF and
JJA, as well as its trends for the RCP8.5 simulation
(figure 2). In DJF, the CUTI shows negative values
in the northern IUR due to downwelling favour-
able winds, while south of the IUR (from 37° N
to 39° N) and south 34° N the CUTI turns pos-
itive, increasing as latitude decreases (figure 2(a)).
It is noteworthy that both in Cape Roca (around
38° N) and north of WPUR (around the Strait of
Gibraltar), the CUTI shows negative values, where
precisely the onshore geostrophic transport seems to
play an important role against the Ekman transport
(figure 2(a)).

In DJE, CUTI trends exhibit large latitudinal vari-
ability, with negative values throughout the IUR,
associated with an intensification of downwelling
favourable winds northern IUR and a weakening of
upwelling south of the IUR. The transitional region
between the IUR and WPUR shows a marked shift
from negative to positive trends. WPUR and PUR
present positive trends, with the maximum located
at Cape Bojador (figure 2(b)). Negative trends in the
WPUR appear only at Cape Safi and Cape Ghir.

In JJA, the CUTI is positive throughout the
CIR and increases with decreasing latitude peaking
at Cape Sim and Cape Bojador (figure 2(c)). JJA
CUTI trends show an almost opposite pattern to the
DJF: IUR exhibits positive trends decreasing south,
becoming negative from the Strait of Gibraltar to
Cape Blanc (figure 2(d)). Also noteworthy are Cape
Chaunar (located at nearly the same latitude as the
Canary Islands, 29° N), Cape Bojador and Cape
Blanc, where the negative trends locally weaken or
even become positive (figure 2(d)). Contrary to the
northern regions of the CIR in DJF, we find that the
geostrophic flow is everywhere secondary compared
to the wind-driven transport in JJA (figure 2(c)). The
remarkable peaks observed in the CUTT are primarily
associated with coastline or topo-bathymetric irreg-
ularities, which impact on the wind field and gener-
ate mesoscale structures such as filaments and fronts
[53]. One of the advantages of the model utilized
in the present study is its capability to capture these
processes [29].
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Figure 2. CUTI, U and UI (m?® s~! km™!) in the closest grid points to coast for ROM_P1 (1976-2005) in DJF (a) and JJA (c)
and its standard deviation (grey shaded). CUTI trend (m® s~! km ™! decade™!) from 2006 to 2099 for DJF (b) and JJA (d).

3.2. Climate change drivers of the coastal upwelling
winds

As shown in section 3.1, changes in CUTI are clearly
seasonal, so it is reasonable to assess the potential
drivers of these changes on a seasonal basis. To this
end, we evaluated the future evolution of both MSLP
and T2m on a seasonal basis.

In DJF, ROM_P1 presents the highest T2m over
the ocean in the southern regions (around 20° N;
figure 3(a)), but the largest temperature increase at
the end of the century is localized over the African
continent, reaching trends of 0.16 °C decade™! in the
Atlas Mountains (figure 3(b)). There are also mod-
erate warming trends over the Iberian Peninsula and
some ocean regions.

MSLP in the historical period features the Azores
High centered between 30° and 35° N. Notably, the
Azores High shows an increase in both extent and
intensity in ROM_P2 (dashed isobars in figure 3(c)),
corresponding to a general MSLP increase across the
domain, more pronounced over the ocean. Wind dif-
ferences between ROM_P2 and ROM_P1 are shown
alongside trends, displaying northward directions in
the IUR and southward from around 30° N to Cape
Blang, i.e. downwelling favourable winds in [UR and
upwelling favourable winds over most of WPUR
and PUR. Thus, the intensification of the Azores
High in DJF will increase downwelling and upwelling
favourable winds in the IUR and PUR, respectively
(figure 2(b)).

JJA T2m values are logically higher than in
DJE, with very warm temperatures over Africa
(figure 4(a)). JJA T2m trends are very strong

over Africa and the Iberian Peninsula, with val-
ues exceeding 0.20 °C decade™! (figure 4(b)) but
coastal regions show slightly weaker increases. In
the MSLP field, the Azores High migrates north-
westward respect to DJF, and its position and extent
are rather similar in ROM_P1 and ROM_P2 (see
isobaric contours in figure 4(c)). The summer
thermal low over the Iberian Peninsula intensi-
fies in ROM_P2 due to the local T2m increase.
Additionally, there is a MSLP increase over the British
Isles that decreases the meridional MSLP gradi-
ent. As a result the wind field corresponding to the
ROM_P2—ROM_P1 MSLP difference depicts a cyc-
lonic rotation over the Iberian Peninsula, causing
an increase in upwelling favourable winds in the
IUR (figure 4(f)), and SW winds along most of the
African coast, weakening the upwelling favourable
winds (figure 4(f)). The spatial pattern of the MSLP
difference between ROM_P2 and ROM_P1 causing
these wind changes is shown in figure S2. Therefore,
in JJA, the intensification of the Iberian thermal
low generates an increase of the Iberian upwelling
(figure 2(d)).

3.3. Ocean stratification

In this section, we study the role of the ocean strat-
ification as a driver of change in the CIR regions.
Ocean stratification changes in the CIR for DJF and
JJA are evaluated from the Brunt-Viisild frequency
calculated within a 100 km wide band along the CIR
(the mask is shown in figure 5(c)) and averaged from
surface to 150 m depth (approximate depth at which
water masses upwell in the CIR [29]).
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Figure 3. (a) Mean T2m (°C) for ROM_P1 (1976-2005) and (b) T2m trend (°C decade™!) from 2006 to 2099 in DJE. (c) Mean
MSLP (hPa) for ROM_P1 (1976-2005) and (d) MSLP trend (hPa decade™!) from 2006 to 2099 in DJF. In (c) the isobars are
presented for both ROM_P1 (continuous black line) and ROM_P2 (dashed black line) simulations. In (d) Wind flowlines (blue)
corresponding to the ROM_P2 -ROM_P1 difference, which are superimposed on the ROM_P2 MSLP trend. (e) Mean wind
speed (m s !) for ROM_P1 (1976-2005) and (f) wind speed difference between ROM_P2 and ROM_P1.

In ROM_P1 DFJ the Brunt-Viisild frequency is
below 0.005 s~! throughout the CCUS (excluding
PUR). In this regard, the values remain relatively
constant from the northernmost Iberian Peninsula
to 25° N, where they progressively increase up to
0.008 s~ ! at Cape Blanc (figure 5(a)). In JJA, strati-
fication increases due to surface warming and shows
larger latitudinal variability than DJF, with peaks at
the Strait of Gibraltar, Cape Juby and Cape Blanc
(figure 5(b)).

To assess ocean stratification changes in the
future, we calculated the differences between
ROM_P2 and ROM_P1 (grey shading). In DJF, the
Brunt-Viisild frequency increases up to 0.003 s~!
throughout the IUR and WPUR, nearly doubling the
ROM_P1 values (figure 5(a)). South of 26° N the dif-
ferences decrease drastically, even reaching negative
values in the PUR. In JJA, the increase in stratifica-
tion by the end of the century is also evident, but the
relative change with respect to the historical period
is smaller than in DJF (figure 5(b)). Nevertheless,
the increase shows peaks reaching 0.003 s~! in some

regions of the African coast. As in DJF, the differences
gradually decrease south of 26° N.

3.4. Source water depth

With the aim of linking the changes associated with
the wind field and the ocean stratification, in this
section we analyse the upwelling source depth tak-
ing into consideration both the action of the along-
shore favourable winds and the ocean stratification
(see equation (7)).

The source depth of the upwelling increases as
latitude decreases in ROM_P1 for both DJF and JJA
(figures 6(a) and (c)). The main differences between
seasons are found in the IUR, where in DJF there
is no upwelling in the north and a disruption in
upwelling at Cape Roca and to the south of the Iberian
Peninsula (Strait of Gibraltar). Regarding the African
coast, slightly deeper source water is observed in JJA,
with maxima at Cape Ghir and Cape Bojador.

Under RCP8.5 scenario a shallowing is expected
for DJF in the IUR (40 m) and in the WPUR (20 m),
and a deepening in the southernmost region, PUR
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Figure 4. Same as figure 3, but for JJA.

= ..

50°N
45°N
40°N

35°N

"
i
o
o
1
sztrend (°C decade™’)

30°N
0.05
25°N

40°W  35°W  30°W 25°W 20°W 15°W  10°W  5°W

; 0.1
V,
//
50°N
N 005 g
8
D
-]
o
o £
=
g
o2
30°N =
[72]
&L 0055
ZUN\ 04
40°W  35°W  30°W  25°W  20°W  15°W  10°W  5°W
f)55":):,;|'r||| 1
-,',,.,-,
50°N [SREN AR, S —
459N [y Y 05 g
AR g
AN 2
0 _u%’
35°N - - b/
- g
3N ;- a
-0‘52
/N L s

oN T e e

40°W  35°W  30°w  25°W  20°W  15°W 10°W  5°W

(10 m; figure 6(b)). In JJA, we find a rather different
pattern, where the northern part of the ITUR shows an
increase in source water depth, which decreases south
of the IUR until practically Cape Blanc. It is note-
worthy that this decrease in source depth is softened
in PUR.

4. Discussion and conclusions

Future climate change has important biological and
socio-economic implications in the upwelling regions
[27] associated with changes in the upwelling favour-
able winds and increasing ocean stratification [8].
Here, we take advantage of the regional climate sys-
tem model ROM to attain oceanic and atmospheric
resolutions that allow us to study the climate change
in the CIR while taking into account the impact
of the mesoscale [29, 33]. Our assessment is based
on the RCP8.5 CMIP5 scenario, using the ROM
model driven by the MPI-ESM-LR. Our single model
approach imposes limitations on the generalization
of our results, however it makes it easier to analyse
and find physically consistent mechanisms respons-
ible for these changes, providing a foundation for
future exploration with other models and forcings.

Furthermore, one of the strengths of our study is asso-
ciated with the high resolution presented by ROM,
never before seen in the study of climate change at the
CIR.

This work brings the novelty of advancing in
one of the main scientific uncertainties within the
EBUSs community regarding the roles of wind and
oceanic stratification. Additionally, it unveils differ-
ent climate change mechanisms and responses at CIR
depending on latitude and seasonality. While the
IUR exhibits a strengthening of downwelling favour-
able winds in DJF and upwelling favourable winds
in JJA in its northern region (e.g. [21, 54, 55]),
along the African coast it is projected a decrease in
the upwelling favourable winds in the JJA and an
increase in DJF. Similar results were obtained with the
AFRICA-CORDEX ensemble model [56], confirming
the seasonal signal of the upwelling change in the CIR
under global warming conditions found in this study.
Furthermore, the Ekman suction presents trends of
the same sign, but weaker than the Ekman transport
along the CIR (figure S1). In our assessment of the
coastal upwelling we take into consideration the con-
tribution of the geostrophic transport. In this con-
text, we find that although the geostrophic transport
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Figure 5. Brunt-Viisila frequency (s ') averaged from surface to 150 m in the closest grid points to coast for DJF (a) and JJA (b)
for ROM_P1 (red shading) and the differences between ROM_P2 and ROM_P1 (grey shading; RCP8.5—Historical). The mask

used is shown in the panel (c).

makes a contribution to the cross-shore transport
in JJA, it is of secondary importance compared to
the Ekman transport (figure 2(c)). These results are
consistent with those of [57], which showed that
the onshore geostrophic transport was much lower
than the offshore transport generated by upwelling
favourable winds, especially in the MPI-ESM model
(ROM driving model). However, during DJF in some
regions of IUR and WPUR the geostrophic transport
makes a contribution comparable to that of the wind
(figure 2(a)). Finally, our results also project a future
reduction in CUTI interannual variability in the TUR
and WPUR during DJF (not shown).

Our results demonstrate that the impact of cli-
mate change on the wind field exhibits significant
latitudinal and seasonal variability in the CIR. This
variability is primarily associated with two mech-
anisms, one for each studied season (1) in DJE
the intensification of the Azores High will increase
downwelling and upwelling favourable winds in the
IUR and PUR, respectively; (2) in JJA, the intens-
ification of the Iberian thermal low generates an
increase of the Iberian upwelling. Previous studies
have found changes in the wind pattern similar to
those shown in this work [8, 18, 20, 21, 27, 56, 58,
59]. However, all of them addressed the effect of
climate change through a single mechanism, either
associated with increasing summertime T2m land-
sea differences [19] or shifts in the positioning of
the atmospheric high-pressure systems [20]. Our
study reveals that the Azores High will play a funda-
mental role in the future of the CIR for DJF as pro-
posed by other authors. However, we find a differ-

ent mechanism of change for the summer season: the
Iberian thermal low will deepen in the future due to
the strong air temperature increase over the Iberian
Peninsula in JJA, intensifying the Iberian upwelling
(figure 4 [60, 61]).

Our results reveal an increase in ocean strati-
fication in coastal regions, particularly evident in
the two northernmost regions during both DJF and
JJA (figure 5). This is attributable to the surface
ocean warming. However, in the future, it is also
projected a freshening in the upper 200 m of CIR,
leading to an additional enhancement of stratifica-
tion in shallow regions close to the shelf. This pat-
tern is linked to a larger-scale freshening signal in
the Eastern North Atlantic (figure S3) and consist-
ent with findings reported by [62] in a study using
CMIP5 models. The Canary Current transports the
freshening signal to the south along the CIR, separ-
ating from the coast at Cape Blanc where it merges
with the North Equatorial Current [63-65], there-
fore the PUR remains relatively unaffected by the
freshening.

The upwelling source water depth will be reduced
in the southern region of the IUR and throughout
the WPUR for DJF. This shallowing in winter months
is primarily associated with changes in ocean strati-
fication in WPUR and with both, changes in ocean
stratification and wind, in IUR (figure S4(a)). These
results are consistent with studies such as [23] in
the Humboldt Upwelling System and [24] in the
north of the Iberian Peninsula. However, in JJA in
the north of the Iberian Peninsula, the upwelling
source depth will increase as consequence of the
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Figure 6. Upwelling source water depth (m) in the closest grid points to coast DJF (a) and JJA (c) both for ROM_P1 (red shading;
Historical) and the differences between ROM_P2 and ROM_P1 (grey shading; RCP8.5—Historical), for DJF (b) and JJA (d). The
mask used for source water depth calculation is shown in figure 5(c). Note that the black contour lines marked on panels b and d
indicate statistically significant changes (t-student test).

future intensification of the upwelling favourable
winds (figure S4(b)). Other recent studies report
a future source water deepening in the CIR [66]
and in the Mauritanian-Senegalese upwelling region
[33]. However, in the rest of the CCUS regions,
enhanced ocean stratification complements weaken-
ing upwelling winds, causing a shallower upwelling.
This demonstrates that while using averaged variables
for studying different EBUSs provides useful inform-
ation, the significant latitudinal and seasonal vari-
ability in these systems could obscure the signal of
climate change. It should be noted that the calcula-
tion of the presented source depth only takes into
account the effect of stratification and the Ekman
and geostrophic transports, although topography
can play an important role in shaping upwelling
structure [67—69], and therefore on source water
depth.

Finally, to clarify the signal of climate change
in the studied regions of the CCUS, a scheme of
the interplay between wind and oceanic stratifica-
tion was plotted (figure 7). Note that when refer-
ring to complementarity, we consider simultaneously
an increase (decrease) in upwelling favourable winds
along with a decrease (increase) in ocean stratific-

ation. When referring to competition, we consider
simultaneously an increase (decrease) in upwelling
favourable winds along with an increase (decrease) in
ocean stratification.

In this context, it is observed that during DJF
(figure 7), both mechanisms are complimentary
(64% upwelling winds and 36% ocean stratifica-
tion) leading to a shoaling of the source depth by
25 m south of the IUR. This complementarity turns
into competition from the Strait of Gibraltar to
25° N, where increased stratification (57%) results in
a 10 m shoaling of the source depth despite increasing
upwelling favourable winds. In JJA, wind and oceanic
stratification compete with different outcomes in the
IUR; to the north, it deepens (by 5 m) due to the wind
action (67%), and to the south, it shoals (by 5 m)
due to stratification (67%). Once again, along the
African coast, both mechanisms complement each
other, leading to a shoaling of around 15 m. These
results highlight the need to conduct studies on the
seasonal and latitudinal variability of upwelling sys-
tems, as demonstrated here by the challenges of pin-
pointing a dominant mechanism for the upwelling
response to climate change by the end of the
century.
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Figure 7. Scheme of complementarity and competitivity between ocean stratification and wind in the study regions. We consider
only regions where future changes in water source depth are larger than 5 m (black shaded areas). Note that the wind contribution
is calculated based on the CUTI (i.e. including the geostrophic transport). Additionally, the percentages correspond to the
contribution of wind and ocean stratification to changes in source depth. When both are complementary, the result of the source
depth differences shows contributions from both. However, when they compete, the higher percentage indicates dominance in the
sign of the source depth change. Source depth change is calculated from an average of ROM_P2 minus ROM_P1 in each region.
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