
Millennial-scale climate variability over land overprinted by 
ocean temperature fluctuations

R. Hébert1,2,✉, U. Herzschuh1,2,3, T. Laepple1,4

1Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany

2Institute of Geosciences, University of Potsdam, Potsdam, Germany

3Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany

4University of Bremen, MARUM – Center for Marine Environmental Sciences and Faculty of 
Geosciences, Bremen, Germany

Abstract

Variations in regional temperature have widespread implications for society, but our understanding 

of the amplitude and origin of long-term natural variability is insufficient for accurate 

regional projections. This is especially the case for terrestrial temperature variability, which is 

currently thought to be weak over long timescales. By performing spectral analysis on climate 

reconstructions, produced using sedimentary pollen records from the Northern Hemisphere over 

the last 8,000 years, coupled with instrumental data, we provide a comprehensive estimate of 

regional temperature variability from annual to millennial timescales. We show that short-term 

random variations are overprinted by strong ocean-driven climate variability on multi-decadal and 

longer timescales. This may cause substantial and potentially unpredictable regional climatic shifts 

in the coming century, in contrast to the relatively muted and homogeneous warming projected 

by climate models. Due to the marine influence, regions characterized by stable oceanic climate 

at sub-decadal timescales experience stronger long-term variability, and continental regions with 

higher sub-decadal variability show weaker long-term variability. This fundamental relationship 

between the timescales provides a unique insight into the emergence of a marine-driven low-
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frequency regime governing terrestrial climate variability and sets the basis to project the 

amplitude of temperature fluctuations on multi-decadal timescales and longer.

Improving our ability to characterize internal and natural climate variability is pivotal 

to improving our long-term climate projections1, particularly at the regional scale2. The 

statistics of natural variability can be quantified up to decadal timescales using instrumental 

observations, but indirect climate proxies are needed for longer timescales.

Proxy-model comparisons aiming to validate climate models generally focus on whether 

long-term (forced) trends found in proxies can be reproduced by global climate 

models (GCMs)3,4. In this regard, trends over the Holocene from pollen-based climate 

reconstructions in northern mid-latitudes were shown to be consistent with the forcing and 

simulated warming in the TraCE-21ka experiment5. However, the long-term multi-millennial 

trend is a rather limited measure that does not evaluate the ability of climate models to 

simulate realistic climate variability, both forced and internal, at all timescales. Furthermore, 

climate reconstructions of continental or global average temperatures based on sedimentary 

proxies generally do not preserve the amplitude of millennial climate variability because 

of age uncertainty (Methods and Extended Data Fig. 1). To evaluate climate variability 

across timescales, we consider the power spectral density (PSD, or simply spectrum), S(Δt), 
which provides an estimate of how variance is distributed with frequency, or equivalently 

with timescale Δt. Others6 have provided the classical view of climate variability being 

dominated by specific quasi-periodic processes, such as solar variations linked to orbital 

cycles over a mostly random and uncorrelated (that is, white) noise background. Since then, 

an increasing number of climate proxies and model simulations7 have shown a contrasting 

view of a variance that continuously increases with increasing timescale. Such a behaviour is 

often well-approximated by a power-law-scaling relationship8,9 and can be summarized by 

the scaling exponent β such that S(Δt) ~ Δtβ.

Several studies have suggested that GCMs can simulate realistic climate variability for 

global and continental mean temperatures across timescales7,10,11 that are dominated by the 

response to external forcing. However, at the regional scale, where only a small fraction 

of the variability is forced12, the capability of GCMs has been called into question for 

decadal and longer timescales13–15. Marine proxies suggest a strong scaling of regional 

sea-surface temperature (SST) variance from annual to millennial timescales (β ≈ 1)9 that 

contrasts with the weaker scaling found in GCMs at longer-than-decadal timescales (β < 0.5 

in most regions)15–17. This leads to an increasing discrepancy between reconstructed SSTs 

and model simulations at longer timescales, reaching two orders of magnitude in variance at 

the millennial timescale8.

On land, instrumental temperatures show a fundamentally different behaviour compared 

to the oceans, with only a weak timescale dependency up to multi-decadal timescales 

(β ≈ 0.1)16–18. This low-frequency weather has been termed ‘climate noise’19 or the 

‘macroweather regime‘20 and starts at sub-monthly timescales. This difference can be 

explained by the much smaller heat capacity of land surfaces compared to the oceanic mixed 

layer21. If the macroweather-type behaviour over land held to longer timescales, internal 

variability would only play a minor role on the uncertainty of regional climate projections 
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at multi-decadal and longer timescales22,23. However, a different scaling behaviour of ocean 

and land at longer timescales would imply an increasingly large variability discrepancy 

between terrestrial and marine regions, which seems physically implausible given their 

coupling by the atmosphere, and in contradiction with both diffusive energy balance models 

(EBMs)24,25 and GCMs17. This leaves us with the conundrum that we must either reject 

altogether the marine proxies or see a fundamental change of variability in the terrestrial 

domain on longer timescales.

Given the limited instrumental record, this fundamental question on the scaling of variability 

between land and ocean cannot be answered from observations without terrestrial proxy 

data. Holocene Greenland ice-core δ18O timeseries suggest that the weak scaling behaviour 

found in the instrumental data extends to millennial timescales (akin to white noise with β 
≈ 0)26. However, it is unclear whether the climate variability derived from the high-altitude 

Greenland ice cores is representative of other terrestrial regions27 and to what extent the 

proxy variability reflects temperature variability28.

Land-temperature variability from pollen records

To elucidate the behaviour of climate variability over land at timescales longer than 

centennial, we compiled and analysed an extensive collection of recent Holocene Northern 

Hemisphere pollen data covering the past 8,000 years, providing the largest spatial coverage 

of any land-based proxy at millennial timescales. This compilation of pollen data comprises 

1,744 unique records from the Northern Hemisphere, 680 of which are from North America, 

804 from Europe and 260 from Asia, including the most extensive dataset so far for China29 

and Siberia30. We produced summer (June–July–August (JJA)) temperature reconstructions 

(hereafter simply termed temperature), as summer temperatures are usually well-correlated 

with other variables driving vegetation growth31, and found a robust signal of millennial-

scale variability for all continents (Extended Data Fig. 2). Our results are not sensitive 

to the choice of summer temperature (Extended Data Fig. 3a) or a potential influence of 

precipitation (Extended Data Fig. 3b). Pollen-based reconstructions rely on the assumption 

of dynamical equilibrium between climate and vegetation to calibrate a transfer function 

based on the modern distribution of vegetation and the associated spatial gradient in the 

climatology. This assumption is timescale-dependent and is generally more valid at longer 

timescales31. In this respect, millennial-scale estimates of temperature variability, on which 

our quantitative results hinge, should thus be particularly robust, especially considering there 

is evidence that vegetation responds on timescales of centuries or faster32,33. Finally, we 

verified that the estimates of millennial variability were not systematically biased by human 

influences (Supplementary Fig. 2) and that our estimates are robust to the time uncertainty 

and irregular spacing of the timeseries (Extended Data Fig. 1).

Pollen-based reconstructions, once coupled with instrumental data34, enable us to establish 

a comprehensive picture of regional land-temperature variability from inter-annual to 

millennial timescales (Fig. 1 and Methods). The spectrum of instrumental air temperature 

shows a rather flat scaling behaviour that is characteristic of the macroweather regime. 

At longer timescales, however, the pollen-based reconstructions show a strong increase in 

variability with increasing timescale (Fig. 1a). This suggests that, even in the relatively 
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stable recent Holocene, there exists substantial centennial- to millennial-scale temperature 

variability. Although human influences have historically impacted vegetation composition, 

they do not dominate this result, as they were not found to systematically bias millennial-

scale temperature variability (Supplementary Fig. 2). This behaviour clearly differs from 

the rather flat macroweather regime and resembles power-law scaling with an exponent β 
near one for timescales longer than centennial. Traces of this increased scaling behaviour 

at multi-decadal timescales already appear in the instrumental record, and it is corroborated 

by dendrochronological timeseries and long instrumental series (Extended Data Fig. 4 and 

Supplementary Note 1).

We benchmark our result against three transient climate-model simulations of the recent 

Holocene: IPSL35, ECHAM536 and the last 8,000 years of the TraCE-21ka deglaciation 

experiment37 (that is, after the last freshwater forcing events). The transient simulations of 

these GCMs show the weak scaling behaviour characteristic of the macroweather regime, 

although with higher annual to decadal variability relative to the instrumental data, as 

previously recognized17. However, they fail to capture the increase in variability observed 

in the reconstructions at multi-decadal timescales. Instead, they show a relatively weak 

increase at multi-centennial timescales and a sharp increase at millennial timescales due 

to spectral leaking from the orbital 23-kyr precession cycle (Fig. 1a and Extended Data 

Fig. 5). As a result of this divergence in variability scaling, there is an increasing deficit 

in temperature variability observed in the simulations compared to the reconstructions. The 

range of variance ratios between the reconstructions and the different model simulations 

increases from 6–8 over the 100–300 years timescale to 11–54 (12–85 with orbital 

detrending) over the 1,000–3,000 years timescales band, resembling the discrepancy 

between models and proxy data for regional SST variability9. Similar results are also 

obtained with the fully forced Coupled Model Intercomparison Project – Phase 5 (CMIP5) 

simulations of the last millennium, and accounting for volcanic forcing over the Holocene is 

unlikely to resolve this discrepancy (Extended Data Fig. 6).

Marine influence on the spatial pattern of millennial variability

Comparison of the reconstructions over land with estimates of marine variability9 shows 

a very similar low-frequency scaling behaviour (Fig. 1b). The observed parallel scaling 

behaviour is expected if both components vary more coherently as climatic variability 

becomes a global phenomenon over longer timescales24, as also indicated by coherent 

land and ocean average temperatures5. EBMs suggest that this parallel behaviour of 

land and oceans on long timescales is due to heat exchange between the land and 

ocean compartments. In such models, land air temperature can be described as a linear 

combination of the SST and a time-dependent forcing over land25,38; the resulting variability 

spectrum over land is then a linear combination of the spectra of each term (Fig. 1b) 

when the two are uncorrelated (Supplementary Note 2). In this framework, the change in 

scaling behaviour can be regarded as a transition from the macroweather regime at shorter 

timescales, dominated by a weakly scaling forcing component akin to white noise over 

land21, to an oceanic regime dominated by the SST component at timescales longer than 

decadal. Interestingly, the parallel behaviour between land- and ocean-temperature spectra 

on multi-decadal to millennial timescales provides no evidence for additional terrestrial 
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slow climate feedbacks. The oceanic component present in land-temperature variability 

appears amplified by a factor of ~4 in PSD or ~2 in amplitude (Fig.1b). This factor is 

similar to the land–sea warming contrast39 observed during the last century40 and within 

the range of land–sea warming ratios measured in GCMs41. This is thought to be the result 

of local feedbacks, such as evaporation feedback, when moisture availability over land 

limits evaporative cooling in comparison with marine regions42, and also because of the 

asymmetry in the land–ocean heat exchange, which favours land due to its lower specific 

humidity41.

The extensive spatial coverage of pollen-based reconstructions allows us to perform a spatial 

analysis of the millennial-scale temperature variability PSD1,000–3,000 years (the mean PSD 

over 1,000–3,000 years; Fig. 2a) and investigate the potential link to oceanic influence. The 

spatial coherence (Moran’s I = 0.2, P < 0.001; Methods) shows that the variability estimates 

are not drowned out by local noise. Over Europe, millennial-scale variability decreases 

inland along the path of prevailing winds blowing from the Atlantic Ocean, and is lowest 

over Fennoscandia (Finland and Scandinavia), where blocking events are most frequent43. 

Similarly, China’s high millennial variability is linked to variability in the East Asian 

Summer Monsoon44, and further north in eastern Siberia the dominant westerlies bring little 

oceanic influence. This further suggests that higher millennial variability relies on higher 

connectivity to oceans, as implied by EBMs, although compounded by local sensitivity. 

The high variability in central Asia remains an outlier given the strong continentality there, 

but the significance is lower because of the sparseness of records. It is also possible that 

the lower connectivity to oceans is compensated by the stronger local climate sensitivity40, 

which may be linked to hydrological feedback due to the arid conditions42 and to snow-

albedo feedback at higher elevations45. Meanwhile, in North America, the lowest millennial 

variability is found in the prairies, near the centre of the continent, where the westerlies 

predominantly blow from the northwest, and the oceanic influence is lowest.

Links in the continuum of land-temperature variability

We use the instrumental data to study the mechanisms governing the spatial distribution 

of the millennial variability and the continuum of variability. The scaling of variability in 

instrumental data has already been shown to be related to the strength of the annual cycle 

and of the sub-decadal variability8. If we aggregate the instrumental data and reconstructions 

based on the sub-decadal variability PSD2–10 years (the mean PSD over 2–10 years; Fig. 

3 and Extended Data Figs. 7 and 8), a clear relationship appears with the emergence of 

the low-frequency regime, quantified by the multi-decadal scaling exponent β10-60 years 

(β regressed over 10–60 years): locations with lower sub-decadal variability thus show 

a stronger increase of variability towards longer timescales, as indicated by higher multi-

decadal scaling (Figs. 2b,c and 3 and Extended Data Fig. 8). We should thus expect an 

inversion where regions of low sub-decadal variability, typically characterized by more 

maritime influences, would become regions of high variability at longer-than-centennial 

timescales. Similarly, continental regions characterized by high sub-decadal variability 

would be expected to become regions of relatively low variability on longer timescales.
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Indeed, this hypothesized relationship is confirmed by the pollen-based reconstructions. 

Their estimates of millennial temperature variability PSD1,000–3,000 years show a strong 

anti-correlation with the sub-decadal variability PSD2–10 years (r = −0.95, P < 0.03; Fig. 

3b) and a strong correlation with the multi-decadal scaling β10–60 years (r = 0.92, P < 0.01; 

Fig. 3c). These substantial strong relationships between the pollen-based reconstructions and 

independent instrumental temperature data demonstrate a fundamental link of temperature 

variability from sub-decadal to millennial timescales. The spatial pattern of the variability 

(Fig.2 and Extended Data Fig. 5) further suggests that this relationship is caused by a 

varying marine influence. This is supported by a strong correlation (r = -0.93, P < 0.02) 

of the spatial pattern of millennial variability with the relative land influence index46 

(RLI; ‘Relative land influence index’), which quantifies the relative contributions of land 

and ocean to atmospheric fluxes at a given location using a Lagrangian trajectory model 

(Extended Data Fig. 9). An exception is Central and East Asia, where the RLI is highest, 

but millennial variability remains high. Finally, our result provides continentality as a 

complementary explanation for the relationship between the amplitude of the annual cycle 

(an indicator for continentality) and the inter-annual variability scaling in the instrumental 

relationship proposed in ref. 8. Therefore, our findings complete the linkage between 

seasonal and millennial land-temperature variability.

Discussion

Our results indicate that current GCMs underestimate regional temperature variability 

over land at timescales longer than multi-decadal (Fig. 1a and Extended Data Fig. 5).In 

combination with the spatial pattern of variability (Fig. 2), this suggests that the deficit 

in low-frequency variability is related to an underestimation of marine variability9. The 

interpretation of climate-sensitive proxies remains an area of active research, and, in 

principle, it remains possible that the observed model-data mismatches stem from non-

climatic variability. However, several lines of evidence argue against this interpretation. 

First, as yet, there are no known archival processes that could artificially create such 

power-law scaling in sedimentary archives47. Specifically, known processes such as counting 

errors, spatial or temporal aliasing, and bioturbation in the sediment cannot explain 

the power spectra of variability found here (Figs. 1 and 3). The vegetation’s response 

time to climate can affect the variability, but it would only reduce it on the faster 

timescales, in contrast to increasing it on millennial timescales. Second, the consistency 

between independent marine and terrestrial archives (Fig. 1b) provides further support 

for the temperature-variability reconstruction. Although, in principle, similar non-climatic 

effects could create scaling in both sedimentary archives, in each case, annually resolved 

independent archives (corals for SST9, tree records for land temperature; Extended Data Fig. 

4) confirm the scaling behaviour and amplitude. Finally, the spatial relationship with the 

independent instrumental temperature data (Fig. 3) also indicates that this is no artefact from 

the proxy data.

Thus, pollen-based reconstructions support the paradigm of an increasing continuum of 

climate variability with increasing timescales8, in contradiction with the local temperature 

variability in current GCM simulations and the classical picture of ref. 6. More importantly, 

our results extend previous findings from instrumental data8 and demonstrate a fundamental 
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link between inter-annual, multi-decadal and millennial timescales driven by the interaction 

of marine and terrestrial temperature variability modulated by continentality.

This fundamental behaviour of temperature variability has implications for the relative 

impact of natural and anthropogenically forced variability. High-latitude regions 

characterized by high inter-annual variability show a weaker oceanic regime and, ultimately, 

less natural variability on millennial timescales. As these regions are also highly sensitive to 

anthropogenic forcing, the impact of anthropogenic warming, relative to natural variability, 

will be greater. However, regions of strong maritime influence, where most of the world’s 

population is located, could see large natural variability that is not simulated by current 

GCM projections, which tend to display monotonous warming40. It is thus possible that, 

until now, the stronger natural variability at multi-decadal timescales in maritime regions 

has partly overshadowed the anthropogenic warming in those regions, which could explain 

their lower observational transient climate sensitivity40. Integrative archives such as glaciers 

should be particularly sensitive to this increased memory18 and could be used to verify 

our findings. Large compilations of climate archives have the potential to inform us on the 

spatial patterns of slow variability and their underlying causes. Further studies combining 

multiple proxies over land and ocean, and the development and inclusion of proxy system 

models48 for a more direct model-proxy comparison, show great promise to improve our 

understanding of the spatio-temporal correlation structure of climate variability.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41561-022-01056-4.

Methods

Reconstructions

The fossil dataset LegacyPollen 1.049 includes taxonomically harmonized fossil pollen data 

from North America and Europe obtained via the Neotoma Palaeoecological Database50, 

and from Asia combining refs. 29 and 30. The datasets were combined, keeping the 70 

most common taxa according to Hill’s second number. A fossil database comprising 

1,744 records was retrieved based on the requirement that the resulting spectral estimates 

covered timescales of at least one-fifth of an order of magnitude, that is, 0.2 in a base-10 

logarithm, below one-half the length (to avoid the well-known multitaper low bias at 

long timescales)51. Extreme outliers (with logarithm of PSD1,000–3,000 years more than four 

standard deviations away from the mean of all records) were discarded (n = 5), but their 

inclusion did not affect any of our conclusions.

The method and data for calibration agree with those of ref. 52. The weighted averaging 

partial least square (WAPLS)53 method was used to calibrate transfer functions relating 

the pollen assemblages to the summer temperature, with leave-one-out cross-validation to 

assess the model performance. The WAPLS method exploits the modern spatial relationship 
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between a modern calibration dataset of pollen assemblages and the climatology to calibrate 

a transfer function that is then applied on the fossil assemblages to reconstruct timeseries. 

The modern climate data used for calibration were the average of the JJA climatologies, that 

is, the summer temperature, for the years from 1970 to 2000 as obtained from WorldClim 

2.154. The modern pollen dataset used for calibration consists of 15,379 sampling sites. For 

each fossil record location, we selected a unique subset of modern sites within a 2,000-km 

radius so as to reduce the impact of false analogues55; if there were fewer than 30 samples 

within the radius, the reconstructions were not performed and the record discarded. The 

pollen percentages of both the modern and fossil databases were square-root-transformed to 

decrease the dominance of abundant taxa with high productivity. The number of retained 

WAPLS components was selected using a randomization t-test based on the criterion that 

adding a component should improve the root-mean-square error by at least 5%56. The 

transfer function with the retained number of components was then used to predict the 

summer temperature of the fossil assemblages, that is, the reconstructions. For the sensitivity 

tests, the same method was also applied to reconstruct annual mean temperature and annual 

precipitation (Extended Data Fig. 3), also using the climatologies from WorldClim 2.154 for 

the calibration of each variable.

Robustness of the reconstruction and RandomTF test

To test the robustness of the summer-temperature reconstructions, we performed 

replicability experiments following the methodology in ref.5. For each continent, the 

reconstructions were divided into two sub-groups (odd and even indices after ordering 

them according to longitude) and averaged in the temporal domain after linear interpolation 

at a resolution of 100 yr and detrended using a 6.5-kyr LOESS filter. The result shows 

replicability of the millennial-scale variability for all continents, with good correlation 

between the odd and even sub-groups: r = 0.45 for North America, r = 0.59 for Europe and 

r = 0.34 for Asia (Extended Data Fig. 2a–c). These values are within the expectation for 

surrogate data with time uncertainty (Extended Data Fig. 2d–i and ‘Surrogate data and time 

uncertainty’).

Following ref.57, we also tested the summer-temperature reconstructions for significance 

using the RandomTF test from the R package ‘palaeoSig’ and found that 528 of 1,744 

reconstructions were substantial (P < 0.1). However, this significance test is rather 

conservative and there are several reasons for the creation of type II errors (false negatives), 

including a low diversity of taxa, a small number of sub-fossil observations, an input climate 

signal that is less variable or an inadequate training set57. Accordingly, a higher P value does 

not necessarily mean that the summer temperature has not been recorded, but rather that the 

information is insufficient to confirm it. The power of the RandomTF test can be low, as it 

is only sensitive to reconstructions with strong trends31. The use and caveats (particularly 

how it is prone to false negatives) of this test are debated and discussed in the literature58–64. 

Notably, in ref. 65, no correlation was found between the RandomTF P values and transfer 

function performance.

We also found no difference in performance based on the RandomTF test results. We 

reproduced the replicability analysis described above, but dividing the records into two 
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groups of ‘significant locations’ (P < 0.1) and ‘not significant locations’ (P > 0.1). We would 

expect a clear improvement in odd–even replicability for the former if the test is skilful, but 

instead we find similar correlations (r = 0.52 and r = 0.54, respectively). Furthermore, the 

two groups are well-correlated together (r = 0.54), indicating they are recording the same 

millennial variability signal.

Therefore, instead of unduly discarding most records, we decided to include all records in 

the main analysis. We show that our conclusions are robust and continue to hold even if we 

restrict our analysis to the ‘significant locations’ only (P < 0.1), which yielded similar results 

to the ‘not significant locations’ (P > 0.1) (Supplementary Fig. 3).

Testing for anthropogenic impacts

We considered all series entirely covering 0–8 ka and defined two temporal windows: the 

more recent (0–4 ka) and the more distant (4–8 ka) past. The 1,000–2,000-yr timescale band 

was taken to calculate the variance ratio between the two 4-kyr windows. We only included 

those series in our analyses whose spectral estimates covered at least one-fifth of an order 

of magnitude (on a base-10 logarithmic scale) for both time periods, a criterion that was 

met by 859 records. We found no systematic variance increase in the more recent half of 

the series. In fact, the more recent period, where human impacts may have contributed to 

an increased variability, is ~10% less variable than the earlier one. Similarly, the spatial 

distribution (Supplementary Fig. 2) did not show any obvious spatial patterns that could 

be related to human occupation, displaying a non-significant Moran’s I of 0.016 (P > 0.1; 

‘Moran’s I’). If human occupation was the dominant driver of millennial-scale variability, 

we would have expected to observe an increase in variability over both Europe and China, 

where human occupation has been increasing the most over the last 4,000 years compared to 

the preceding 4,000 years. We thus conclude that human impacts on vegetation did not have 

a substantial enough impact on the slow variability to systematically bias millennial-scale 

variability estimates.

Instrumental data

We considered two instrumental datasets—HadCRUT566 and the Berkeley Earth Surface 

Temperature (BEST)34 land and ocean product—both covering the period 1850–2020. As 

an additional test, the breakpoint-adjusted monthly station data provided by BEST were 

considered. The BEST dataset has the advantage of providing full spatio-temporal coverage 

at a high spatial resolution covering all pollen locations. On the other hand, it appears 

that the spatial autocorrelation model assumed for the interpolation leads to a bias low in 

variability compared to the non-infilled HadCRUT5 and the station data (Extended Data Fig. 

10). The choice of the optimal instrumental dataset is thus a trade-off between minimizing 

variance biases from the reconstruction method and minimizing the spatial sampling bias. 

Both datasets were used for the global analysis (Fig. 1) because the spatial sampling bias 

of HadCRUT5 is not important for the average spectrum of extra-tropical land regions 

(Extended Data Fig. 10). However, because it is important for spatial comparisons with 

the reconstructions (Figs. 2 and 3) to have both datasets at the same location, BEST 

was used as it provides spatial coverage of all the pollen record sites. The BEST equal 

area product was used for calculations, and the regular 1° × 1° product was used for 
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visual display. The instrumental data were detrended from anthropogenic influences to a 

first-order component67 proportional to historical timeseries of doublings in atmospheric 

carbon dioxide concentration (that is, log(CO2))68. As this detrending might lead to a 

negative bias on the lowest frequencies, we show the series with and without log(CO2) 

detrending in Fig. 1, but generally perform the detrending for the subsequent results. We 

note that all our analyses are robust to these choices, or to the use of alternative instrumental 

datasets69.

As an additional test of the increase in variability at longer timescales that is shown in 

pollen and tree-ring records, we also considered long instrumental timeseries from the 

BEST station data. We identified 70 series that covered more than 170 years (the length 

of the gridded product) of summer-JJA temperature with gaps of at most five years. They 

further support the scaling increase at multi-decadal timescales, in agreement with the 

dendrochronological data (Extended Data Fig. 4).

Model data

Three model simulations of the recent Holocene were considered: IPSL35, ECHAM536 and 

CCSM370. The first two are recent Holocene transient simulations of the past 6,000 years, 

and the latter is the TraCE-21ka deglaciation experiment37. We only retained the last 8,000 

years of TraCE-21ka because it is comparable to the recent Holocene transient simulations, 

containing no more freshwater forcing events, which were the main drivers of deglaciation. 

We selected the average 2-m summer air temperature (JJA) and averaged it annually.

Because the long-term trends in summer temperature are linked to the precession in Earth’s 

orbit, we also analysed the timeseries after detrending for a 23-kyr sinusoid rather than using 

the standard linear detrending performed before computing spectral estimates. This approach 

attempts to minimize power leakage from the orbital forcing frequencies onto the observed 

frequencies (Fig. 1a, lines). The reduction in leaked power was not nearly as important in the 

case of the pollen-based reconstructions (Fig. 1a and Extended Data Fig. 5).

Spectral estimates

The PSD estimates were calculated using the multitaper method71, adapted for irregular 

sampling through linear interpolation72, with number of tapers ntapers = 3 and time-

bandwidth parameter ω = 2, which yield up to ntapers × ω = 6 degrees of freedom for the 

individual spectral estimates. Standard linear detrending was performed before computing 

the multitaper spectrum. Only timescales greater than twice the maximal resolution were 

kept, in order to minimize power loss due to the interpolation47. When averaging several 

spectra from timeseries with different temporal resolution (and thus different timescale/

frequency sampling), the spectra were first linearly interpolated on a common timescale axis 

and the arithmetic mean taken. The PSD estimates were smoothed using a Gaussian kernel 

with a constant width of 0.03 in the logarithm (base 10) of the timescale73.

The confidence intervals were derived from the chi-squared distribution (χ2) of the PSD 

estimates. For the mean spectra, the degrees of freedom of each spectral estimate account for 

the frequency-dependent smoothing kernel and the number of individual spectra, limited by 

the expected effective spatial degrees of freedom at a given timescale, Given that the spatial 
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coverage of our results is limited to extra-tropical land regions, we assumed a conservative 

value of a maximum of five effective spatial degrees of freedom for all time-scales74. The 

degrees of freedom of the χ2 distribution were estimated by moment-matching from an 

ensemble of surrogate data consisting of 1,000 realizations of fractional (or power-law) 

noise75, each time simulated with the estimated scaling exponent of the spectrum.

The mean spectra are more representative of the regions most sampled by the pollen records. 

To obtain comparable estimates, the instrumental and model timeseries were extracted at 

the same locations and processed in the same way. The mean local spectra of instrumental 

summer temperature at the location of pollen records and for the entire extra-tropical land 

regions (Extended Data Fig. 10, light and dark green) are very similar, thus supporting that 

the space sampled by the pollen records is representative for the extra-tropical land regions.

We conducted a sensitivity study to test the effect of potential non-climatic noise in 

reconstructions of the spectral estimates (Fig. 1). We assumed that the main noise sources, 

from aliasing and from the finite number of pollen grains and a misspecification of pollen 

taxa, are uncorrelated between samples (‘white’). To do this we computed the expected 

spectrum of a given record when replacing the temperature signal by a white noise and 

subtracted it from the reconstructions9. The confidence interval in Fig. 1 includes the 

χ2-based confidence interval of the spectrum of the original reconstructions and that of 

the reconstructions when subtracting a noise level of 0.5 K from all records. This shows 

that the uncertainty is highest on the faster timescales, as here the relative effect of the 

noise is largest. The provided confidence intervals should be a conservative bound, as the 

noise level of 0.5 K corresponds to more than twice the median spread of the leave-one-out 

cross-validation ensembles.

Surrogate data and time uncertainty

To test the robustness of local spectral estimates to time uncertainty and irregular sampling 

in the pollen records, we produced surrogate data using the TraCE-21ka model simulation37. 

The simulated summer-JJA temperature was extracted at the location of pollen records and 

degraded to the resolution of the corresponding pollen records by sub-sampling the series 

after a low-pass filter with a characteristic timescale of twice the mean resolution75. In 

this way, a database analogous to the pollen database was created. We then introduced 

time uncertainty based on the statistical uncertainty from the radiocarbon dating of the 

Bacon age models76. The pollen database has a median time uncertainty of 250 yr, which 

is too optimistic77, as it does not take into account other effects such as, for example, 

uncertainty in the reservoir age, temporal variations in the reservoir age and the effect of 

pre-aged material and dated material not being representative of the sediment layer because 

of sediment mixing. We thus conducted a sensitivity test by amplifying the uncertainty 

around the mean age model of each record by factors of √2 and further added a random 

offset to each core to model the reservoir age effect, each time drawn from a normal 

distribution with a mean of 500 years and a standard deviation of √2 × 250 years. As the 

uncertainties add in quadrature, we obtained a database with a time uncertainty of 500 years. 

This is a realistic, but possibly optimistic, estimate according to the few studies comparing 
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radiocarbon-based lake chronologies to independent constraints from widespread ecological 

events or to independent dating techniques78–80.

In analogy to the spectral estimation of the true pollen timeseries, we estimated the average 

local spectra of temperature variability from the time-uncertain surrogate timeseries. The 

resulting mean spectra are consistent between the original annual model data and the 

surrogate databases with and without time uncertainty (Extended Data Fig. 1), showing 

that our method is robust to irregular resolution of our timeseries and realistic estimates of 

time uncertainty.

To study the spectrum of spatial means, we computed the average of the surrogate timeseries 

with and without time uncertainty after interpolating each series to a 100-yr resolution 

following ref. 5. The spectra of average (hemispheric) temperature show strong power loss 

at all timescales due to the irregular resolution and time uncertainty (Extended Data Fig. 1). 

Only the variability at the longest timescales is preserved, as the long-term trend is robust to 

these effects. This shows that the amplitude of variability from mean timeseries over large 

spatial scales cannot be quantitatively interpreted without knowledge of the amount and 

structure of time uncertainty.

Variance ratios

Variance ratios were computed by taking the ratio between the mean PSD over the same 

timescale band between different series after interpolating in the spectral domain. Because 

the ratio of two χ2-distributed variables follows an F-distribution, the ratios were multiplied 

by (d – 2)d−1, where d is the number of degrees of freedom of the denominator27.

Sub-decadal variability binning

The data were aggregated based on the mean sub-decadal variability PSD2–10 years, defined 

as the mean PSD over the 2–10-yr band. We calculated PSD2–10 years for each of the 

624 instrumental grid points for which pollen records were present nearby, ordered the 

results, and split them into eight non-overlapping bins (Extended Data Fig. 7c,d). Each 

pollen record was assigned to the nearest instrumental grid point and averaged in the 

spectral domain. Varying the number of bins, for example, using 20 bins instead of 8, 

led to similar correlations. The standard errors of the millennial variability estimates were 

used as weights for the correlation calculation (using Pearson’s correlation) and for the 

visual representation in Fig. 3b,c. The P values were calculated taking into account the 

spatial autocorrelation of the fields and the binning process. We performed Monte-Carlo 

experiments using surrogate fields generated based on the randomization of the phase of 

the two-dimensional Fourier transform81. Ten thousand surrogate fields were thus generated 

for PSD2–10 years and β10–60 years, and the analysis was repeated to obtain the correlation 

coefficients after binning, from which the P values were calculated based on the empirical 

quantile. The significance is not sensitive to the number of bins (Supplementary Fig. 4).

Relative land influence index

As a further test of the relationship between millennial variability and marine influence, 

PSD1,000–3,000 years was compared to the RLI metric developed by McKinnon and 
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colleagues46 (Extended Data Fig. 9). The RLI quantifies the relative contributions of land 

and ocean to atmospheric fluxes at a given location using a Lagrangian trajectory model 

and reanalysis data. The expected relationship, less millennial variability for higher RLI, is 

observed, except for the very high RLI values (RLI > 0.78, indicated in red in Extended 

Data Fig. 9a). This is further evidenced by binning the reconstructions according to RLI 

into eight bins of 198 records for those with RLI < 0.78, and a further ninth bin with 

the 158 records with RLI > 0.78 (Extended Data Fig. 9b). The latter contains records in 

Siberia, Central Asia and East Asia where the RLI is highest (Extended Data Fig. 9c), 

but the millennial variability remains high (except for the records in Siberia, which follow 

the expected trend). This could either be related to strong local climate sensitivity, which 

may be linked to hydrological feedback due to the arid conditions42 or to the snow-albedo 

feedback at higher elevations45, and to a bias in the pollen-based temperature estimates from 

precipitation-sensitive vegetation in this region29. Also, the discrepancy between RLI and 

the sub-decadal variability over East Asia suggests that RLI might not be an appropriate 

metric of continentality there. Notably, East Asia is one of the few regions where an 

EBM using RLI as a mixing parameter does not reproduce the seasonal gain (associated to 

continentality) skil-fully25. The P value was obtained in the same way as for the sub-decadal 

variability binning, accounting for the spatial autocorrelation and the distribution of the 

fields.

Moran’s I

Moran’s I spatial autocorrelation index was calculated using the method from ref. 82 as 

implemented in the R-package ‘ape’83. The weight matrix used corresponds to the inverse of 

the distance between sites.
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Extended Data

Extended Data Fig. 1. Effect of time uncertainty on the spectral estimates of local and 
hemispheric temperature.
The summer-JJA temperature data of the TraCE-21ka simulation over 0–8 ka BP is extracted 

at the location of the pollen records to create a surrogate database with and without time-

uncertainty (See Methods) from which are computed and shown the mean of all local spectra 

and the spectra of the hemispheric average temperature; logarithmically spaced axes were 

used. Only one realization of the surrogate database for each level of time-uncertainty τε 
is shown for simplicity as very similar results are obtained for any given realization. The 

average spectrum of local temperature variability, which is employed in this study, is robust 

to irregularity of the pollen records and time-uncertainty. In contrast, the spectra of average 

(hemispheric) temperature show a strong power-loss due to those effects. This implies that 

the amplitude of centennial to millennial temperature variations from large spatial scale 
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averages cannot be quantitatively interpreted without the knowledge of the amount and 

structure of time uncertainty. Shading indicates 90% confidence intervals around the mean.

Extended Data Fig. 2. Replicability of summer temperature reconstructions.
Timeseries of odd and even sub-groups show good replicability of the millennial scale 

variability for all continents (the correlation coefficient r is indicated in purple, see 

Methods). d,e,f, To test how the replicability compares to the expectation from time-

uncertain irregular timeseries, we repeat the analysis shown in as a,b,c, but using a 

surrogate database (without time-uncertainty τε) created using the TraCE-21ka simulation 

(see Methods). g,h,i, Same as d,e,f, but for a realization of the surrogate database with 

time-uncertainty of τε = 500 years (see Methods). The 90% range of the correlation obtained 

for an ensemble of 100 realizations of the 500-year time-uncertainty case is given (purple). 

The single realization shown was selected because it has correlation close to the mean of 

the ensemble and is thus representative of the mean behaviour. Comparing d,e,g with g,h,i 

Hébert et al. Page 15

Nat Geosci. Author manuscript; available in PMC 2023 April 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



shows that the replicability of our pollen reconstructions is consistent with the expectation 

of time-uncertain temperature timeseries. However, the amplitude of the average timeseries 

should not be interpreted (see Extended Data Fig. 1).

Extended Data Fig. 3. Sensitivity of model-data comparison to the choice of reconstructed 
variable.
a, Comparing the average spectra at the location of pollen records of model simulations, 

instrumental data (BEST) and reconstructions for the mean summer temperature (dashed) 

and the mean annual temperatures (solid); logarithmically spaced axes were used. Shading 

indicates 90% confidence intervals around the mean. The IPSL and ECHAM5 model 

results exhibit a slightly lower variability in their annual temperature than in their summer 

temperature over all timescales, except for the longest timescale since it is dominated by 

leaked power from the Earth’s orbital precession, which mainly affects summer temperature 

in the Northern Hemisphere during the Holocene. On the other hand, TraCE-21ka generally 

shows a slightly higher variability in its annual compared to its summer temperature. 

Although the pollen-based reconstructions calibrated for annual temperature are thought to 

be less reliable than the summer temperature reconstructions, they give a very similar result. 

This shows that our conclusions are robust against uncertainties in the seasonal attribution 

of pollen variability. b, Same as a, but for precipitation instead of summer temperature. 

While most locations should reflect temperature, here we also tested the boundary case 

of assuming that all sites reflect precipitation. Even in this extreme case, the main results 

hold, namely increasing climate variability over land as a function of timescale and a 

corresponding deficit of variability in the climate models. The three climate models vastly 

disagree in terms of the amplitude of precipitation variability, but they all show temporal 

scaling similar to the temperature variability; this is likely caused by the temporal links 

between precipitation and temperature on long timescales84.
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Extended Data Fig. 4. Spectral estimates from tree ring based and long instrumental 
temperature series.
To test whether the transition from the weakly scaling macroweather regime to the stronger 

scaling oceanic regime is also visible from independent temperature reconstructions, we 

show the spectral estimates of land temperature variability from tree ring width (TRW), 

maximum latewood density (MXD) measurements and long (>170 years) instrumental 

series together with the pollen-based reconstructions (solid); logarithmically spaced axes 

were used. The spectral estimates from the BEST gridded instrumental data is provided 

as reference at the corresponding locations (dashed, detrended with respect to log(CO2)). 
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The MXD and long instrumental spectra support the scaling of the pollen data. The TRW 

spectra deviates at high and low frequencies due to the known biases of this proxy85–87 (see 

Supplementary Information Note 1).

Extended Data Fig. 5. Comparison of millennial scale variability in the reconstructions and 
models.
a-c Millennial temperature variability PSD1000-3000 years (mean PSD for the timescale 

band 1000-3000 years) for the pollen-based reconstructions in 2°×2° spatial bins. d-l 
Millennial temperature variability PSD1000-3000 years for the three climate models 

(without smoothing). The results with different detrending methods before computing the 

power spectra are compared: d,g,j without detrending, e,h,k with linear detrending and f,i,l 
with a 23-kyr sinusoidal detrending. The same colour scale, using logarithmic spacing, is 

used for all maps. The model simulations generally show 10-100 times less variability than 

the reconstructions.

Hébert et al. Page 18

Nat Geosci. Author manuscript; available in PMC 2023 April 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Fig. 6. Impact of forcing on the model-proxy comparison.
a, Same as Fig. 1a, but with the local spectra of summer temperature variability of 8 

fully-forced (that is including volcanic and solar forcing) millennium simulations added. 

Only the BEST instrumental spectra are reproduced for simplicity. b, Spectrum of the 

reconstructed aerosol optical depth, that is the volcanic forcing, over the late Holocene 

(0–8ka)88. The fully forced simulations show similar local variability as the long Holocene 

simulations. As the volcanic forcing spectrum is flat on multi-decadal to millennial time-

scales, missing volcanic forcing in the Holocene is unlikely to fully reconcile the model-

proxy variability mismatch unless the amplitude of the response and its response time are 

both severely underestimated in the climate models. There are indications however that 

volcanic forcing could partially reduce the variability mismatch89. Shading indicates 90% 

confidence intervals around the mean.
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Extended Data Fig. 7. Raw and smoothed maps of pollen-based estimates of millennial 
temperature variability, and location of the records contributing to each spectral bin.
a. Same as Fig. 2a, but for the individual sites. b. Same as a but after applying a 300-

km Gaussian smoothing. The opacity is proportional to the effective number of records 

contributing to the smoothed value, that is the sum of the Gaussian weights, and is fully 

opaque when 5 or more effective records were available. c. Shown are the location of 

individual pollen records that were considered in the analysis. The colours correspond to 

those in Fig.3, indicating which records are included in the binning of each spectrum. 
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d. Shown are the grid points of the instrumental dataset that are near pollen records. 

The colours also indicate the corresponding bins as in a and Fig. 3. Each of the 8 non-

overlapping bins contain 78 grid points based on the sub-decadal variability (see Methods 

Sub-Decadal Variability Binning).

Extended Data Fig. 8. Relationship of the sub-decadal variability and multi-decadal scaling for 
land extratropics.
The correlation plot between the sub-decadal variability (2–10 years) and the multi-decadal 

scaling (10–60 years) over land for all grid points north of 20 N; the x-axis is logarithmically 

spaced. We use 40 bins to have a similar number of grid points per bin as Fig. 3; the results 

are insensitive to this choice.
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Extended Data Fig. 9. Millennial variability and relative land influence.
a, The millennial variability PSD1000–3000 years is shown as a function of the relative land 

influence (RLI) index46. The points with RLI values above 0.78 were indicated in red to 

underline the change in behaviour. b, The pollen records were binned according to the RLI 

into 8 groups of 198 records, and PSD1000–3000 years was calculated from the average of their 

spectra (blue). A ninth distinct group comprising the 158 records belonging to areas where 

the RLI was above 0.78 was considered (red). The correlation given (blue) does not include 

the ninth group since it is an outlier as discussed in the manuscript and methods. c, Map 

of the RLI for grid boxes containing pollen records. The grid boxes with RLI > 0.78 are 

marked with red crosses in order to highlight the regions in the ninth bin.
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Extended Data Fig. 10. Local spectra of summer temperature for the noninfilled HadCRUT5 and 
the BEST interpolated products for varying spatial coverage.
The average spectrum of the non-infilled HadCRUT566 (dark purple) and the BEST34 

station data (with at least 80 years of data, dark blue) overlapping with the pollen record 

locations (less than 300 km away in the case of the station data) are compared with the 

average spectrum of the BEST interpolated product for varying spatial coverage: at the 

pollen records locations (pale green), for all land extra tropic north of 20°N (dark green), 

and at the locations of overlap (legend uses the intersection symbol ⋂) between the pollen 

records with the noninfilled HadCRUT5 dataset (pale purple), and with the station data 

(light blue); logarithmically spaced axes were used. This supports that in all cases the spatial 

coverage is broad enough to be representative of the expected behaviour for the northern 

hemisphere land extra tropics and that HadCRUT5 is not affected by a coverage bias in Fig. 

1 The higher variability in both station data and HadCRUT5 suggests that the infilled BEST 

product is biased low.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Average spectral estimates of local land temperature over the Northern Hemisphere.
a, PSD estimates of land air temperature (T land) from pollen-based reconstructions along 

instrumental data and model simulations, both extracted at the pollen record locations; 

logarithmically spaced axes were used. Also shown are estimates from timeseries detrended 

with a 23-kyr sinusoidal or with respect to log(CO2) (dashed). The number of pollen records 

contributing to each timescale is indicated below (brown axis). b, Average spectral estimates 

from reconstructed annual SSTs9, and instrumental data at the corresponding locations. 

Observational spectra from a are reproduced. Linear combinations of power laws with slope 
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β = 1.2 and white-noise series are shown as dashed-dotted lines (land in green, sea in 

blue and white-noise levels in grey). Shading indicates 90% confidence intervals around the 

mean.
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Fig. 2. Spatial patterns of temperature variability in instrumental data and pollen-based 
reconstructions.
a, Map of millennial variability estimated from the summer temperature spectra of pollen-

based reconstructions as the mean PSD over the 1,000–3,000-yr timescale band in 4° 

× 4° spatial bins with opacity linearly proportional to the number of records in the 

bin and saturating when there are five records (see Extended Data Fig. 7 for raw and 

smoothed estimates).b, Map of the multi-decadal scaling exponent β from the spectra of 

instrumental temperature records fitted over the 10–60-yr timescale band. c, Map of sub-

decadal variability, mean PSD over the 2–10-yr timescale band, estimated from the spectra 
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of instrumental temperature records. A logarithmically spaced colour scale was used for a 
and c.
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Fig. 3. Spectral estimates of land temperature as a function of sub-decadal variability.
a, PSD estimates of the instrumental temperature (Δt < 60 years) and of the pollen-based 

reconstructions (Δt > 100 years) binned according to sub-decadal instrumental variability 

(Methods and Extended Data Fig. 7c,d); logarithmically spaced axes were used. Shading 

indicates 90% confidenceintervals around the mean. b, Relationship of the instrumental sub-

decadal temperature variability PSD2-10years and the pollen-based millennial temperature 

variability PSD1,000-3,000 years. Vertical and horizontal lines indicate the standard error of the 

mean within each bin. c, As in b, but between β10-60years and PSD1,000-3,000 years.
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