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ABSTRACT
Ulva, a genus of green macroalgae commonly known as sea lettuce, has long been recognized for 
its nutritional benefits for food and feed. As the demand for sustainable food and feed sources 
continues to grow, so does the interest in alternative, plant-based protein sources. With its 
abundance along coastal waters and high protein content, Ulva spp. have emerged as promising 
candidates. While the use of Ulva in food and feed has its challenges, the utilization of Ulva in other 
industries, including in biomaterials, biostimulants, and biorefineries, has been growing. This review 
aims to provide a comprehensive overview of the current status, challenges and opportunities 
associated with using Ulva in food, feed, and beyond. Drawing on the expertise of leading 
researchers and industry professionals, it explores the latest knowledge on Ulva’s nutritional value, 
processing methods, and potential benefits for human nutrition, aquaculture feeds, terrestrial feeds, 
biomaterials, biostimulants and biorefineries. In addition, it examines the economic feasibility of 
incorporating Ulva into aquafeed. Through its comprehensive and insightful analysis, including a 
critical review of the challenges and future research needs, this review will be a valuable resource 
for anyone interested in sustainable aquaculture and Ulva’s role in food, feed, biomaterials, 
biostimulants and beyond.
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1.  Introduction

The world population is expected to reach 9.8 billion by 
2050 (Population Reference Bureau, 2023). Accordingly, the 
agricultural food gap will increase due to climate 
change-induced constraints on natural resources, i.e., fresh-
water and farmland. Consequently, ensuring food security 
has become a global imperative. The oceans will play an 
increasingly important role in feeding the growing popula-
tion with increasing demand for food and natural resources. 
Nevertheless, wild stocks cannot meet the increasing demand 
for fish or other biomass sources, including macroalgae. 
Therefore, seaweed cultivation may be essential for contrib-
uting to food security by provisioning food or feed ingredi-
ents (Araújo et  al. 2022; Forster and Radulovich 2015; 
Radulovich et  al. 2015).

Marine macroalgae, commonly known as seaweed, are 
considered the “promising plant of the millennium” 
(Dhargalkar and Neelam 2005) because of several advantages 
over land plants, such as no need for arable land, freshwater, 
fertilizer or pesticides to grow them, and the biomass can be 
utilized as food, feed, materials, gelling substances, and bio-
fuels (e.g., Chapman and Chapman 1980). Furthermore, 
macroalgae grow more rapidly and occupy space more effi-
ciently than terrestrial plants (Creed et  al. 2019). In optimal 
conditions, macroalgae can produce higher dry biomass per 
unit area per year than fast-growing terrestrial crops such as 
sugar cane (Gao et  al. 1994). Furthermore, macroalgae cul-
tivation may help reduce greenhouse gas emissions in the 
food system by replacing food, feed, and materials with 
higher carbon footprints (Troell et  al. 2022).

Seaweed production and processing can support the blue 
circular economy by contributing to the key drivers of the 
circular bio-based economy in the EU (Lange et  al. 2021), 
namely bio-based products for health and new functional-
ities, primary production, land-use change, sustainable agri-
culture, biorefineries, and biomass supply for new biorefinery 
technologies. Further, many recent publications have pro-
moted seaweed cultivation to meet many of the United 
Nations’ global sustainable development goals (UNSDGs), 
including reducing hunger, improving good health and 
well-being, providing affordable and clean energy, and miti-
gating climate change (Duarte, Bruhn, and Krause-Jensen 
2022). Despite these potential contributions to the circular 
economy, seaweed production in Europe is lagging (Araújo 
et  al. 2021), and many risks and benefits must be assessed 
before upscaling macroalgal productions into sustainable 
seaweed aquaculture. These include (i) food safety consider-
ations in integrated multi-trophic aquaculture (IMTA)/waste 
streams, (ii) genetic interactions of wild crops with culti-
vated crops, (iii) impacts of seaweed aquaculture on the sur-
rounding ecosystems, (iv) diseases and epiphytes, (v) area 
utilization from a marine spatial planning perspective, (vi) 
threats associated with climate change, (vii) using a precau-
tionary approach during carbon accounting and blue carbon 
financing, (viii) technological advancement for upscaling, 
and (ix) overcoming legal and economic constraints (Bermejo 
et  al. 2022; Chopin, 2021; Cottier-Cook et  al. 2016; 
Hasselström et  al. 2022; Loureiro, Gachon, and Rebours 

2015; Rosa et  al. 2020, 2019; Stévant, Rebours, and Chapman 
2017; Troell et  al. 2022). Although algal cultivation technol-
ogy has improved in the last decade, there is still a need to 
optimize production for energy efficiency, product quality, 
consumer safety, and biomass utilization (Stévant, Rebours, 
and Chapman 2017). Green algae in the genera Ulva, due to 
the characteristics described below, show high potential for 
becoming ideal model organisms for innovative mariculture.

In the last 30 years, Ulva spp. have been extensively ana-
lyzed for their value as food, feed, food ingredients (e.g., 
protein, carbohydrates, pigments, antioxidants), chemical 
constituents and medicinal properties, and the number of 
scientific publications involving Ulva has increased from 
2130 in 2000 to 6724 in 2023 (Google Scholar). Major 
advancements have been made in cultivation methods, 
molecular identification techniques, and in the fields of aqu-
feed, terrestrial feed, biostimulants, biomaterials, and biore-
finery strategies. From a food and feed perspective, green 
algae in the genus Ulva contain suitable levels of proteins, 
vitamins, trace minerals, and dietary fibers (Toth et  al. 2020; 
Trigo et  al. 2021; Stedt, Trigo, et  al. 2022; Stedt, Toth, et  al. 
2022; Steinhagen, Larsson, et  al. 2022; Steinhagen, Enge, 
et  al. 2021; Steinhagen, Enge, et  al. 2022; Taboada, MillÃ¡n, 
and MÃguez 2009) for human and animal consumption. 
The growing world population, environmental awareness 
and associated increased trends in vegetarianism and vegan-
ism, increasing demand for organic products, and global 
resource shortages are increasing the demand for sustainable 
marine crops and alternative proteins (Ismail et  al. 2020; 
Faber et  al. 2021; Yong et  al. 2022; Duarte, Bruhn, and 
Krause-Jensen 2022). Furthermore, increasing environmental 
degradation and climate change awareness has actively 
encouraged health-promoting programs to link human diet 
and health with environmental sustainability (Patrick and 
Kingsley 2017). Considering that unhealthy diets primarily 
cause non-communicable diseases (NCDs), which are a lead-
ing cause of death (Lauber et  al. 2020), health-promoting 
foods and lifestyles have attracted the world’s attention. 
Indeed, the increase in the consumption of plant (and 
algae)-derived foods is recommended, as they are usually 
healthier and more sustainable (Willett et  al. 2019) protein 
sources. Nevertheless, the much-cited EAT-Lancet 
Commission work discussing the need for identifying alter-
native sustainable food sources in the Anthropocene pays 
little attention to algae, although aquatic habitats (accounting 
for 70% of the Earth) will be critical in identifying novel 
sustainable and health-promoting foods such as seaweed. 
With an amino acid composition comparable to soy or egg 
protein, and including all essential amino acids (except tryp-
tophan), selected strains of Ulva bearing high protein con-
tents can partially substitute less sustainable protein sources 
(Dominguez and Loret 2019), and high contents of essential 
dietary fiber and other bioactive substances render it a ben-
eficial food item providing health and functional advantages 
(Rajapakse and Kim 2011; Holdt and Kraan 2011; Lopes 
et  al. 2019; Moreira et  al. 2022; Qi et  al. 2005). In particular, 
phytochemicals (e.g., carotenoids, phenolics) have 
health-benefiting characteristics and can be used in the cos-
meceutical and pharmaceutical sectors and as functional 
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foods (Abd El-Baky, El-Baz, and El-Baroty 2009; Khairy and 
El-Sheikh 2015; Lanfer-Marquez, Barros, and Sinnecker 
2005; Mapelli-Brahm et  al. 2020; Meléndez-Martínez et  al. 
2021; Steinhagen, Enge, et  al. 2021; Steinhagen, Larsson, 
et  al. 2022; Steinhagen, Enge, et  al. 2022), increasing the 
economic value of Ulva biomass.

While Ulva spp., and seaweed in general, remains a niche 
product in Europe, the European market may play an 
important role in the future of seaweed production and con-
sumption. Currently, the main importing countries of sea-
weed in Europe are the UK, France and Germany according 
to the Center for the Promotion of Imports from developing 
countries (CBI Ministry of Foreign Affairs). Therefore, the 
aim of this review is to improve awareness of the seaweed 
Ulva in food, feed, and beyond and to provide a critical 
review of the current status, challenges and opportunities of 
incorporating this genus into the mainstream so that it may 
become tomorrow’s “wheat of the sea.” To this end, Ulva 
spp. can play a pivotal role in the sustainable and 
health-promoting food era, and its consumption and appli-
cations are expected to increase in the future. The sustain-
able exploitation of Ulva as food and feed can contribute to 
the demand for renewable and novel nutritious food sources, 
especially with vegetarian and vegan protein, emphasized by 
the UNSDGs (United Nations, 2015). Because of its valuable 
constituent composition, Ulva can be biorefined to obtain 
and valorize products, including food ingredients, materials, 
chemicals, and fuels, consistent with the new circular econ-
omy paradigm. Of course, consumption of seaweeds in gen-
eral and Ulva in particular also raises safety concerns as it 
may entail microbiological or chemical risks.

This review explores contemporary Ulva research through 
a comprehensive analysis of their distinct chemical composi-
tion, production, uses as food, feed, and biomaterials, and 
other important aspects, such as nutritional value, food 
safety, and emerging research needs. This review is targeted 
toward not only scientists and industry professionals work-
ing with seaweed-based foods, feeds and biomaterials, but 
also food scientists, nutritionists, feed manufacturers, dieti-
tians, cooks, and pharmacists less familiar with Ulva as an 
ingredient or additive. We provide a critical review of the 
current status, challenges and future needs that are necessary 
to bring Ulva and Ulva-based products closer to the fore-
front of food science and nutrition research.

2.  Ulva – tomorrow’s “wheat of the sea”

Marine aquaculture is the fastest-growing component of 
food production (>7%/year) (Lomartire and Gonçalves 2022; 
Duarte, Bruhn, and Krause-Jensen 2022; Moreira et  al. 
2022). Green seaweeds account for <0.1% of the total sea-
weed production (Bolton et  al. 2016). Nevertheless, the ubiq-
uitously distributed genus Ulva (Ulvales, Chlorophyta), 
widely known as sea lettuce, has received increasing atten-
tion. The distinct characteristics of the representative species 
of this ecologically and economically important genus are 
summarized in Figure 1, which indicates the immense 
potential of Ulva species in playing a central role in the rap-
idly emerging European seaweed aquaculture industry as 

they can be cultivated in both on- and off-shore conditions 
(e.g., Bolton et  al. 2009; Mata et  al. 2016; Steinhagen, Enge, 
et  al. 2021). The most notable characteristics include 
world-wide coastal distribution, fast growth rates, relatively 
simple life cycle, ease of culture, historical use in food and 
feed, documented bioactivity and efficiency as a biological 
filter (Figure 1). Furthermore, it is the only species of mac-
roalgae with a sequenced genome, which facilitates genetic 
transformation and presents the genus as an ideal model 
organism (Wichard et al. 2015; de Clerck et al. 2018; Blomme 
et  al. 2023; Wichard 2023).

2.1.  Ulva taxonomy and identification

For most of taxonomic history, Ulva spp. have been discrim-
inated using detailed morphological (blade shape or struc-
ture), anatomical (cell shape and size) and cellular 
(chloroplast position and appearance and the number of 
pyrenoids per cell) descriptions (Koeman and van den Hoek 
1981). However, most species exhibit simple morphologies 
that are challenging to identify (Steinhagen et  al. 2023; 
Hofmann et  al. 2010; Kraft, Kraft, and Waller 2010), partic-
ularly due to phenotypic plasticity influenced by 

Figure 1. E xceptional characteristics of the genus Ulva, demonstrating the rea-
sons for its increased attention in diverse industries. High morphological plas-
ticity: (Blomster, Maggs, and Stanhope (1999); Hayden et  al. (2003); Wichard 
et  al. 2015; Steinhagen, Weinberger, and Karez (2019); Steinhagen et  al. (2023); 
massive proliferation: (Charlier et  al. (2006); Charlier, Morand, and Finkl (2008); 
Smetacek and Zingone (2013); Gao et  al. (2010); Steinhagen Weinberger, and 
Karez (2019)); high growth rates and ability to thrive at high stocking density: 
Mata, Schuenhoff, and Santos (2010); Lawton et  al. (2013); Al-Hafedh, Alam, 
and Buschmann (2014); Sebök, Herppich, and Hanelt (2019); Stedt, Toth, et  al. 
(2022); rapid nutrient uptake potential: Gao et  al. (2013); Shahar et  al. (2020); 
rStedt et  al. (2022); wide environmental tolerance: Toth et  al. (2020); Kirst 
(1990); Ghaderiardakani, Coates, and Wichard (2017); Bao et  al. (2022); 
Thompson & Coates (2017); Ghaderiardakani et  al. (2022); Steinhagen, Larsson, 
et  al. (2022); Simon, McHale, and Sulpice (2022); Steinhagen, Enge et  al. (2021); 
Kraft, Kraft, and Waller (2010).
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environmental parameters (Wolf et  al. 2012) and the micro-
biome (Wichard et  al. 2015). To complicate matters, names 
initially used to describe European species are now used 
worldwide for species with different biogeographies, giving 
the impression that many Ulva species are cosmopolitan 
(Hughey et  al. 2019 for the example of U. lactuca (Linnaeus, 
1753)). In short, according to the ‘International Code of 
Nomenclature for Algae, Fungi, and Plants’ (Turland et  al. 
2018), the former Ulva fasciata is now correctly known as 
Ulva lactuca, and the former Ulva lactuca is now correctly 
known as Ulva fenestrata (Hughey et  al. 2019).

The correct identification of both parental wild stocks 
and cultivated Ulva spp. biomass is necessary, as the traits 
vary between the species (Fort et  al. 2019; Olsson, Toth, 
et  al. 2020; Olsson, Toth, et  al. 2020; Cardoso et  al. 2023), 
and is particularly important due to their prevalent applica-
tion in commercial projects and industrial product labeling. 
In order to identify species and strains of particular com-
mercial value, for example using species selection criteria, 
DNA barcoding, i.e., the amplification and sequencing of 
specific loci in the genome, must be used. With respect to 
EU legislation, the need for DNA barcoding to confirm the 
identity of commercially produced Ulva material is relevant, 
because only two species, Ulva lactuca, and the outdated 
genus “Enteromorpha” (Aonori), are is listed as acceptable 
non-novel food in the Novel Food catalogue of the Regulation 
(EU) 2017/2470 (Lähteenmäki-Uutela et  al. 2021; Bolton, 
2020; Barbier et  al. 2019). Thus, several other Ulva species 
named differently may have been long used as foods and 
could also qualify for such status (Roleda et  al. 2021; Barbier 
et  al. 2019). Furthermore, several Ulva species are nuisance 
species in some coastal areas and negatively affect valuable 
coastal ecosystem functions when introduced to non-native 
areas (Charlier et  al. 2006; Charlier, Morand, and Finkl 
2008; Smetacek and Zingone 2013; Steinhagen, Weinberger, 
and Karez 2019; Fort, Mannion, et  al. 2020). Therefore, cor-
rect species identification is critical to preventing invasive 
species propagation and introduction through aquaculture 
initiatives, and an integrative systematics approach is required 
to accurately identify Ulva spp., considering morphological 
characteristics, DNA sequencing of different markers, and 
species biogeography. However, due to a lack of algal bar-
code sequences from various geographical locations on pub-
lic repositories (Bartolo et  al. 2020) as well as sequence 
misidentifications in herbaria and online databases (Fort, 
McHale, et  al. 2022), approximately 24–32% of foliose Ulva 
spp. in genetic databases are misidentified (Fort, McHale, 
et  al. 2022). Thus, the taxonomy of Ulva, including identify-
ing taxonomically valid names, species numbers and their 
circumscription, must be clarified using molecular methods 
with globally distributed specimens. Significant research has 
recently been conducted in Europe using foliose species, and 
currently both nomenclatural and taxonomic revisions of 
Ulva spp. are ongoing (Fort, McHale, et  al. 2021; Fort et  al. 
2022; Hughey et  al. 2019, 2020, 2021; Tran et  al. 2022). 
Nevertheless, the names of Ulva species presented in this 
review should be taken with caution unless the authors have 
provided evidence of molecular identification confirmed by 
the type specimen. Possible alternatives to molecular 

approaches and their potential benefits and drawbacks, are 
comprehensively discussed by Tran et  al. (2022). Future 
investigations would ideally facilitate molecular species iden-
tification without requiring sequencing, as proposed by Fort 
et  al. (2021), who employed a restriction digest of the ITS1 
PCR product to discriminate between the main foliose Ulva 
species.

2.2.  Ulva production

The FAO database reports data on the production of green 
seaweed, such as sea lettuce, since 1979. Various denomina-
tions can be found, such as bright green nori (Enteromorpha 
clathrata), green laver (Monostroma nitidum; Monostroma is 
a green macroalgal genus similar in form to Ulva, but not 
closely related), lacy sea lettuce (Ulva pertusa), and sea let-
tuces nei (Ulva spp.). The FAO database records aquaculture 
of sea lettuce for Ulva spp. in South Africa (3715 t in 2020), 
Monostroma nitidum in South Korea (8286 t in 2020), and 
Ulva prolifera (as Enteromorpha prolifera) in China (200 t in 
2020). The annual production rates of these taxa are shown 
in Figure 2. The Republic of Korea’s 12,965 tonnes of green 
seaweed cultivation in 2019, including M. nitidum, 
Capsosiphon fulvescens, and Codium fragile, accounted for 
78% of the global production. A recent report assessed that 
green macroalgae cultivation has recently decreased com-
pared to the peak level of production, which occurred in the 
1990s and early 2000s, depending on species (Cai 2021). 
This decrease can be seen in Figure 2, most notably for  
M. nitidum in South Korea and U. prolifera in China. The 
16,696 tonnes of global green macroalgae production 
recorded in 2019 (approximately 0.05% of global macroalgae 
production) was less than half of the peak level in 1992 
(38,556 tonnes), as opposed to the rapid growth in the pro-
duction of brown macroalgae (3-fold) and red macroalgae 
(15-fold) between 1992 and 2019 (Cai 2021; FAO 2021). The 
reasoning behind this is unclear; however, recent statistics 
show that growth rates of total seaweed production in the 
leading Asian countries have slowed since 2015, potentially 
due to climate change, arrival at maximum carrying capacity, 
changes in marine spatial planning, and the aging seaweed 
farming workforce (Rieve, 2023). The 2,155 tonnes of Ulva 
produced globally in 2019 was also less than its peak pro-
duction between 1950 and 2019, with 14,074 tonnes in 2008. 
The decline primarily reflects the decrease in Ulva prolifera 
(as Enteromorpha prolifera) production in China from 12,540 
tonnes in 2008 to almost zero in 2019, whereas the global 
Ulva production in 2019 was 2,155 tonnes exclusively from 
South Africa (Table 1) (Cai, 2021; FAO, 2021). Nevertheless, 
the production numbers reported from South Africa may be 
overestimated, considering that only 2000 tons/year have 
been reported by Rothman et  al. (2020). Because the Ulva is 
used as feed on farms rather than sold, production numbers 
are only estimates. Portugal has reported Ulvophyceae (the 
class of green algae that includes the genera Ulva and 
Monostroma) production in Europe since 2014; in 2019, this 
production reached 35 t (wet weight, FAO estimates). This 
IMTA-produced Portuguese alga has been identified as Ulva 
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lacinulata (formerly U. rigida), a non-sporulating species 
that grows well in floating culture and contributes to green 
tide formation in some regions. Surprisingly, the FAO data-
base does not list any Ulva production from Israel, despite 
its largest company (Seakura, Israel) producing 50 tons FW/
year. Within Europe, a recent assessment of the status of 
algal production in Europe reported 15 enterprises that cul-
tivate Ulva spp. (Vazquez Calderon and Sanchez Lopez 
2022). Nevertheless, not all European data are reported in 
the FAO database, which only includes data from Portugal 
and Spain. One of the leading European producers produced 
150 tons of fresh weight in 2022, which is still only a frac-
tion of the production rate (2000 tons/year) reported from 
abalone farms in South Africa (Bolton et  al. 2016; Rothman 
et  al. 2020). Considering that other countries may not be 
disclosing their production rates, the data currently available 
should be interpreted with caution and regarded as an 
underestimation.

2.3.  Nutritional content

The keywords “nutrient composition,” “Ulva,” “fatty acids,” 
“amino acids,” and “minerals” were searched through Scopus 

and Google Scholar to conduct a review on the nutritional 
content of Ulva spp. Special care was taken to include the 
species diversity of Ulva in all available data. The concentra-
tion ranges of proteins, carbohydrates, ash, lipids, amino 
acids, fatty acids, and minerals are summarized in Tables 2 
and 3 and Supplementary Tables 1 and 2. In some cases, 
concentration ranges are provided, as well as seasonal varia-
tions when available.

The biochemical profiles of different Ulva species are char-
acterized by 13–50% ash, 5–27% protein, 0.5–4% lipids, and 
53–78% total carbohydrates, of which 37–61% are fiber (data 
referring to dry weight (DW), Table 2). The protein content in 
sea lettuce is considered high among seaweeds; for instance, 
values >20% DW have been reported in Ulva reticulata and U. 
lactuca (Ortiz et  al. 2006; Ratana-Arporn & Chirapart 2006) 
and can reach content >30%, more than double the natural 
content, when produced in nutrient-enriched environments 
(Viera et  al. 2011). The levels found in high-protein terrestrial 
plants, such as soybeans, reach up to 40% DW (“USDA 
FoodData Central”). To measure the seaweed protein content, 
the nitrogen factor of 4.76 was used, which provides a lower 
nitrogen-to-protein ratio value (Angell et  al. 2016). A conver-
sion factor of 5 has been proposed to measure the 
nitrogen-to-protein ratio of seaweeds accurately.

Figure 2.  Global production of green seaweeds reported in the FAO database since the 1970s reported by country; grey, Ulva spp. in South Africa; green, Ulva 
spp. in Vietnam; blue, M. nitidum in South Korea; orange, U. prolifera in China; not visible due to insignificant amounts: Ulva spp. produced in Portugal and Spain.

Table 1. A verage and maximum global production of green seaweeds by country, 1950–2019 (Cai 2021; FAO 2022).

Ulva species

Average annual 
production 

1950–2019 (wet 
tonnes)

Maximum annual 
production 

1950–2019 (wet 
tonnes)

Maximum annual 
production 

1950–2019 (year)
Cultivation in 

2019 (wet tonnes)
Cultivation in 

2020 (wet tonnes)
Cultivation in 

2021 (wet tonnes) Country

Monostroma nitidum 3,991 17,248 1992 6,321 8,241 7,958 Republic of 
Korea

Enteromorpha (Ulva) 
prolifera

1,367 12,540 2008 –* 200 850 China

Ulva spp. 515 2,900 2005 – 3,715 2,882 South Africa
Green seaweeds nei – – 2019 1,717 952 0 Vietnam
Green seaweeds nei 17.56 35 2019 35 5 5 Portugal
Green seaweeds nei 0.35 0.87 2019 0.87 – – Spain
*Notes: “–” indicates zero or no data.

https://doi.org/10.1080/10408398.2024.2370489
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The amino acid profiles of Ulva species are characterized 
by the predominance of aspartic acid, glutamic acid, and 
alanine (Supplementary Table 3) (Ferreira et  al. 2021; 
Maehre et  al. 2014; Peña-Rodríguez et  al. 2011; Shuuluka, 
Bolton, and Anderson 2013). The values presented are stan-
dardized to % of protein where possible, but, strong vari-
ability between studies and differences in the units reported 
(% of protein vs. dry weight) make comparisons difficult, 
suggesting the need for a more systematic, standardized 
analysis (see future research directions). A principal compo-
nent analysis (PCA) of the amino acid content of various 
Ulva spp. from various geographic regions and cultivation 
conditions showed that the first two components accounted 
for 78% of the variability. The first principal component 
was primarily influenced by glycine, serine, leucine, and 
tyrosine, while the second component was notably affected 
by cysteine. Cysteine was detected in only some species, 
resulting in significant separations between them in the 
PCA. Notably, U. capensis exhibited an exceptionally high 
concentration of glycine, U. fenestrata showed a high con-
centration of histidine, and U. clathrata displayed elevated 
levels of both arginine and glycine (Figure 3). The analysis 
also revealed co-occurrence patterns: glycine/serine (posi-
tive), leucine/tyrosine (positive), and cysteine/glycine 
(negative).

In order to compare the nutritional quality of Ulva spp. 
to terrestrial plants, we conducted a PCA of the nutritional 
content of Ulva spp. presented in Table 2 and the nutritional 
content of soy, corn, rice and wheat from the USDA 
FoodData Central website. The results show that the Ulva 
spp. clustered more closely together than to the terrestrial 
plants, but all species clustered most closely to wheat, com-
pared to corn, rice or soy (Figure 4). The protein and lipid 
content separated Ulva spp. most strongly from soy. The 
implications of these results are discussed in the section on 
future research directions below.

The lipid content of Ulva is relatively low (0.5–4%). The 
predominant fatty acid is the saturated fatty acid (SFA) pal-
mitic acid (16:0), making up an average of 27.8% in the spe-
cies presented in this review. Ulva also contains 
monounsaturated and polyunsaturated (PUFA) fatty acids, 
particularly the essential linoleic acid (18:2 n-6) and linole-
nic acid (18:3 n-3) (Supplementary Table 2; Cardoso et  al. 
2017; Maehre et  al. 2014; Neto et  al. 2018; Lopes et  al. 
2019). The SFA/USFA ratio of all species presented is below 
1 (0.15–0.90), with the exception of cultivated U. clathrata 
from a large-scale cultivated system, which had a ratio of 
2.00. The MUFA/PUFA ratios ranged from 0.3 to 2.02 and 
the omega 6/omega 3 ratios ranged from 0.2 to 2.7. Wild 
collected U. fenestrata, U. lactuca and U. rotundata had the 

Table 2. N utritional composition of different species of Ulva.

Species Season/Month Protein % Carbohydrate % Lipid % Ash% Moisture Reference

Ulva pertusa April ND ND 2.15 ND 83.32 (Floreto, Teshima, and 
Ishikawa 1996)

U. reticulata May 21.1 55.8 0.75 17.6 22.5 (Ratana-Arporn and 
Chirapart 2006)

U. clathrata ND ND 2.62 ND 92.00 (Kendel et  al. 2015)
U. lactuca 27.2 61.5 0.3 11.0 12.6 (Ortiz et  al. 2006)
U. clathrata MSS 21.9 ND 2.5 49.6 ND (Peña-Rodríguez et  al. 

2011)LSS 20.1 ND 2.2 27.5 ND
U. expansa 4.12 ND 0.65 35.66 84.59 (Osuna-Ruíz et  al. 2023)
U. prolifera 19.87 ND 6.06 17.50 ND (Pirian et  al. 2016)
U. flexuosa 10.55 ND 2.82 33.00 ND
U. fasciata 14.06 ND 0.56 20.21 ND
U. californica 15.20 ND 3.75 28.76 ND
U. compressa 18.64 ND 0.90 22.30 ND
U. lactuca 21.55 ND 0.75 12.18 ND
U. linza 10.16 ND 3.70 24.62 ND
U. rigida 16.6 56.4 3.7 25.2 82.09 (Viera et  al. 2011)
U. rigida 33.8 40.5 4.4 21.5 82.0 (Viera et  al. 2011)
U. rigida ND ND 0.8 ND ND (Ivanova, Stancheva, and 

Petrova 2013)
U. fenestrata ND ND 0.5 ND ND (Colombo et  al. 2006)
U. fenestrata Spring 20.79 32.21 3.2-3.55 16.6 82 (Steinhagen, Larsson, 

et  al. 2022; 
Steinhagen, Enge 
et  al. 2021)

Summer 4.67 40.21 1.17 22.56 81

U. fenestrata 17.8–23.2 ND ND ND ND (Stedt, Trigo, et  al. 2022)
U. fenestrata (as U. 

lactuca)
15%–21%* ND ND ND ND (Roleda et  al. 2021)

U. linza ND ND 1.31 ND ND (Bakan et  al. 2021)
U. lactuca Spring 20.12 44.81 4.09 22.08 8.9 (Khairy and El-Shafay 

2013)Summer 17.88 46.42 3.57 17.56 14.57
Autumn 16.78 42.09 3.14 23.19 14.8

U. lacinulataa Lab 11.08 32.66 7.00 17.08 83.57 Current authors
U. compressab Lab 26.19 20.66 8.13 12.52 90.59 Current authors
Ulva sp.c Fall 23.87 9.36 3.12 20.06 83.75 Current authors
*Calculated from total nitrogen using the conversion factor 4.6.
MSS: medium scale system; LSS: large scale system; ND: not determined.
aFrom the North Atlantic (Portugal). See Cardoso et  al. (2023) for information on the origin of this strain and the molecular identification.
bFrom the German Wadden Sea, Dorum Neufeld, (53.742433, 8.514724).
cFrom the North East Harbor of Helgoland, Germany (54.184237, 7.890829).

https://doi.org/10.1080/10408398.2024.2370489
https://doi.org/10.1080/10408398.2024.2370489
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highest omega-3 fatty acid content and U. fenestrata and U. 
rotundata had the highest UFSA/FSFA ratios. A PCA of the 
fatty acid data, which grouped species by morphology (tubu-
lar, foliose, or both), indicated that many blade-forming spe-
cies clustered together (Figure 5). On average, these foliose 
species (blades) exhibited higher total PUFA and SFA levels 
than the tubular species. Ulva clathrata was distinctive due 
to its particularly low MUFA content. Ulva lactuca demon-
strated high variability, likely stemming from misidentifica-
tion. Given that U. lactuca is not found in Europe, the data 
presented by van Ginneken et  al. (2011) probably pertain to 

Figure 3. A  principal component analysis of the amino acid profiles (% of pro-
tein) of various Ulva spp. from different geographic regions and cultivation 
conditions. Data are taken from Supplementary Table 3 and analyzed using 
JMP® pro v. 17 (SAS Institute Inc., Cary, NC, USA). Prior to analysis, data under-
went a log + 0.1 transformation. The “contrib scale” indicates the contributions 
(in percentage) of the variables to the principal axes. LSS: large scale system; 
MSS: medium scale system (Peña-Rodríguez et  al. 2011). Arg: arginine; ala: ala-
nine; asp: aspartic acid; cys: cysteine; gly: glycine; glu: glutamic acid; his: histi-
dine; ile: isoleucine; leu: leucine; lys: lysine; met: methionine; phe: phenylalanine; 
pro: proline; thr: threonine; tyr: tyrosine; ser: serine; val: valine.

Figure 4.  Principle component analysis (Martin and Maes 1979; Becker and 
Venkataraman 1984; Venables 1997) of the nutritional content (ash, protein, 
lipids, carbohydrates) of different Ulva spp. and soy, corn, rice and wheat. Data 
for Ulva were taken from Table 2 as percentages. When single values were 
missing, mean values were used. Data for soy, corn, rice and wheat were taken 
from the United States department of agriculture food data Central website 
(https://fdc.nal.usda.gov/index.html.) as percentages. The analysis was per-
formed using the environment of R (version 4.02.), RStudio (version 2022.02.3). 
Data were not transformed prior to analysis. Percentages were transformed by 
arcsine-square-root transformation to correct for deficiencies of the proportions 
in normal distribution.

https://doi.org/10.1080/10408398.2024.2370489
https://fdc.nal.usda.gov/index.html
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U. fenestrata, which, as indicated by other studies (Colombo 
et  al. 2006; Steinhagen, Kramár, and Toth 2022), has notably 
high PUFA levels compared to other Ulva species.

The carbohydrate fraction characteristically contains sul-
fated polysaccharides, mainly ulvan, representing approxi-
mately 18–29% of the DW (Robic et  al. 2009). Regarding 
micronutrients, Ulva species contain considerable amounts of 
potassium, magnesium, calcium, iron, and provitamin A 
(Table 3; Paiva et  al. 2016). Ulva is also a rich source of bio-
active compounds (Dominguez and Loret 2019). The large 
variations reported for different Ulva species and strains 
(Tables 2 and 3 and Supplementary Tables 1 and 2), even in 
samples with slight genetic variations (Fort et  al. 2019; Ismail 
and Mohamed 2017; Roleda et  al. 2021) are often due to dif-
ferent geographical locations (Tabarsa et  al. 2012; Lee, Chang, 
and Lee 2014; Yaich et  al. 2011; Mamede et  al. 2021) charac-
terized by different environmental conditions (temperature, 
irradiance, season, pH, salinity pCO2; Olsson, Toth, et  al. 
2020; Olsson, Toth, et  al. 2020; Toth et  al. 2020; Fort et  al. 
2019; Jansen et  al. 2022; Lawton et  al. 2021; Queirós et  al. 
2021; Steinhagen, Enge, et  al. 2022). In addition, differences 
in the analytical methods contribute to variability, and the 
need for standardized methods is discussed below. While 
these variations can be used to produce more homogenous or 
optimized biomass (e.g., higher protein) in land-based cultiva-
tion systems with a controlled nitrogen source, nutrient flux, 
aeration regime, and other variables (Ben-Ari et  al. 2014; 
Diamahesa et  al. 2017; Shahar et  al. 2020; Zertuche-González 
et  al. 2021), further advancements in strain selection and a 
better understanding of the genes that control different phe-
notypes are needed in order to advance and optimize the 
aquaculture of Ulva spp. (Simon, McHale, and Sulpice 2022). 
Furthermore, the Ulva-associated microbial community (i.e., 
holobiome) can influence algal growth performances and bio-
chemical content; however, this finding warrants further 
research (Polikovsky et  al. 2020).

Despite a plethora of data on nutritional content, identi-
fying species selection criteria for different industries has 
proved challenging for Ulva spp., mainly because the 

nutritional content is species and site specific. In general, 
several foliose species like U. fenestrata (formerly U. lac-
tuca), or Ulva compressa have shown high protein content 
compared to other species, but the protein levels of a spe-
cies can be doubled by enriching the seaweed with an addi-
tional nitrogen source (e.g., Viera et  al. 2011). In addition, 
selective pressure in regions where green tides occur result 
in fast-growing strains with high pigment and protein con-
tent, suggesting that these strains may be particularly useful 
for aquaculture (Fort et  al. 2020). Therefore, by optimizing 
cultivation conditions, isolating fast growing strains and 
combining future improvements in strain selection and 
selective breeding, Ulva spp. with optimal characteristics for 
any industry of interest can be produced, as has already 
been pointed out by Toth et  al. (2020). Nevertheless, it will 
be important to ensure that the highest quality biomass is 
reserved for food and feed, while lower quality biomass can 
be used in other industries, biomaterials and biostimulants, 
in order to avoid any competition between industries.

3.  Ulva for human consumption: a candidate for 
the food industry and new cuisine

In South Asian regions (China, the Republic of Korea, Japan, 
and Vietnam), seaweeds have been consumed as foods or to 
alleviate diverse conditions (such as goiter), in some cases, 
since ancient times (Mouritsen, Rhatigan, and Pérez-Lloréns 
2019; Blikra et  al. 2021). The production and consumption 
of seaweed continues to be critical in the Southeast Asia 
(China, the Philippines, Indonesia, the Republic of Korea, 
and Japan), i.e., aonori in Japan or gamtae in Korea. However, 
commercial products containing Ulva are not commonly 
found in European supermarkets, except for regions with a 
tradition of seaweed consumption, for example in some 
coastal communities, particularly those with Celtic heritage. 
The interest in Ulva as food has only recently emerged 
among seaweed producers and the food industry. So far, 
many products contain dried or fresh whole algae for a 

Figure 5.  Principal component analysis (PCA) of the fatty acid profiles (left panel) of various Ulva spp. grouped by morphology (tubular or foliose/blade, right 
panel). Two species known to exhibit both morphologies were labeled as “both.” data were sourced from Supplementary Table 2 and analyzed using JMP® pro v. 
17 (SAS Institute Inc., Cary, NC, USA). Prior to analysis, data underwent a log + 0.1 transformation. Trace values (less than 0.1%) were substituted with 0.001%.

https://doi.org/10.1080/10408398.2024.2370489
https://doi.org/10.1080/10408398.2024.2370489
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small niche market. Fresh or dried Ulva can simply be used 
as the main ingredient from home cooking to high-end gas-
tronomy, in dishes such as salads, tempura, or pesto, or can 
replace other green-leaved vegetables in traditional dishes 
(Turan and Cirik 2018). Furthermore, it can replace or 
reduce salt as seasoning in food preparations (Magnusson 
et  al. 2016; Shannon and Abu-Ghannam 2019). However, 
Ulva’s most promising applications are as an enriching ingre-
dient to profit from its versatile potential, better valorize raw 
biomass in food, and increase its sustainable impact.

Cereal-based products such as bread, pasta, or crackers are 
mainly produced from refined flour, being poor in fibers and 
micronutrients. The enrichment of bread with 1–4% Ulva pow-
der or dried flakes can improve the dietary value without impair-
ing the taste (Cofrades, Serdaroǧlu, and Jiménez-Colmenero 
2013; Kusumawati et  al. 2022; Menezes et  al. 2015; Shannon and 
Abu-Ghannam 2019). Incorporation of either 20% fresh 
(Debbarma et  al. 2017; Ainsa et  al. 2022) or 3% dried (Ainsa 
et  al. 2022) Ulva in pasta formulations improves the products’ 
nutritional profiles with higher fiber content while retaining or 
improving the taste. Furthermore, Ulva can serve as gluten-free 
ingredient in pasta or bread and and improves the quality when 
applied in concentrations up to 2%, (Turuk and Banerjee 2023; 
Yesuraj et  al. 2022).

Ulva is also included in processed meats such as burgers 
and sausages and meat replacement products. Supplementation 
with 1–4% Ulva powder in pork patties produces juicier meat 
with less cooking loss (Jeon and Choi 2012). Similar results 
have been observed for fish burgers with 2% Ulva powder 
(Kumarathunge, Jayasinghe, and Abeyrathne 2016). Similar to 
other different seaweed species, substituting approximately 40% 
of meat content in burgers or sausages with whole seaweed can 
result in a tastier and healthier product with less fat, increased 
fibers, and reduced CO2 footprint (Cofrades et  al. 2017; Cox, 
Abu-Ghannam, and Gupta 2010; Mohammed et  al. 2022; 
Peñalver et  al. 2020; Shannon and Abu-Ghannam 2019). 
Additionally, the increasing demand for meat-free analogs 
opens further opportunities for Ulva (Yesuraj et  al. 2022). 
Furthermore, Ulva enriches dairy products such as probiotic 
milk (del Olmo, Picon, and Nuñez 2019), cheese (del Olmo, 
Picon, and Nuñez 2018), seasoned butter and sauces, spreads, 
and mayonnaise (Yesuraj et  al. 2022). Additionally, the addition 
of Ulva biomass or extracts to the manufacturing process can 
modify the products’ technological properties. Ulva’s antioxi-
dant capacity has been explored to increase the shelf life of 
processed meat products (Lorenzo et  al. 2014; Roohinejad et  al. 
2017) or seafood (Jannat-Alipour et  al. 2019). However, more 
research is required to develop products that meet customer 
acceptance. Finally, the characteristic sulfated polysaccharide 
ulvan has been explored in food processing for its gelling and 
water-binding properties similar to other known gelling agents, 
such as carrageenan and agar, rendering ulvan suitable as an 
alternative stabilizer replacing gelatin in vegan products 
(Kraan, 2012).

3.1.  Food safety

The accumulation of contaminants can occur in seaweeds 
from the environment or during their production, 

processing and transformation. These elements may pose 
potential risks to human and animal health (Guo et  al. 
2023). The most common hazards of concern with respect 
to food safety are linked to chemical hazards, iodine and 
heavy metal content found in some seaweed species, based 
on Reports from the FAO/WHO expert meeting (FAO and 
WHO 2022), the Food Safety Authorities of Ireland (FSAI), 
the Nordic Council of Ministers (NCM – consisting of 
Norway, Denmark, Sweden, Iceland and The Faroe Island) 
and New Zealand (NZFS). Additional risks include patho-
genic microorganisms (Salmonella, Bacillus, Norovirus), per-
sistent organic pollutants, radionuclides, biotoxins, and 
microplastics and nanoplastics. Other chemical hazards 
include environmental pollutants such as PCBs, dioxins and 
pesticide residues, but these are not exclusive to food made 
with seaweed. While there is limited data on the occurrence 
of hazards in seaweed, with an attendant paucity of legisla-
tion on the hazards, there is also currently insufficient data 
available to suggest that physical hazards like microplastics 
and nanoplastics pose a significant risk to consumers in 
general through the consumption of seaweed or seaweed-based 
foods. In addition, there is currently no Codex standard or 
guidelines that specifically address food safety vis-à-vis sea-
weed production, processing and utilization. Both FAO and 
WHO believe that there is a significant global regulatory gap 
concerning food safety in seaweed (FAO and WHO, 2022; 
Food Safety Authority of Ireland, 2020; Nordic Council of 
Ministers, 2023; New Zealand Food Safety, 2023).

The maximum level (ML) for iodine varies significantly 
among countries. In China and the EU there are no estab-
lished maximum levels (MLs) except in France (2000 mg/kg 
dry weight), Germany (20 mg/kg dry weight), and Nordic 
countries (115 mg/kg dry weight). A high intake of iodine in 
seaweed within a short period may temporarily induce the 
reversible Wolff-Chaikoff effect (Guo et  al., 2023). Recently, 
Jacobsen et  al. (2023) reviewed the mean content of iodine 
in U. intestinalis, which was higher than in U. fenestrata, 
12.4 and 3.2 mg/100 g dried weight, respectively, but not 
detected in U. rigida. Therefore, iodine levels in Ulva spp. 
do not pose a relevant threat to human health.

Currently, there are no MLs established for heavy metals 
such as arsenic, cadmium, lead and mercury in food supple-
ments made exclusively or mainly of seaweed. The EU MLs 
for lead (3.0 mg/kg wet weight) and mercury (0.1 mg/kg wet 
weight) are set under Regulation (EC) 1881/2006. The MLs 
for cadmium were recently lowered by Regulation (EU) 
1323/2021 to 3 mg/kg wet weight for food supplements. 
Jacobsen et  al. (2023) also found that theamin content of 
inorganic arsenic, lead, and cadmium may also constitute a 
risk for health if seaweed, especially Ulva species, were con-
sumed frequently. On the other hand, in a survey of poten-
tially toxic elements in seaweed in Ireland, Norway and 
Sweden, Ulva fenestrata (formerly U. lactuca) had the lowest 
levels of potentially toxic elements overall (Jönsson and 
Nordberg Karlsson 2023).

While data are lacking on the occurrence of hazards in 
seaweed, there are numerous articles in the literature report-
ing heavy metal concentrations in Ulva spp. In general, the 
levels are species and site specific, but a thorough review of 
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the literature on this topic is currently in progress by the 
current authors. Most of the analyses deal with wild-collected 
seaweed. However, a few studies suggest that aquaculture- 
grown Ulva spp. may contain lower levels of heavy metals 
(Roleda et  al. 2021) and microbial organisms, particularly if 
they are grown in land-based systems with artificial seawater 
(authors own unpublished data).

In conclusion, chemical and biological hazards in Ulva 
spp. may be present, but data occurrence is scarce and lim-
ited, especially for toxic forms of heavy metals. The harmo-
nization of analytical methods to identify and quantify 
chemical hazards is important and crucial to further assess 
the risk of these contaminants. Standards and guidelines 
related to seaweed products can vary nationally, and should 
be unified at the European level. In addition, it is crucial to 
increase knowledge on how the processing methods may 
affect the content of hazards, including the possible and 
unintentional presence of products or substances with 
adverse health effects. The impacts of post-harvest process-
ing on biomass quality within the context of food safety are 
discussed in the section below.

3.2.  Post-harvest processing

Freshly harvested seaweed quickly deteriorates unless stabiliz-
ing processes are used to avoid rapid biodegradation. If the 
macroalgae are not immediately stabilized, spoilage bacterial 
counts rapidly exceed upper limits; molds and yeasts also 
become problematic. Hazard analysis and critical control 
points (HACCP) or other national guidelines should be used 
to identify the critical control points and reduce microbial 
loads at these points (Adams et  al. 2021). Processing methods 
such as washing, blanching, drying, freezing, salting, brining, 
or fermentation, can be performed to ensure food quality and 
safety (Blikra et  al. 2021) and are discussed below.

3.2.1.  Washing
Harvested macroalgae should be washed to remove fouling, 
fauna, sand, and other impurities. This is particularly rele-
vant for Ulva biomass harvested from shallow lagoons or 
at-sea cultivation, whereas for tank-cultivated Ulva grown 
under controlled conditions this might not be necessary. 
For practical reasons, seawater should be used for washing, 
followed by a brief, final rinsing with freshwater if residual 
sea salt needs to be removed (Zhu et  al. 2021) which is 
essential for the use of Ulva as feedstock. However, 
extended freshwater washing reduces the ash content in 
Ulva (Stokvis et  al. 2021) and remarkably influences the 
overall quality of U. tepida and U. ohnoi biomass 
(Magnusson et  al. 2016). The removal of inorganic miner-
als in the washing process can be explained by leaching 
due to osmotic changes, which indirectly increase the 
organic matter proportion, protein content, and caloric 
energy by 11–24% and 20–50%, respectively, and can leach 
other valuable compounds from the biomass, such as ulvan 
(Magnusson et  al. 2016).

3.2.2.  Blanching
Blanching is commonly used in processing seaweed to (i) 
reduce microbiological hazards caused by harmful bacteria 
within the seawater or by post-harvest contamination (Quero 
et  al. 2015; Blikra et  al. 2019; Ho and Redan 2022; Løvdal 
et  al. 2021) (ii) inactivate inherent enzymes that initiate sea-
weed tissue breakdown (iii) reduce excess iodine levels, 
mostly relevant for iodine-rich brown algae (FAO and WHO 
2022; Nielsen et  al. 2020; Bruhn et  al. 2019; Stévant et  al. 
2018) but also in Ulva intestinalis (Nitschke and Stengel 
2016) (iv) potentially improve the profile of beneficial com-
pounds, including a higher ratio of essential amino acids 
and a higher proportion of omega-3 fatty acids (Nielsen 
et  al. 2020) (v) increase value and consumer acceptability by 
improving seaweed’s organoleptic quality (Akomea-Frempong 
et  al. 2021), such as reducing unattractive fishy odors from 
U. rigida (Thunyawanichnondh et  al. 2020) and improving 
seaweed color (Blikra et  al. 2019).

3.2.3.  Drying
Drying is the most applied method for preservation of sea-
weed ensuring a long shelf life and enabling the most eco-
nomical solution for storage and transport. Ulva has the 
advantage of drying quickly due to its thin thallus structure. 
For large-scale seaweed harvests, either sun-drying or con-
vective drying is usually applied. Although solar drying is 
the most sustainable solution, its application may be limited 
to warm and sunny climates. Furthermore, in its simplest 
form as unprotected open-air drying, the hygienic quality of 
the biomass for food might be impaired via exposure to 
possible airborne microbial and other contamination. 
Well-constructed solar dryers, however, that protect against 
contamination, e.g., on racks off the ground, with natural 
ventilation and roofing, can be suitable for food quality. In 
regions with insufficient solar exposure, convective oven 
drying is the method of choice for drying seaweed, although 
this technology requires certain investments and is associ-
ated with high energy costs (FAO and WHO 2022; Kadam 
et  al. 2015; Santiago and Moreira 2020). Other drying meth-
ods, such as freeze-drying or microwave-assisted drying, bet-
ter maintain the bioactivities of nutrients (Amorim, Nardelli, 
and Chow 2020) but they are expensive and technically only 
suitable for low-volume, high-value commercial applications 
(Badmus, Taggart, and Boyd 2019).

The choice of temperature in convective drying modifies 
the conservation of nutritional values, bioactive compounds, 
and antioxidant capacity (Rodríguez-Bernaldo de Quirós and 
López-Hernández 2021); it depends on the specific applica-
tion of the commercial end-product. Rapid drying at higher 
temperatures can avoid contamination and oxidation, which 
may occur with prolonged drying at lower temperatures but 
might deteriorate heat-labile compounds, particularly certain 
polyphenols (Badmus, Taggart, and Boyd 2019). Silva et  al. 
(2019) investigated different oven-drying temperatures (25, 
40, and 60 °C) in U. rigida, Gracilaria sp., and Fucus vesicu-
losus, suggesting 25 °C a favorable temperature for extracting 
pigments from Ulva, whereas higher temperatures increase 
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ulvan yield. Interestingly, in contrast to Gracilaria and Fucus, 
higher drying temperatures (60 °C) did not alter the antiox-
idant activity in Ulva material. In a study with Chilean Ulva 
spp., Uribe et  al. (2019) compared different drying methods 
(freeze-, vacuum-, solar-, and convective-drying) and showed 
the best retained physicochemical parameters and antioxi-
dant capacity after convective drying with 70 °C for 120 min. 
Regarding the seaweed flavor after drying, semi-drying 
(using a solar-drying system) releases more flavor com-
pounds, such as free amino acids and volatile compounds, 
resulting in a better taste than fully dried seaweed. Seaweed 
maturation, also termed curing or ripening, can also improve 
seaweed flavor and aroma (Stévant et  al. 2020). Even before 
processing, the seawater type and quality significantly influ-
ence the seaweed flavor (personal observations by Jessica 
Adams and Laurie Hofmann), and further research is needed 
to investigate how seaweed can be grown and processed to 
optimize taste for the European market.

3.2.4.  Salting, brining, and fermentation
A low-cost and low-tech stabilization alternative to thermal 
processing can be dry salting or brining in a salt solution. 
Compared to thermal drying, osmotic dehydration using salt 
allows to retain an almost fresh food matrix while maintain-
ing the nutritional values. Pinheiro et  al. (2019) investigated 
the quality and nutritional parameters of Ulva rigida over six 
months of storage after air drying, brining in salt solution 
(25%, w/v), and dry-salting (28 and 49%, w/w); the nutri-
tional parameters remained stable in the salt-treated samples 
while only showing slight alterations in color and texture. 
Although this traditional preservation method is not com-
mon in the Western seaweed industry, this might be an 
advantage for certain applications and producers.

Fermentation is another traditional way of preserving 
crops and ensiling Ulva to simultaneously preserve fresh 
biomass and to improve the quality of feedstock for biore-
finery has been demonstrated before (Wu, Li, and Cheng 
2018). However, seaweed fermentation technology for food 
purposes is still an underdeveloped yet efficient method for 
adding nutritional value by enhancing its digestibility and 
the bioavailability of bioactive compounds (Wu, Li, and 
Cheng 2018; Campbell et  al. 2020; Reboleira et  al. 2021; 
Strauss 2023). In the past decade, seaweed lacto-fermentation 
has been proposed as a promising new sector in the food 
industry (Uchida and Miyoshi 2013), in which beneficial 
strains such as lactic acid bacteria (LAB) metabolize carbo-
hydrates into lactic acid and CO2. Consequently, the food 
is preserved by the acidic environment and simultaneously 
develops distinctive textures and flavors from other organic 
acids, flavonoids, and free amino acids (Gupta and 
Abu-Ghannam 2012). Importantly, seaweed fermentation 
improves organoleptic qualities, which has been shown in 
brown algae (Figueroa, Farfán, and Aguilera 2021), but also 
in Ulva (Hung et  al. 2023). The unwanted sea smell that 
often impedes the culinary acceptance of seaweed can be 
reduced or omitted by lactofermentation (Hung et  al. 2023; 
Bruhn et  al. 2019; Duarte, Bruhn, and Krause-Jensen 2021).

However, despite the high total carbohydrate content of 
approximately 50% in Ulva, only small amounts of these 
sugars can be directly metabolized by LAB into lactic acid 
because the majority comprises uncommon, complex poly-
saccharides (Hwang et  al. 2011). Therefore, to achieve suc-
cessful seaweed fermentation, a pretreatment is required, 
such as heat treatment or biochemical treatment using sac-
charifying enzymes. This splits the cell wall structure, which 
otherwise holds valuable compounds for digestion (Gupta, 
Cox, and Abu-Ghannam 2011; Bruhn et  al. 2019; Maneein 
et  al. 2018; Akomea-Frempong et  al. 2021). Furthermore, the 
choice of suitable LAB strains is essential for the success of 
large-scale fermentation. Currently, commercial applications 
of lactofermentation remain marginal, but these promising 
results may encourage further research with Ulva and inspire 
more food applications.

4.  Ulva in aquafeed: status quo, challenges, and 
opportunities

4.1.  Status quo

Aquaculture’s further growth, like that of all livestock pro-
duction industries, depends on the supply of sustainable feed 
protein and energy resources and optimizing aquafeed pro-
duction and use will be crucial to support industry growth. 
Nutrition is the most expensive aspect of producing edible 
finfish (Naylor et  al. 2009). The daily aquafeeds consumed 
account for approximately 75% of production costs (Lamm, 
2003), mostly from fishmeal and fish oil, although there 
have been widespread efforts to reduce these costs in past 
years. However, due to the rapid growth of the entire aqua-
culture sector, the volumes of these resources must keep up 
with the demand for sustainability. Conventional feed 
resources, such as fishmeal, are expensive, and their future 
availability will be limited by an expected reduction in fish-
eries. Therefore, significant effort is being directed at reduc-
ing the content of the expensive and unsustainable fishmeal 
and fish oil in formulated feed, replacing them with other 
more sustainable nutritional ingredients.

Plant products have become common alternatives to 
replace fishmeal and fish oil in formulated aquafeeds. 
Increasing regulations on using animal-derived products in 
feed (e.g., bone meal) and the relatively low cost of plant 
production favor using plant meals and oils in aquafeeds 
(Wan et  al. 2019; Gatlin et  al. 2007) However, growing 
demands for land crops for aquafeed production will increase 
aquaculture’s dependence on the two exhaustible core 
resources: land and water, both required for plant produc-
tion, and will compete with the production of human food. 
For example, China and Norway have been experiencing a 
shortage of high-quality proteins from soybean (Nair et  al. 
2023; Kim et  al. 2019; Lindberg et  al. 2016), and a larger 
supply of protein crops is recently needed in Europe. The 
soy industry is associated with ecosystem degradation, 
resource depletion, and greenhouse gas emissions in some of 
the world’s most biodiverse regions. Life cycle assessment 
studies underline that soy as an aquafeed ingredient is the 
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main contributor to the environmental impacts of Norwegian 
salmon production (Hognes et  al. 2012; Ólafsdóttir et  al. 
2013; Anmarkrud 2023). Furthermore, the high content of 
anti-nutritional factors (ANFs), low palatability, continued 
deforestation, and increasing use of nonrenewable fertilizers 
threaten the potential reliance on plants for aquafeeds. Thus, 
for more sustainable global aquaculture, alternative protein 
and lipid sources with lower costs and ecological footprints 
must be identified.

The application of Ulva in experimental diets for finfish 
has become an increasingly widespread method since the 
study by Nakagawa, Kasahara, and Sugiyama (1987) on U. 
pertusa in the diet of black sea bream (Acanthopagrus 
schlegeli). Various diets have been developed and tested on 
species from different nominal trophic levels, including the 
strict herbivore Nile tilapia (Oreochromis niloticus), omni-
vores such as the black, red, and gilthead seabream 
(Acanthopagrus shlegeli, Pagrus major, and Sparus aurata, 
respectively), and straight carnivores such as the European 
sea bass (Dicentrarchus labrax), rainbow trout (Oncorhynchus 
mykiss), and the Atlantic salmon (Salmo salar) (Table 4).

Many of these species are characterized by high produc-
tion yields and relatively significant market share in terms of 
volume, value, or both (FAO Fisheries Division). Similarly, 
various experiments have been performed on the king prawn 
(Litopenaeus vannamei), one of the two most produced spe-
cies by the shrimp aquaculture industry worldwide (Boyd 
and Jescovitch 2020). The examination of Ulva’s nutritional 
value expanded far beyond any market size or value thresh-
old with trials on fish like goldfish (Carassius auratus), jew-
fish (Argyrosomus japonicus), croaker (Larimichthys polyactis), 
nibbler (Girella laevifrons), snapper (Lutjanus stellatus), sole 
(Solea senegalensis), and others (Table 4). Various studies on 
finfish have shown that regardless of the fish or Ulva species 
examined, an inclusion rate of 15–20% in the fish diet is not 
detrimental to fish growth, feed conversion ratio (FCR), or 
protein intake (Table 4). However, the biological trophic 
level of the fed fish may determine the nutrient utilization 
efficiency of Ulva. It is likely that aquafeeds with a lower 
inclusion rate of 5% is more suitable in nutrition of carniv-
orous fish (e.g., European seabass, rainbow trout). In con-
trary, a higher ratio of Ulva may be more beneficial for fish 
of low trophic level like tilapia, carps and catfish (Table 4). 
Moreover, in a trial with Nile tilapia (O. niloticus), 30% of 
U. intestinalis in the diet did not affect fish growth perfor-
mances or feed conversion. Similar results were obtained in 
a 20-week trial with seabream, where 29.1% of U. lactuca in 
the aquafeed did not harm the fish’s performance even when 
accompanied by the elimination of fishmeal from the diet 
and limitation of the fish oil content to only 0.9% (Shpigel 
et  al. 2017). In studies of commercially valuable inverte-
brates, including shrimp, abalone, sea urchins, and sea 
cucumbers, the results confirmed the potential to increase 
Ulva content in aquafeeds by over 20% (Table 4). Moreover, 
commercial production of abalone in Europe (Haliotis tuber-
culata) and South Africa (Haliotis midae) relies on Ulva and 
other macroalgae or compound feed as a feeding source, 
contributing to satisfying growth rates. The significant results 
of the various trials with fish and invertebrates are 

promising, as the examined Ulva originated from various 
genotypes (at least eight species), geographical areas, sea-
sons, and environmental conditions, encompassing wild and 
cultured Ulva. Moreover, they also provided evidence con-
cerning the potential of dietary Ulva in the long-term nutri-
tion of aquatic animals. For example, the positive impact of 
U. ohnoi in the diet of Senegalese sole (S. senegalensis) on 
fillet texture and color was evident six months after transfer-
ring fish to a commercial Ulva-free diet (Sáez et  al. 2020).

4.2.  Challenges

Large quantities of Ulva biomass are available worldwide, 
although their quality varies greatly, and biomass valorization 
is difficult. Natural stocks display a higher uncertainty of bio-
mass yield and quality than cultivated biomass. The levels of 
protein and essential amino acids can be relatively low and 
variable depending on seasonal changes, strain variability, and 
habitat-related forces like the local salinity and depth, as men-
tioned above. Contrastingly, algaculture appears to be the 
future for developing Ulva-based products because of the pos-
sibility of controlling and optimizing factors related to yield 
and quality at different stages of production (Calheiros et  al. 
2021). For example, recent studies with large-scale U. fenes-
trata cultivation in Sweden showed that feasibility and sus-
tainable potential for large-scale offshore cultivation can be 
achieved by increasing the seedling density in the hatchery, 
resulting in higher biomass yield (Steinhagen, Enge et al. 2021).

The presence of ANFs also presents a challenge to apply-
ing Ulva in aquafeeds. Studies that followed the results from 
trials with sole and Pacific white shrimp revealed that the 
observed growth deficits were due to the presence of ANFs 
in the dietary Ulva (Qiu, Neori, et  al. 2017; Vizcaíno et  al. 
2020). ANFs in Ulva include alkaloids, tannins, saponins, 
lectins, polyphenolics, phytic acid, and other inhibitors that 
reduce the bioavailability and digestibility of algal nutrients 
(Aguilera-Morales et  al. 2005). Several surveys have been 
conducted to analyze potential ANFs in wild Ulva, such as 
those in green tides (Wu et al. 2013; Li et al. 2018). Calheiros 
et  al. (2021) concluded that the ANFs of Ulva were lower 
than that of soybean. However, in another study, high levels 
of trypsin and amylase inhibitors were observed in the win-
ter Ulva-rich biomass beached at Baja California, Mexico (de 
Oliveira et  al. 2009). In addition, anti-nutritional tannins, 
polyphenolics, and phytic acid were observed in the col-
lected biomass. Although data on the harmless inclusion rate 
of Ulva in aquafeed can be gleaned from previous studies, 
the number of specific studies on ANFs in Ulva is negligi-
ble. Such studies may provide supportive and applicable 
information on the factors determining the presence and 
level of ANFs in the biomass, their active mechanism, the 
threshold level beyond which they become harmful, and 
methods to neutralize their activity.

4.3.  Opportunities

More empirical knowledge on ANFs in Ulva biomass is 
expected to become available in the coming years due to the 
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rapid increase in Ulva research and development in fish 
nutrition. The mechanisms by which Ulva ANFs harm fish 
can be concluded from studies on homologous compounds 
such as those derived from plants. For example, agglutinin 
is a common lectin in various plants, which is also found in 
Ulva (e.g., U. curvata collected in the US; (Bird et  al. 1993)). 
Soybean agglutinin in the diet of Atlantic salmon was asso-
ciated with high mucus secretion in the intestine, limiting 
the enzymatic and absorptive capacity (Hendriks et  al. 1990). 
Few studies have successfully demonstrated the potential 
active mechanisms of Ulva ANFs in fish diets (Vizcaíno 
et  al. 2020; Vizcaíno et  al. 2019; Sáez et  al. 2020; 
Martínez-Antequera et  al. 2021). Among these, the bioactiv-
ity of protease inhibitors in Ulva ohnoi was confirmed in 
trials introducing digestive proteases from Senegalese sole, 
gilthead seabream, or European seabass with the U. ohnoi 
extract. The U. ohnoi extract inhibited fish digestive prote-
ases at a rate of approximately 70% (Vizcaíno et  al. 2020). 
However, the study also revealed that heat treatment of this 
alga significantly reduces the harmful inhibition to only 
20%, but is accompanied by damage to amino acids and 
bioactive molecules (Vizcaíno et  al. 2020). Another trial 
revealed that 5% of heat-treated Ulva sp. in the diet improved 
gilthead sea bream tolerance to hypoxia by enhancing the 
antioxidant properties of the heat-treated biomass (Magnoni 
et  al. 2017). Post-harvest hydrolysis is also considered effi-
cient in improving Ulva’s nutritional value and digestibility. 
An improved amino acid profile and higher in vitro nitrogen 
digestibility were observed in an Ulva extract heat-treated 
with enzymatic hydrolysis (Bikker et  al. 2016). The inclusion 
of Ulva hydrolysate in the diet of European bass improved 
fish protein utilization without detrimentally affecting growth 
(Fernandes et  al. 2022). Nevertheless, as in land crops, 
improving crude biomass often requires high energy invest-
ment, thus compromising the cost-effectiveness and sustain-
ability of such processes.

The economic impact of including Ulva in fish diets has 
not yet been well documented. However, Shpigel et  al. (2017) 
reported the first calculations of the achievable savings in 
feed, fish production, and operating costs when culturing 
seabream on a 14.6% protein-rich Ulva diet (30–36% DW 
protein). The total feed cost was reduced by $0.25 kg−1. A feed 
conversion ratio of 1.7 resulted in a cost reduction of $0.45 kg−1 
of fish produced. Because fish feed can account for more than 
60% of the operating costs in intensive aquaculture, approxi-
mately 10% savings on feed costs are economically relevant.

In conclusion, Ulva is a new value-added dietary resource 
in aquafeed. However, seasonal and species-dependent vari-
ability in the nutritional content, ANFs and the lack of com-
mercially sufficient quantities of Ulva biomass are limitations 
that the aquafeed production industry has yet to overcome 
(Wan et  al. 2019). Furthermore, sustainable technologies 
(e.g., IMTA, integrated marine systems) still need to be 
improved to enable large-scale commercial production of 
such important aquafeed resources. However, as Ulva spp. 
can thrive under high stocking densities, they are excep-
tional candidates for large-scale production for future aqua-
feed formulations (Al-Hafedh, Alam, and Buschmann 2014; 
Steinhagen, Larsson, et  al. 2022). Furthermore, before 

considering Ulva as a biocircular feed ingredient, further 
measures are needed to monitor their heavy metal content. 
Therefore, monitoring and selection programs for harvesting 
Ulva biomass will provide aquafeed manufacturers with high 
nutritional value and low content of undesired ingredients.

5.  Ulva in terrestrial feed

Approximately 70% of protein, including fish meal, for ani-
mal feed is imported into Europe. Increasing food-feed-fuel 
competition for limited natural resources has threatened 
future economic and supply chain security. Therefore, devel-
oping emerging alternative ingredients for animal feed based 
on locally available resources is being emphasized to reduce 
feed costs, improve animal feed self-sufficiency, and maxi-
mize the land/water/energy space for agricultural production 
for human consumption across Europe and the world. The 
expanding global population and greater affluence are 
expected to increase global demand for animal-derived 
goods, which will substantially affect animal agribusiness 
due to the overuse of maize and soybean crops - the two 
most important traditional livestock feeds. Consequently, 
more affordable animal feed components are required. 
Recently, many studies have been conducted using seaweed 
as a protein source and nutraceuticals in terrestrial animal 
nutrition. Based on nutrition science, the nutritive value of 
seaweeds was too poor to be recommended for livestock 
during the early twentieth century (Evans and Critchley 
2014). The prevalence of refractory polysaccharides in sea-
weed cell walls has anti-nutritional consequences in 
non-ruminants, such as chickens and pigs, and the digest-
ibility of the proteins is inhibited owing to their entrapment 
in the cellular matrix. Thus, a corresponding reduction in 
feed breakdown and uptake by retaining vital nutrients 
(Øverland, Mydland, and Skrede 2019) advocates the use of 
specialized carbohydrate-active enzymes, widely used as feed 
additives, or fermentation to improve animal digestion and 
specific growth rate. For example, Bikker et  al. (2016) 
showed that simulated in vitro ileal nitrogen digestibility was 
increased from 79.9% in intact Ulva lactuca to 84.7% in the 
extracted fraction, presumably through the release of cell 
wall-bound or encapsulated protein during pretreatment 
hydrolysis. Pretreatment hydrolysis and fermentation may 
also increase protein digestibility by degrading insoluble 
fiber (Marrion et  al. 2003). In addition, different studies 
have highlighted the capacity of the ulvan to stimulate 
mucin secretion in the intestinal tract (Barcelo et  al. 2000). 
The main findings from studies investigating the impact of 
Ulva as a feed supplement for poligastric and monogastric 
terrestrial animals and poultry are discussed below.

5.1.  Polygastric terrestrial animals (cattle, sheep, and 
goats)

To date, studies on using marine algae in bovine, caprine, and 
other ruminant nutrition have mainly concentrated on adding 
small amounts of various marine algae species to the feed and 
then evaluating their prebiotic activity for improved animal 
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performance (Morais et  al. (2020); the information is scarce). 
The main drawbacks to using U. lactuca in ruminant diets are 
frequently cited as their low dry matter and high ash content 
(Tayyab et  al. 2016) and low effective degradability (41% for 
organic matter degradability) values (Arieli, Kissil, and Sklan 
1993). The high mineral content of seaweeds restricts their 
net, digestible, and metabolizable energy values and gross 
energy content. Ulva has been regarded to be nearly equiva-
lent to a low-to-moderate quality forage and ideal to be used 
with feeds that have a high energy/low protein content like 
cereal crops (Arieli, Kissil, and Sklan 1993).

Samara et  al. (2013) reported that 3%–5% (DM) of Ulva 
lactuca could be safely supplemented to lambs without neg-
atively affecting blood water balance, liver, or kidney func-
tions. However, feeding rams a lamb diet supplemented with 
intact Ulva lactuca did not positively affect growth perfor-
mance, thermoregulatory responses, or plasma oxidative sta-
tus, whereas feeding lambs intact Ulva lactuca negatively 
affected rams’ seminal and testicular characteristics, which 
were more pronounced at 5% than at 3%. Male lambs can 
consume up to 20% U. lactuca in a diet composed primarily 
of vetch hay or concentrate without negatively affecting the 
diet’s flavor. It had a moderate energy digestibility (60%) and 
a low (40%) protein degradability (Arieli, Kissil, and Sklan 
1993). El-Waziry et  al. (2015) reported that U. lactuca sup-
plementation did not affect sheep growth, in vitro gas pro-
duction, potential degradability, estimated energy, organic 
matter digestibility, or microbial protein synthesis. 
Furthermore, Ventura and Castañón’s (1998) concluded that 
U. lactuca is a high-protein, medium-quality forage for goats.

In a different study (Rey-Crespo, López-Alonso, and 
Miranda 2014), adding a seaweed blend (Ulva rigida, 
Laminaria ochroleuca, Saccharina latissima, Saccorhiza poly-
schides, Mastocarpus stellatus, and Sargassum muticum) to 
the diets of dairy cows at a rate of 100 g/cow/day increased 
the amount of iodine in the milk. This suggests that incor-
porating seaweed into the diet is a viable method of increas-
ing iodine levels in milk.

Although various results have been reported with variable 
effects on rumen fermentation, Ulva has shown promising 
potential for reducing ruminal methane production in vitro 
(Dubois et  al. 2013; Machado et  al. 2014; Kinley et  al. 2016). 
When incubated at 25%, Ulva sp. significantly decreased 
methanogenesis from 101 mL g−1 DM to 86.2 mL g−1 DM 
compared to the control; however, the effect on methane 
production depended on the substrate because all seaweeds 
decreased methane production when combined with hay, but 
only Gigartina sp. reduced methane production when incu-
bated with corn silage (Maia et  al. 2016). Recently, Ulva sp. 
was the only macroalgae species tested that did not reduce 
methane production (Mihaila et  al. 2022), suggesting that 
more research is needed to reach a more conclusive result 
regarding the impact of Ulva spp. on methane production.

5.2.  Monogastric terrestrial animals (swine, cuniculus)

Recently, seaweeds have been included in low amounts 
(1–2% for the potential benefits to pig health and meat Ex
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quality (Mišurcová, 2011). A new feed supplement contain-
ing Ulva enriched with Zn (II) and Cu (II) as a dietary 
source of microminerals for pigs showed higher bioavailabil-
ity than an inorganic salt control when fed to piegs 
(Michalak, Chojnacka, and Korniewicz 2015). Furthermore, 
an algae–clay-based complex made from Ulva sp., Solieria 
chordalis, and montmorillonite clay increased the ileal digest-
ibility of energy and essential amino acids when added to 
the diets of growing pigs (Suarez and Gallissot 2016). A 
study using an in vitro system of porcine intestinal epithelial 
cells showed that ulvan from Ulva armoricana upregulated 
the gene expression of cytokines such as IL1, IL6, IL8, and 
TNF (Berri et  al. 2017, Bikker et  al. 2016). The immuno-
modulatory effect of Ulva armoricana was evaluated in sows 
by Bussy et  al. (2019). The higher dietary level increased 
anti-Bordetella IgG in the sow’s blood and colostrum, 
whereas with the middle dietary integration, IgA increased 
in milk. Thus, based on digestibility, Ulva may be a better 
feed ingredient for pigs than for poultry (see below), whereas 
the extracted fraction seems a promising ingredient for fur-
ther evaluation in both organisms. Based on the essential 
amino acid content and in vitro nitrogen (85%) and organic 
matter (90%) digestibility, the extracted fraction seems a 
promising protein source in diets for monogastric animals 
with improved characteristics compared to intact Ulva 
(Bikker et  al. 2016). Furthermore, a recent study has found 
that enzymatic supplementation with carbohydrase, such as 
the recombinant ulvan lyase, may exacerbate the indigestibil-
ity effects observed from feeding U. lactuca alone to piglets 
(Ribeiro et  al. 2024).

Studies investigating the effect of Ulva-supplemented diets 
on other terrestrial animals are rare; however, meal supple-
mented with low amounts (1%) of Ulva have shown positive 
effects on the growth performance and diet digestibility in 
rabbits, with no negative hematological or biochemical 
effects on rabbit health (El-Banna et  al. 2005).

5.3.  Poultry

Several studies have investigated the influence of Ulva spp. 
as a feed additive on chicken development and/or carcass 
characteristics (Matshogo, Mnisi, and Mlambo 2020; 
Abudabos et  al. 2013; Nhlane et  al. 2021; Thavasi Alagan 
et  al. 2020; Ventura, Castañon, and McNab 1994). Most 
studies have shown that Ulva spp. can be used at low inclu-
sion levels (<10%) without any suppression in the growth 
performance of chickens. Green seaweed meal derived from 
U. lactuca at 0, 2, 2.5, 3, and 3.5% had no adverse effect on 
the growth performance, visceral organ size, carcass charac-
teristics, and meat quality of indigenous Boschveld chicken 
(Nhlane et  al. 2021). Similarly, the addition of Ulva-based 
green seaweed meal (0, 20, 25, 30, and 35 g kg−1) had no 
significant effect on the growth performance of broiler 
chickens; however, increases in various meat shelf-life indi-
ces were observed (Matshogo, Mnisi, and Mlambo 2020). 
Furthermore, corn can be replaced with 3% U. lactuca with-
out affecting growth performance while improving the 
dressing percentage and breast muscle yield (Abudabos 

et  al. 2013). In addition, broiler diets can be supplemented 
with U. lactuca without affecting health and growth perfor-
mance (Nhlane et  al. 2021). Ventura, Castañon, and McNab 
(1994) concluded that feeding U. rigida beyond 10% in the 
diet reduces the feed intake and suppresses the growth per-
formance of broiler chickens, suggesting that Ulva supple-
mentation levels should remain below 10%.

Using Ulva spp. in chicken feed at high concentrations is 
likely restricted because fiber fractions of indigestible algal 
cellulose and hemicelluloses (Øverland, Mydland, and Skrede 
2019), which primarily consist of gel-forming ulvan and 
insoluble cellulose, as well as trace amounts of glucuronans 
and xyloglucan (Lahaye and Robic 2007), may impair nutri-
ent digestibility, suppressing growth performance (Kraan, 
2012). Enriched ash content can also make seaweeds inap-
propriate for animal diets, especially monogastric animals, at 
higher concentrations. In contrast, microalgae have been 
suggested to be a promising alternative feedstock for live-
stock and poultry (Saadaoui et  al. 2021). Nevertheless, the 
scale and cost of production needed and potential competi-
tion with human consumption present limitations for 
microalgae in feed as well. The major benefit of using mac-
roalgae for feed is that biomass from algal blooms which is 
unsuitable for human consumption could be valorized for 
feed. Therefore, advanced procedures, which can decrease 
ash content and improve digestibility are needed to improve 
the acceptable feed components from Ulva spp.

Digestibility can be improved by enzymatic hydrolysis 
with appropriate agents for seaweed species since the chem-
ical makeup of seaweeds is different from that of terrestrial 
plants. Carbohydrate-active enzymes (CAZymes) have 
emerged as a promising alternative to destroy the Ulva spp. 
cell wall due to the efficacy of these enzymes in hydrolyzing 
Ulva spp. material for protein and carbohydrate extractions 
(Batista et  al. 2020; Postma et  al. 2018). Moreover, CAZymes 
have demonstrated carbohydrate action in microalgae cell 
walls (Coelho et  al. 2020). Thus, the degradation of seaweed 
biomass with feed enzymes would optimize their utilization 
as feedstuffs to partially replace unsustainable and conven-
tional sources, such as maize and soybean meal (Costa et  al. 
2021). Costa et  al. (2022) conducted a trial on broiler chick-
ens to study the influence of U. lactuca (15%) with and 
without enzyme addition (carbohydrase), indicating that 
15% U. lactuca resulted in no harmful effects on growth 
performance and improved meat quality because of antioxi-
dant influence, mineral, and PUFA (n-3) accumulation. 
Another study assessed the pretreatment of edible seaweed 
(Ulva spp.) with a mixture of proteolytic and fibrolytic 
enzymes on the physical and meat quality characteristics of 
broiler chickens (Matshogo, Mnisi, and Mlambo 2021), 
demonstrating that seaweed pretreatment with the enzyme 
mixture did not affect feed consumption, physiological 
responses, and carcass characteristics of broiler chickens.

In contrast, a co-product of Ulva laetevirens (synonomous 
with U. australis) exposed to a wide endo-protease supple-
mentation in a broiler’s diet showed no distinct effect on 
their growth performance, whereas protease pretreatment 
masked or suppressed the health-promoting bioactive sub-
stance of U. laetevirens (Stokvis et  al. 2022). Ulva laetevirens 
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improved the feed conversion rate of broiler chickens and 
reduced the digestibility and villus height, whereas protease 
pretreatment failed to improve growth performance and 
other health-related traits. It is critical to obtain a better 
knowledge of how the nutritional components of Ulva spp. 
behave in in vitro digestibility tests and the digestive tract of 
broiler chickens to explore the impacts of Ulva inclusion in 
poultry diets.

Given the protein content of wild Ulva, it can be con-
cluded that wild Ulva is not a good source of protein (com-
pared to any major vegetable protein source used in animal 
diets) and the presence of structural carbohydrates (usually 
referred to as fiber) limits the use of Ulva in diets for mono-
gastric animals (poultry and pigs). Nevertheless, Ulva can be 
used in ruminant (cow, sheep, and goat) diets, however, 
studies are still underway since the fate of sulfonated carbo-
hydrates is not yet known.

6.  Beyond food and feed – Ulva in biomaterials

In 2019, the seaweed hydrocolloid industry was valued at 
1.74 billion USD. Nearly 50 years of seaweed bioprospecting 
have resulted in over 3,000 marine natural products or bio-
active molecules from seaweeds (Ferdouse et al. 2018). While 
green seaweeds do not contribute to the hydrocolloid indus-
try and only approximately 8% of the marine natural prod-
ucts or bioactive molecules come from green seaweeds 
(Ferdouse et  al. 2018), they still demonstrate significant 
potential in biomaterials industries, particularly due to the 
presence of ulvan. Ulvan has attracted increasing attention 
in the last decade, considering that less than five papers on 
ulvan were published annually during 2000–2009, but more 
than 35 papers were published in 2019 (Cindana Mo’o et  al. 
2020). The benefits and potential of ulvan in diverse bio-
technical applications have already been thoroughly reviewed 
by several authors (Kidgell et  al. (2019) for review); there-
fore, ulvan was not the focus of this section. However, we 
provide insights into the potential use of Ulva in other bio-
materials, including packaging, which is comprehensively 
discussed below.

6.1.  Packaging (packaging films and packaging 
materials)

The new circular economy plan, which is pivotal in the 
European Green Deal, EC’s agenda, and UNSDGs for sus-
tainable growth, includes designing sustainable products, 
empowering consumers, and improving reuse in production 
processes. Some key product value chains include packaging, 
plastics, textiles, construction, food, water, and nutrients. 
Thus, to meet these initiatives and those for protecting and 
restoring the marine environment, new production concepts 
are required to address the growing demand and provide 
sufficient quantities of high-quality materials and food in the 
future (Eroldoğan et  al. 2022). Over half of the plastics 
made are only used once (Gross, 2017), and over 99% of 
plastic packaging is produced from petroleum-based sources 
(Arrieta et  al. 2017). Rethinking and redesigning sustainable 

packaging materials using natural resources to replace 
single-use plastics will be essential to achieving the new cir-
cular economy action plan (European Commission 2022). 
Marine resources, including seaweed, provide an enormous 
pool of yet unexplored and potentially valuable resources for 
producing diverse biomaterials, including packaging, and 
interest is growing in the use of macroalgae in the packag-
ing industry. The global seaweed-based packaging market is 
expected to account for $613.42 million USD by 2029 (Data 
Bridge Market Research). Diverse types of films for food 
packaging have recently been developed (Abdul Khalil et  al. 
2017; Amin 2021; Gomaa et  al. 2022; Ganesan, Shanmugam, 
Palaniappan, et  al. 2018) from macroalgae-derived sources. 
Considering Ulva, most packaging biofilms are produced by 
extracting ulvan and combining it with a plasticizer, such as 
polyethylene glycol (PEG), sorbitol, or glycerol (Davoodi, 
Milani, and Farahmandfar 2021; Guidara et  al. 2019, 2020). 
In some cases, ulvan is combined with another natural 
material, such as cellulose extracted from the same species 
(Gomaa et  al. 2022) or red algal polysaccharides (Ganesan, 
Shanmugam, and Bhat 2018; Ganesan et  al. 2018). In many 
cases, ulvan addition to the packaging film increased the 
film’s antioxidant activity (Amin 2021; Gomaa et  al. 2022; 
Ganesan et  al. 2018), suggesting that such seaweed-based 
packaging films may increase the shelf-life of certain pack-
aged products.

Currently, most packaging products are produced from 
brown or red algae (e.g., products from Evoware (biodegrad-
able, edible seaweed-based packaging), AMAM (agar plas-
ticity), Ooho (edible water packets from seaweed extracts), 
Loliware (seaweed-based cups and straws), Algopack 
(brown-algae based bioplastics), Kelpn (kelp-based bioplas-
tic), and Janoodam (seaweed-based bowls and lids)). To our 
knowledge, the only known Ulva-based packaging products 
are produced by the company Eranova (https://
eranovabioplastics.com/technology/?lang=en), by enriching 
the content of starch, which is then extracted using an enzy-
matic cracking technique and then processed into biode-
gradable or durable bioplastic. However, some of the authors 
of the current work are presently conducting research to 
develop a sustainably produced, biodegradable, edible 
seaweed-based packaging material for the fast-food industry 
using mixtures of macroalgae biomass. This process requires 
no extraction, and is essentially waste-free. An initial screen-
ing of local seaweed species for packaging functionality led 
to testing and cultivating several species for seaweed-based 
packaging. Depending on the type and mixture of seaweed 
used and the applied preparation technologies (e.g., grind-
ing), different material properties of the produced 
macroalgal-based packaging can be achieved. For example, 
the particle size distribution and film-forming abilities of the 
packaging material vary and have different material charac-
teristics, such as lower or higher porosity, thicker and stron-
ger films, or different material strengths. In external beta 
testing of the prototype with food products (baked fish and 
potato salad), 79–91% of customers rated the edible mac-
roalgae packaging as good to very good (Bosse and Hofmann 
2020). Based on these results, different types of packaging 
material can be developed for different functional uses, 

https://eranovabioplastics.com/technology/?lang=en
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including in industries outside of food, by altering the sea-
weed species and their respective combinations. To our 
knowledge, this is the only seaweed-based packaging that 
uses 100% of the seaweed biomass and requires no extraction 
method. Further trials are currently underway to test differ-
ent methods of packaging production from seaweeds (e.g., 
fiber casting or natural fiber injection molding). Nevertheless, 
one of the biggest hurdles, as in other industries, remains to 
be the processing and transport step from raw biomass to 
packaging production. The properties of Ulva that are con-
ducive to packaging production (e.g., high cellulose and 
starch content) also make the seaweed a potential candidate 
for paper production. A recent study has shown that Ulva 
biomass can be successfully incorporated into filter paper at 
a concentration up to 4% without weakening the strength of 
the fiber network, and successfully removed pollutants (Cr, 
Cu, total Fe and Zn) due to its adsorbant properties (Caprita, 
Ene, and Cantaragiu Ceoromila 2021).

6.2.  Plant biostimulants

Biostimulants promote plant processes, including nutrient 
uptake efficiency, stress tolerance, and crop quality (Regulation 
(EU) 2019/1009 of the European Parliament), and reduce the 
demand for inorganic inputs (Shukla et  al. 2019). Currently, 
macroalgae are involved in 37% of the biostimulant market 
(Rouphael and Colla 2018) and contain classes of compounds, 
such as betaines, phenols, and polysaccharides, which are bio-
stimulants (Stengel, Connan, and Popper 2011). The main 
temperate macroalgae-sourced biostimulant products (e.g., 
Maxicrop) are almost exclusively produced from the brown 
wild-harvested species Ascophyllum nodosum (www.solabiol.
com/en/principles-maxicrop). In addition, Ecklonia maxima is 
used to produce the biostimulant Kelpak (https://www.kelpak.
com/eckloniamaxima.html), which is exported globally. The 
red, tropical macroalgae Kappaphycus alvarezii has also been 
extensively studied (Kumar et  al. 2020; Sahana et  al. 2022; van 
Tol de Castro et al. 2023; de Araújo Amatuzzi et  al. 2020) and 
is also commercially available as a biostimulant (e.g., www.
prospersea.com).

Ulva spp. also have biostimulant properties, although 
there are little studies to date for green macroalgae com-
pared to brown and red macroalgae. Ulva extracts improve 
salinity stress response (El Boukhari et  al. 2021; Hussein 
et  al. 2021; Latique et  al. 2021), drought tolerance (Li et  al. 
2020), growth (Castellanos-Barriga et  al. 2017; Hassan et  al. 
2021; Hussein et  al. 2021; Mendoza-Morales et  al. 2019; 
Michalak et  al. 2016; Osuna-Ruíz et  al. 2023), antioxidant 
activity (Osuna-Ruíz et  al. 2023; Ennoury et  al. 2022; 
Latique et  al. 2021), and plant flavors (Paulert et  al. 2021). 
Using Ulva spp. extracts as a biostimulant source increases 
crop yield and contributes to global food security while also 
creating another product route for some biomass produced 
during green tides (Shefer et  al. 2022). While first plant tri-
als using biochar produced from Ulva spp. have shown 
variable effects on plant growth (Kenneth et  al. 2022; 
Roberts and de Nys 2016), this research field is still in its 
infancy, and finding solutions to reduce the sodium content 
in seaweed-based biochar will be a challenge for the future.

6.3.  Biorefinery

Biorefineries use a biomass processing approach that facili-
tates the production of several value-added products from a 
given biomass feedstock (crops, lignocellulosic biomass, sea-
weed, microalgae, and insects) and ensure the full usage of 
resources, leading to zero waste and minimal greenhouse gas 
emissions (Barragán-Ocaña et  al. 2023). By producing mul-
tiple products from the same raw materials, biorefineries 
increase the revenue per mass of feedstock, and diversify 
applications, making the whole system economically resilient 
(Golberg et  al. 2020). The co-production of multiple prod-
ucts usually requires multiple subsequent processing steps 
produces one or several different products (Golberg et  al. 
2020). In an Ulva biorefinery, the separation of salt, cellu-
lose, ulvan, starch, proteins, lipids, simple monosaccharides, 
and peptides has been reported in various process configu-
rations (Table 5). High protein yields from Ulva can be 
obtained after extracting salt and ulvan from the seaweed 
(Magnusson et  al. 2019), and extracting protein and 
water-soluble molecules in the first step increases the con-
tent and purity of residual water-soluble polysaccharides 
such as ulvan (Golberg et  al. 2020). This is critical because 
achieving a certain level of concentration and purity is a 
major economic and technological hurdle for biorefineries. 
In addition, certain processes, such as crushing, milling, and 
other cell and tissue disruptions, usually benefit most subse-
quent processes by improving the biomass contact surface 
and the accessibility of intracellular components without 
intermediate drying. Therefore, the energy and cost of such 
processes benefit the entire processing chain rather than a 
single product (Zollmann et  al. 2019). Although thermo-
chemical approaches using high temperatures and solvents 
continue to be used at industrial scales to obtain different 
seaweed-derived products, more environment-friendly tech-
niques to better preserve the product’s quality and function-
ality are emerging, including enzyme-, microwave-, or 
ultrasound-assisted extraction, supercritical fluid extraction, 
pressurized solvent extraction, pulsed electric fields, or 
ohmic heating (Matos et  al. 2021).

6.4.  Knowledge gaps and future challenges

Currently, biorefinery design is a major challenge, i.e., choos-
ing the processes and equipment and integrating them into 
one optimized process flow (Golberg et  al. 2020) because 
biomass processes and equipment are usually designed to 
solely produce one product and not preserve the byproducts 
for subsequent processing targeting zero waste. Currently, 
there is no widespread and successful standard for industrial 
seaweed biorefinery design. Polysaccharides have been iden-
tified as the most common potential product from 
Chlorophyta (mainly Ulva spp.), accounting for 40% of the 
applications. Protein was second (21%), with lipids and pig-
ments considered less frequently (Joniver et  al. 2021). Future 
steps for the development of an Ulva biorefinery should 
include the demonstration of using common food and 
chemical industry methods for processing and equipment 
that can be scaled. These efforts will require mass and 
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energy balances for each step. The subsequent steps should 
include process simulation using common industry tools, 
such as AspenPlus (https://www.aspentech.com/en/products/
engineering/aspen-plus) or SuperPro (https://www.intelligen.
com/) process design software, enabling economic and life 
cycle analysis of processes and plants. Further steps should 
include an integrated process demonstration for assessing 
product safety, stability, final applications, and complete eco-
nomic and environmental analysis. This step will require the 
collaboration of biomass producers, process engineers, and 
environmental economists.

7.  Patents of Ulva-based products and technologies

The diversification of macroalgal applications, including 
Ulva species, in increasingly sophisticated products, is accel-
erating the emerging macroalgal biotechnology patent mar-
ket. The rate of patent registrations for seaweed-related 
products has been steadily increasing annually by approxi-
mately 11% (Mazarrasa et  al. 2014). Similarly, increased Ulva 
production and demand for natural products have promoted 
research and development in Ulva biotechnology. 
Consequently, patents for processes and applications of Ulva 
have rapidly grown. Since 2014, 405 Ulva-related patents 
have been registered, representing 5.4% of seaweed-related 
registered patents (Mazarrasa et  al. 2014). A more recent 
search using the keyword “Ulva” on the European Patent 
Office (EPO) website (https://www.epo.org/searching-for-
patents.html) resulted in 2,954 patents related to Ulva-based 
products, which are classified under nine different codes 
according to the International Patent Classification (IPC) 
System (Supplementary Table 2). Of the classified patents, 
Ulva-related patents are distributed into categories relating 
to medicine (31%), cosmetics (31%), feed (19%) and modi-
fications of nutritive qualities of food and dietic products 
(10%), revealing that Ulva-related patents in the food indus-
try are lagging behind the medicine, cosmetics and feed 
industries.

8.  Future research directions

Several technical and environmental challenges must be 
overcome to fully capture and realize the potential of Ulva 
biomass in the European circular economy. In fact, this is 
one of the main goals of the recently established COST 
Action CA20106 SeaWheat, which has resulted in the estab-
lishment of the network of authors who have collaborated 
on this manuscript. For successful large-scale production of 
Ulva spp. for the food, feed, and biomaterials industry, sev-
eral challenges must be overcome through research, innova-
tion, knowledge transfer and collaboration.

Green seaweed species misidentification inhibits produc-
tion data analysis, making a thorough overview of national 
and global productions difficult. Ulva species must be cor-
rectly identified owing to their popular application in com-
mercial projects and industrial product labeling. Consequently, 
an integrative systematics approach is required to accurately 
identify Ulva spp., considering morphological characters, 

DNA sequencing of different markers, and species biogeog-
raphy. Such scientific advances will contribute to a better 
understanding of the Ulva biomass produced, allowing the 
development of a management plan and policy framework 
adapted to the specificity of this species’ clades. Nevertheless, 
it is unrealistic to expect that existing and future producers 
of Ulva biomass will have the time and resources to 
double-check the identity of their product using genetic 
sequencing methods. In order for the Ulva-based industry in 
Europe to grow, new methods need to be developed that 
simplify this task, such as the sequencing-free assay for foli-
ose Ulva species identification developed by Fort et  al. 
(2021). Such technological advances will provide quicker and 
cheaper tools that will enable producers to guarantee the 
identity of the products they are selling.

Likewise, not all Ulva strains and species with economic 
potential have been identified, and further research into 
fine-tuned selection for specific applications is required. 
Additionally, population, strain, and environment-induced 
chemical variations complicate the development of chemi-
cally consistent biomass, which is key for developing an 
industry striving for nutritionally valuable ingredients or 
bioactive components for high-end uses. Correct identifica-
tion of Ulva spp. would also contribute to a better under-
standing of the effect of genetic and environmental 
parameters on their composition, growth, and reproduction 
in their natural and controlled environment. Future research 
must therefore focus on harnessing the benefits of both 
genetic and environmental factors in order to support growth 
of the Ulva cultivation industry. This includes identifying 
robust strains (e.g., green tide strains Fort, et  al. (2020)) 
with exceptional growth rates and/or high temperature toler-
ance, and optimizing the cultivation conditions in order to 
produce biomass with the desired traits (e.g., high proteins 
or high lipids). Future monitoring and selection programs 
are necessary to support these efforts and provide food and 
feed manufacturers with high quality biomass. As a first step 
toward closing these knowledge gaps, the SeaWheat COST 
Action has initiated a European-wide collection campaign to 
measure the nutritional content and microbiome of geneti-
cally barcoded Ulva species throughout Europe using stan-
dardized methods. These data will provide the first 
coordinated, European-wide effort to assess the species 
diversity and the assosiated biochemical and nutritional pro-
files and epibiontic microbial interactions of Ulva spp. 
throughout Europe.

Additionally, the effect of associated microbiota on Ulva 
must be further investigated. The close association between 
bacteria and the development and morphology of Ulva bio-
mass has been demonstrated; however, further interactions 
within the seaweed holobiont could provide clues for manip-
ulating desired traits in the seaweed. For example, current 
research by the authors is showing that protoplast develop-
ment in Ulva spp. can occur naturally. While we do not yet 
know what triggers the natural production of protoplasts, if 
we could induce the production by manipulating the micro-
biome or other environmental factors, then this would pro-
vide a cheap and simple method to vegetatively produce 
large amounts of biomass, without relying on the expensive 
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enzymes that are currently required to induce protoplast 
development in Ulva spp.

Sustainable algal biomass production should include safe 
approaches, ensuring no harm to natural environments and 
ecosystems, including wild seaweed populations. Recently, 
three major challenges were identified for the expansion of 
seaweed cultivation in temperate environments: global cli-
mate change, limited carrying capacity in areas where 
large-scale cultivation already occurs, and the increasing cost 
and age of the seaweed labor force (Rieve, 2023). In order 
to overcome these challenges, the availability and suitability 
of areas for sea-based cultivation must be accounted for in 
marine spatial planning and form a beneficial component in 
coastal conservation, though restrictions on infrastructure 
may occur. The land-based cultivation approaches must be 
energy- and cost-efficient, based on full life-cycle assessment 
and implementation. Furthermore, significant investments 
must be made in the preservation of seaweed strains for pre-
serving biodiversity, strain selection and selective breeding 
campaigns for the development of robust strains. Several ini-
tiatives have begun to support these efforts among European 
(SeaStrains), American (SugarKelpBase) global (Global 
Seaweed Coalition), and Asian networks.

The general principles and requirements of seaweed food 
safety in the EU are subject to the EU-enforced Regulation 
(EC) number 852/2004 on food hygiene. In many countries, 
the food manufacturing process is subject to the HACCP 
assessment, a system adopted by the WHO and the Codex 
Alimentarius Commission as recommended international code 
of practice for general principles of food hygiene. The regula-
tion (EC) 68/2013 defines the use of algae as accepted feed 
materials. Green seaweeds are solely mentioned in the case of 
seaweed meals. No specific mentions are made for Ulva spe-
cies. Whether offered live or processed (chilled, frozen, or 

dried), the compulsory declarations are the contents of crude 
protein, crude fat, crude ash, and iodine, which should be 
<100 ppm. However, considering the new market trends and 
processing technologies of seaweed feed and food products, 
guidelines and legislation on specific seaweed feed and food 
products remain lacking. Furthermore, whether legislation 
from one part of the world can be transferred to other areas 
without considering the biological (seaweed and microbial 
flora) and environmental (climatic) factors is doubtful.

Although societal acceptance of algal products has 
increased in Europe recently, further progress is needed to 
replace conventional biomass or nutritional constituent 
sources with plant and algae-based ingredients. Clear regula-
tions on quality control relating to environmental contami-
nants, such as heavy metals and potential pathogens, must 
be implemented while ensuring the satisfaction of regulatory 
bodies, consumer safety, and medium- and large-scale prac-
ticability for industries. Quality control of strain/biomass 
origin and chemical composition must be assured based on 
standardized methodologies. Currently, the European 
Committee for Electrotechnical Standardization (CEN) is 
developing standards for algae and algae-based products, 
representing a major step toward realizing this potential. EU 
regulatory bodies, including EFSA, must review current 
restrictions on algae-derived products to support the effec-
tive integration of Ulva (or other seaweed) utilization in the 
European circular economy. Therefore, the risks related to 
feed and food safety and the possible environmental con-
tamination from aquaculture, among other potential sources 
of pollution, represent important issues that require special 
attention from scientists and policymakers concerning the 
safe use of Ulva spp. in food and feed products.

Ulva species produced in land-based systems under a 
controlled environment would present easily manageable 

Table 5.  Ulva biorefinery. Co-production of various ingredients from Ulva and their transformation to additional products.

Species Directly co-extracted products
Products produced by transformation 

of Ulva-derived ingredients Reference

U. lactuca Water-soluble proteins and carbohydrates (Postma et  al. 2018)
U. lactuca Protein and carbohydrates Glucose, rhamnose and xylose, 

acetone, butanol, ethanol, and 
1,2-propanediol

(Bikker et  al. 2016)

U. fasciata Mineral rich liquid extract, lipid, ulvan, and cellulose Ethanol (Trivedi et  al., 2015)
U. lactuca Mineral rich liquid, lipid, ulvan, protein, and 

cellulose
(Gajaria et  al., 2017)

U. lactuca Water-soluble carbohydrates Acetone, butanol, and ethanol (ABE) (van der Wal et  al., 2013)
U. rigida Carbohydrate, salt, concentrated protein (Pezoa-Conte et  al., 2015)
U. ohnoi Salt, pigment, ulvan, and protein (Glasson et  al., 2017)
U. lactuca Mineral rich liquid extract, ulvan, protein Methane (Mhatre et  al., 2019)
U. ohnoi Salts, starch, lipids, ulvan, proteins, and cellulose. (Prabhu et  al., 2019)
Mix of U. rigida and U. 

fascia
Hydrochar, 5-HMF, monosaccharides, proteins, 

peptides.
Ethanol (Polikovsky et  al. 2020)

U. ohnoi Mixture of monosaccharides Ethanol (Jiang et  al., 2016)
U. ohnoi Starch, proteins, and minerals (Prabhu et  al., 2019)
U. ohnoi Hydrochar Polyhydroxyalkanoates (Ghosh et  al., 2021)
U. lactuca Polysaccharides, proteins (Andrade et  al. 2022)
Mix of Ulva species Monosaccharides (Robin et  al., 2017)
Ulva sp. not defined Polysaccharides Biodiesel (Ruangrit et  al., 2023)
U. ohnoi Hydrochar, monosaccharides Polyhydroxyalkanoates (Steinbruch et  al., 2020)
U. lactuca Antioxidants and phenolic compounds (Rashad et  al. 2023)
Ulva sp. not defined Ulvan Biogas, polyhydroxyalkanoates (Arul Manikandan and Lens 2023)
Ulva rigida and Ulva 

ohnoi
Water-soluble and -insoluble protein (Robin et  al., 2018)

U. lactuca Bio-oil, hydrochar Bioethanol (Sharmiladevi, Swetha, and Gopinath 
2023)



Critical Reviews in Food Science and Nutrition 23

food and feed safety risks. The EU has also listed organic 
regulations (Council Regulation 834/2007) that classify 
farmed or wild-collected seaweeds, including Ulva species, as 
organic. However, when produced under IMTA, more data 
and scientific-based evidence would be needed relating to 
the risk posed by the production of low-level trophic organ-
isms using different waste streams and processes. Such infor-
mation would also help in developing the lacking regulations 
appropriate for IMTA products. Further, the wild-harvested 
biomass should be closely monitored because heavy metals, 
associated pathogens, and other persistent environmental or 
anthropogenic pollutants can pose risks stemming from sea-
weed consumption.

Using Ulva spp. and its derivative bioactive compounds 
in feed and food can be challenging as many of the com-
pound’s bioactivity remains unrecognized. Furthermore, high 
polysaccharide content and non-protein nitrogen are prob-
lematic and reduce digestibility. Non-starch polysaccharides 
(e.g., ulvan) also trap about 5% of the amino acid in the 
biomass. Solutions such as fermentation to improve digest-
ibility, extended fresh water washing to reduce ash content, 
and biorefinery approaches for producing bioactive extracts 
for feed additives have all shown promising results. 
Nevertheless, further research is required to provide sup-
portive and applicable information regarding the factors 
determining the presence and level of ANFs in the biomass, 
their active mechanism, the threshold level at which they are 
harmful, and methods for neutralizing their activity. Such 
research will contribute to defining the safe yet bioactive 
level of inclusion of Ulva ingredients in feed and food for-
mulation. Further, when used as food or feed ingredients, 
the interactions between Ulva or its derivative ingredients 
with the matrix should be researched to ensure its safe uti-
lization or conservation of the bioactive characteristics in the 
formulated feed or food. Furthermore, studies addressing the 
effect of culinary treatments on the levels of contaminants 
and bioavailability of health-promoting compounds are 
also needed.

The major challenge that currently hinders the wide-
spread integration of Ulva into feed and food is competition 
with soybean. As presented above, differences in lipid and 
protein content separate the nutritional profile of Ulva most 
strongly from soy. Soybean has about 36.5% protein (USDA 
FoodData Central), compared to harvested Ulva, which 
ranges from about 4–27%. Only enriched Ulva grown with 
supplemental nitrogen can reach protein levels comparable 
to soybean. Additionally, the cost of Ulva production can-
not currently compete with the cheap production of soy-
bean. According to the US Department of Agriculture, 
soybean production costs about $162/acre. Assuming an 
average yield of 50 bushels/acre and a conversion rate of 40 
bushels/ton, soybean production on a weight basis is 
approximately $130/ton. In comparison, estimates of pro-
duction costs for seaweed farms range from $225 – $10,000/
dry ton, depending on scale (Kite-Powell et  al. 2022). 
Therefore, even the largest seaweed farm with the lowest 
production costs is still 1.7 times more expensive to pro-
duce than soybean, and most seaweed farms have even 
higher production costs. Unfortunately, there are no known 

published production costs for Ulva cultivation, but life 
cycle assessments of land-based production are currently 
underway. Another major limitation for integrating Ulva 
into the feed industry, both terrestrial and aquafeed, is the 
scale of production. Currently, the scale of Ulva production 
is catering mainly to human consumption, while biomass 
from green tides is used for animal feed research. Clearly it 
is important to save high quality biomass from aquaculture 
for human food, and the feed and biomaterials industries 
should not compete with human food for Ulva biomass, but 
the unpredictability of the availability of biomass from year 
to year continues to be a difficult challenge for industries 
relying on wild biomass. In both the food and feed indus-
tries, digestibility, taste, palatability, and flavors must be 
investigated further to better understand the potential 
attractiveness of Ulva products to animals or consumers. 
Customer acceptance and willingness to pay must be exam-
ined to determine the marketability and price of Ulva-based 
products. Currently, some producers are approaching 
well-known chefs to include seaweeds in their recipes, or to 
provide cooking courses. Such activities will help raise 
awareness about how to use seaweeds in general and Ulva 
specifically in food, and make European consumers more 
comfortable with incorporating Ulva into their diet.

Although Ulva is naturally available and culture techniques 
exist, several key issues exist regarding the market, technology, 
and product development (i.e., increased supply of Ulva bio-
mass, product innovation, and processing). The effects of pro-
cessing on chemical composition and potential modifications 
in bioactive profiles must be identified by companies and 
adjusted for end-user applications. To capitalize on the poten-
tial for increased profitability, the existing Ulva sector must 
migrate into the identified opportunity areas. The nutraceuti-
cal, pharmaceutical, and cosmetics industries represent greater 
profit opportunities than the agri-products and horticultural 
products sector alone (Barbier et  al. 2019). To achieve this, 
the sector must identify specific market opportunities, inno-
vate, and introduce greater automation, including new pro-
cessing and packaging technology.

Effective Ulva biomass utilization in a cascading biorefin-
ery concept will still need to demonstrate its potential to 
avoid compound loss and waste. Because improving crude 
biomass often requires high energy investments, the 
cost-effectiveness and environmental sustainability of such 
processes must be investigated. Life cycle assessment of cur-
rent production systems will provide key insights into the 
sustainability and cost-effectiveness of Ulva production.

Therefore, the Ulva industry has been assigned an ambi-
tious target. Greater value in the Ulva sector can only be 
achieved by industry activities in association with funding 
agencies and research providers.
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