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ABSTRACT
The current highly pathogenic avian influenza H5N1 panzootic is having substantial impacts on wild birds and marine mam-
mals. Following major and widespread outbreaks in South America, an incursion to Antarctica occurred late in the austral 
summer of 2023/2024 and was confined to the region of the Antarctic Peninsula. To infer potential underlying processes, we 
compiled H5N1 surveillance data from Antarctica and sub- Antarctic Islands prior to the first confirmed cases.
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The increasing intensity of highly pathogenic avian influenza 
virus (HPAIV) H5N1 clade 2.3.4.4b outbreaks have had a sub-
stantial impact on poultry and wildlife [1]. Wild bird move-
ments have underpinned the rapid spread of this virus, which 
has swept across most continents within a 2- year time span [2]. 
Compared to previous HPAIV subtypes and clades, some geno-
types of H5N1 2.3.4.4b have significantly improved replication 
in wild birds [3] and increased fitness through continuous reas-
sortments [4], which has likely contributed to a shift in infection 
dynamics leading to the infection of a broader range of avian 
species [1]. In addition to their role in viral dissemination, wild 
birds are suffering huge losses associated with mass mortality 
events, and the scale of mortality among wild birds being in the 
millions rather than the tens of thousands reported [5]. Thus, 
the recent panzootic is a serious conservation concern for a large 
range of wild bird species.

Due to the absence of waterfowl species that migrate to the 
Antarctic and sub- Antarctic islands, the incursion risk of 
HPAIV in these southernmost regions had been considered 
low prior to 2021. However, waterfowl are present on islands 
in northern fringes of the Southern Ocean, and beyond wa-
terfowl, millions of wild birds follow known migration and 
post- breeding dispersal routes establishing links and thereby 
substantial global connectivity. This connectivity includes links 
to regions with recent HPAIV H5N1 outbreaks involving sea-
birds and marine mammals [2]. Despite the purported remote-
ness, low- pathogenicity avian influenza viruses and antibodies 
against these viruses have previously been detected in various 
seabird species nesting at sites along the Antarctic Peninsula 
and South Shetland Islands, with viral genomes illustrating 
phylogenetic connectivity to viruses circulating on other conti-
nents [6, 7]. As a result, the Scientific Committee on Antarctic 
Research (SCAR) Antarctic Wildlife Health Network (AWHN) 
had considered the risk of incursion of the recent panzootic 
HPAIV H5 into the Antarctic region in the 2022/2023 summer 
season to be high [8], and considerably higher in 2023/2024 
following virus spread to the southernmost regions of South 
America [9], and confirmed cases in various species including 
Magellanic penguins (Spheniscus magellanicus) and Humbold 
penguins (Spheniscus humboldti) and several species of marine 
mammals.

To identify possible incursions of H5N1 into the Antarctic re-
gion during the summer season 2022/2023 and the early season 
2023/2024, we sampled migratory seabirds at different loca-
tions across Antarctica and in sub- Antarctic areas (Figure  1) 
and collated a range of observational data. Herein, we define 
Antarctica as the region south of the Antarctic Polar Front and 
adjacent islands in sub- Antarctic areas. In particular, we aimed 
to collect information pertaining to signs of unusual mortality 
and known clinical signs of HPAIV infection including loss of 
coordination and balance, trembling head and body, lethargy, 
respiratory distress and conjunctivitis [8]. Across all locations, 
samples were collected in accordance with institutional an-
imal ethics approval, and sample testing was performed with 
national frameworks (details available in Data S1 Supporting 
Information).

Overall, sampling and observational efforts were conducted 
from early November 2022 to late March 2023 and from 

October 2023 until the end of February in 2024. Surveillance 
efforts included a large range of species (i.e., penguins, gulls, 
skuas and petrels; see technical annex for more information) 
and locations. In 2022/2023, samples for HPAIV testing were 
collected from apparently healthy birds from 20 locations in 
the sub- Antarctic and Antarctic regions. There were several 
suspicious observations of dead wild birds on the Falkland 
Islands (gentoo penguin Pygoscelis papua, cattle egret 
Bubulcus ibis) and South Georgia Islands (wandering alba-
tross Diomedea exulans). However, all swab samples collected 
from these animals, in addition to swab samples from appar-
ently healthy wild birds in other locations were negative for 
HPAIV (see technical annex for details on location and spe-
cies). Together, this strongly suggests that HPAIV H5N1 clade 
2.3.4.4b did not enter the Antarctic region during the austral 
summer 2022/2023 and that the lack of detection was unlikely 
due to lack of surveillance, testing or disease investigations. 
This contrasts with the austral summer 2023/24. In October 
2023, the first confirmed H5N1 cases were detected in the 
Falkland Islands and in November on South Georgia Island in 
the sub- Antarctic [10, 11] (Figure 1). Given the overlap of spe-
cies breeding among the Falkland Islands and South Georgia 
Islands and migrating towards the Antarctic Peninsula and its 
offshore Islands (e.g., the South Shetland Islands), research-
ers in the region and the tourist industry have been very dil-
igent in identifying unusual bird behaviour and mortality 
events. Despite active cases in the Falkland Islands and South 
Georgia Island, sample collection and observations from 16 
locations between November 2023 and early February 2024 in 
the Antarctic Peninsula and associated islands were negative 
for HPAIV. Data from the SCAR monitoring project did, how-
ever, report suspected cases in the Antarctic region starting in 
December 2023 [11]. These included brown skuas (Stercorarius 
antarcticus) on the South Orkney Islands in December 2023 
(no samples collected) and a mortality in brown skuas on 
Heronia Island in December 2023 (samples collected, HPAIV 
negative). As of mid- February, the first positive cases have 
been reported from the Antarctic Peninsula (reported by 
Antonio Alcami, Angela Vazquez, the PERPANTAR project 
and researchers from the Instituto Antártico Argentino, press 
release [12]). This suggests that H5N1 has spread among col-
onies in the later breeding season, however, despite the pres-
ence of the virus in the region, there has been no evidence 
thus far for major outbreaks and mass mortality events on the 
Antarctic Peninsula. Further, based on observation data, the 
strain did not appear to have reached the Indian Ocean sub- 
Antarctic islands as of August 2024 (see Data S1 Supporting 
Information).

Obviously, incursion risk and successful establishment of 
HPAIV are contingent on a combination of factors. Most im-
portantly, that host species (i) are infected with HPAIV be-
fore travelling into the Antarctic regions, (ii) can migrate long 
distances despite being infected and (iii) have contact with, 
and transmit, the virus to susceptible species that could be 
the starting point of a new epizootic. Most species occupy-
ing the Antarctic region are pelagic seabirds with little to no 
contact with terrestrial birds such as waterfowl, significantly 
reducing their exposure to outbreaks on land (e.g., South 
America). However, some species like the brown skua and the 
giant petrel species (Macronectes spp.) are known scavengers 
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(Figure  2), leading to high risks of exposure to HPAIV via 
the consumption of infected carcasses. It is thus no surprise 
that brown skuas where among the first confirmed cases both 
on South Georgia Islands and the Antarctic Peninsula [10]. 
This species, which can be observed at shorelines of South 
America, the Falkland Islands and South Georgia Islands 
[13], may play an important role in spreading the virus. Yet, 
it seemed that the connectivity established by the seabirds' 
movements from South America and South Georgia Islands 
over the Drake Passage to Antarctica is rather limited during 
the breeding season but might increase again towards the 
end of breeding activities, when the movement ranges of both 
adults and first juveniles are extending again. Together with 
the increasing number of naïve juveniles and concomitant 

changes in densities, this may explain the delay between ini-
tial outbreaks in the Falklands/South Georgia Islands and the 
first confirmed cases on the Antarctic Peninsula.

Still, the consequences of viral incursion(s) into Southern 
Ocean wildlife are unclear, but based on observations from 
other regions, HPAIV has the potential for devastating ef-
fects. Critically, population densities within seabird colonies 
are often very high, facilitating the transmissions between 
individuals [14]. Further, prospecting movements of potential 
recruits, predator–prey interactions and kleptoparasitism be-
tween bird species (e.g., skuas, penguins and sheathbills), as 
well as species scavenging on dead seabirds and mammals, 
may promote the spread of the virus between colonies [15]. 
Once the virus has been established in the region, interac-
tion between seabirds and marine mammals may also result 
in further transmissions, potentially facilitating the adapta-
tion of the virus to mammalian species as suggested in South 
America [14]. Finally, besides the many seasonal visitors, a 
sizable portion of animals frequenting the Southern Ocean 
are endemic to the region and any mass mortality events in 
Antarctica due to HPAIV H5 are of substantial conservation 
concern for many species.

Detecting H5N1 incursion(s) and describing the infection dy-
namics into and within the sub- Antarctic and Antarctic re-
gions is highly relevant, and standardized surveys for mortality 
and sampling should therefore be prioritized. These activities 
should be undertaken with consideration of the potentially 
zoonotic risks of (emerging) HPAIV H5 [8] and require strict 
hygiene measures to prevent the spread of the virus through 
human activities. Sampling and detailed analysis of lineages 
and virus phenotype will provide crucial information needed 
to assess risks and respond to future wild bird outbreaks.

FIGURE 1    |    Sampling locations for RT- qPCR analysis and the detection of H5N1 2.3.4.4b, as well as locations with intensive observational efforts 
to identify signs of HPAIV infections within breeding bird communities for the breeding season 2022/2023 (left) and 2023/2024 (right). In addition, 
locations of confirmed cases of infection in 2023/24 (right) are included. Numbers refer to the following references: (a) technical annex, (b) Bennison 
et al. 10, (c) reported by Antonio Alcami, Angela Vazquez, the PERPANTAR project and researchers from the Instituto Antártico Argentino 12. Maps 
created with Natural Earth.

FIGURE 2    |    Northern giant petrels and Brown skuas scavenging on 
an Antarctic fur seal carcass, showing inter- species interactions with 
the potential for HPAIV virus transmission. Photo taken on South 
Georgia by Paulo Catry.
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