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A B S T R A C T

Sulfur cycle fluxes implicated in the Permian-Triassic mass extinction have traditionally been studied by the
sulfur phase abundances in sedimentary rocks and the stable sulfur isotopic value (δ34S) of seawater sulfate
inferred from mineral sulfate analyses. This information might be complemented by studies of the reduced
inorganic sulfur and organic sulfur produced following bacterial sulfate reduction. To explore this potential the
δ34S and concentration analyses of total reduced inorganic sulfur (TRIS) and organic sulfur – separately in the
forms of kerogen (Ker) and individual organosulfur compounds, specifically dibenzothiophenes (DBTs) – has
been conducted on sediments across the Late Permian to Early Triassic marine type section of Meishan-1 (South
China). The relatively steady δ34S profiles (e.g., < 5‰ variation) of all sulfur phases measured through much of
the late Permian were indicative of a primary seawater sulfate control, but other biogeochemical modulators
caused prominent δ34S fluctuations of TRIS and DBT adjacent to the extinction event. The late Triassic δ34STRIS
profile of Meishan-1 displayed a notable 34S enrichment (+15‰ increase) in bed 22–24 sediments concomitant
with lower δ34SDBT values (− 7 ‰ decrease), whereas co-eval δ34SKerS values remained relatively constant. The
contrasting δ34SDBT and δ34SKerS data suggests the dynamic behavior of specific diagenetic sulfurisation processes
may be resolved by the δ34S of discrete organic sulfur compounds (i.e., dibenzothiophenes, DBTs), but dissipated
by the sulfurisation collective represented by the bulk kerogen fraction. The inverse isotopic trend observed
between DBT and TRIS resulted in negative Δδ34SDBT-TRIS values identifying an organic sulfurisation pathway(s)
with an unusual preference over pyrite (FeS2) for the lighter stable sulfur isotope. A redox control of the δ34SDBTs
and δ34STRIS deviations in the bed 22–24 extinction interval was confirmed by coincident variation in TRIS/
(TRIS + KerS) and pyrite (Py) and highly reactive (HR) iron ratios (FePy/FeHR). The iron (Fe) speciation data
indicated a transition to ferruginous conditions, ruling out Fe2+ limitation as a factor in the bias against 34S
evident in DBT formation. The 34S depletion of the DBTs promoted by the ferruginous setting may arise from the
rapid and irreversible reaction of organic substrates with labile sulfur anions (e.g. HS-) or be supported by an
especially localised sediment–water depositional microenvironment. Our study highlights the potential of
incorporating stable sulfur isotope analytics of reduced and organic sulfur phases, particularly of specific organic
compounds, into a holistic assessment of the dynamic sulfur biochemical periods of Earth’s past.

1. Introduction

The P-T extinction, when up to 95 % of all species on Earth vanished,
marks a period of abrupt and profound environmental change on Earth

and is popularly considered the most severe extinction during the
Phanerozoic (Benton and Twitchett, 2003; Grice et al., 2005; Whiteside
and Grice, 2016). Despite its prominent status there is still some
conjecture about the actual cause of the P-T extinction. The two main
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explanations are changes in volcanic activity related to eruption of Si-
berian flood basalts (Bowring et al., 1998; Wignall, 2001) and global
ocean occurrences of anoxic bottom waters and eutrophic surface water
(Benton and Twitchett, 2003; Grice et al., 2005; Hallam and Wignall,
1997). These phenomena seriously impact the S-biogeochemical func-
tion of marine and terrestrial ecosystems and could account for the large
S-cycle fluxes (e.g., S-isotopic composition of ocean sulfur reservoirs;
Canfield and Teske, 1996) with the P-T extinction event as well as
concurrent changes in global oxygen (O) and iron (Fe) cycles (Canfield
and Teske, 1996; Newton et al., 2004).

Global sulfur (S) cycles during the P-T transition have been profiled
by abundance and stable sulfur (δ34S) isotopic analyses of evaporites,
carbonate associated sulfate (CAS) and pyrites recorded in sediments
from a number of different geographical locations (Berner and Raiswell,
1983; Wilkin et al., 1996; Wignall and Newton, 1998; Newton et al.,
2004; Kaiho et al., 2006a). It is widely accepted that the δ34S value of
seawater sulfate (δ34SSO4) decreased through the Permian, recording a
Phanerozoic minimum of near 10 ‰ close to the Permian Triassic
Boundary (PTB), then inflects to a period of 34S enrichment in the Early
Triassic (Claypool et al., 1980; Chen and Chu, 1988; Newton et al., 2004;
Bernasconi et al., 2017). Quite large fluctuations in δ34SSO4 values very
near to the PTB, or at the extinction horizon (Kaiho et al., 2006a), have
been identified in several studies thus implicating a large S-flux event(s)
in the actual mass extinction.

New insights into S-biochemical dynamics of paleo-environments
may also be revealed from the isotopic and abundance characteristics
of reduced S and organic S products that are primarily produced
following microbial sulfate reduction, with the magnitude of S isotopic
fractionation between these S-phases potentially indicative of variations
in microbial metabolisms or disproportionation of S. The stable isotopic
analysis of total reduced inorganic sulfur (δ34STRIS), often predomi-
nantly pyrite (δ34Spy) data has been included in several previous P-T
studies and shown to fluctuate widely through the extinction event. To
explore the complementary value the isotopic and content analyses of
reduced inorganic S and organic S may bring to studies of the P-T
extinction,and potentially other mass extinction events, here we have
separately measured the abundance and δ34S values of total reduced
inorganic S (TRIS), kerogen S (KerS) and several different organic sulfur
compounds (OSC; i.e., parent andmethyl dibenzothiophenes) in the Late
Permian to Early Triassic marine type section of the Meishan-1 (South
China) drill core, encompassing the Global Stratotype Section and Point
(GSSP). Sulfur isotope analyses of organic substrates has traditionally
been limited to the analysis of kerogen (e.g., Passier et al., 1999; Werne
et al., 2003), the non-solvent soluble fraction of organic sediments,
which potentially contains a multitude of organic species produced from
a variety of sulfurisation reactions. The emerging GC-ICPMS capability
of continuous flow compound specific S isotope analysis (CSSIA; Amrani
et al., 2009; Greenwood et al., 2014), however, presents a new oppor-
tunity to separately measure the δ34S of different organic sulfur com-
pounds which may relate to unique formation or transition processes.
Here, the S isotope analytics were considered with establishedmolecular
biomarker and Fe speciation data which inform on water column redox
conditions.

2. Meishan-1 marine type section

The GSSP has been thoroughly investigated in paleontological and
geochemical studies of the P-T mass extinction at Meishan (Jin et al.,
2000; Hongfu et al., 2001; Kaiho et al., 2001, 2006a; Cao et al., 2009,
Cao and Zheng, 2009; Saito et al., 2023). The Meishan-1 core was drilled
near the quarry Meishan Section D and comprised sediments containing
the transition, the entire Changhsingian Stage and post-extinction Early
Triassic Induan Stage (Cao et al., 2009). The Changhsingian Formation
represents slope-to-basin facies comprised of graded beds of organic-rich
calcarenite, marly micrite and radiolarian chert (Wignall and Hallam,
1993; Bowring et al., 1999; Jin et al., 2000; Cao and Zheng, 2009) – a

detailed stratigraphic section with bed and drill core depth positions of
presently studied Meishan-1 sediments can be found elsewhere (Cao
et al., 2009).

The present study was conducted on a subset of 11 Meishan-1 drill
core samples remaining from a previous study (Grice et al., 2005),
including two samples each from beds 22, 24 and 26 (106.52–111.04 m)
spanning the extinction transition. The End Permian Mass Extinction
(EPME) is at the top of bed 24e and beginning of bed 25, identified from
a disappearance of fossils and sharp decline in species richness (Jin et al.,
2000) and spikes in Hg and terrestrial biomarkers (Grice et al., 2005;
Kaiho et al., 2006a, 2020). Fluctuations in photosynthetic sulfur carot-
enoid biomarkers, attributed to periodic ocean euxina, have also been
reported coincident with the EPME (Grice et al., 2005; Saito et al.,
2023). The main extinction took place in as little as 100,000 years. The
P-T boundary was marked at Bed 27c by the first occurrence of the co-
nodontHindus Parvus (Hongfu et al., 2001; Benton and Twitchett, 2003).
The thermal maturity of organic matter in the Meishan-1 core has also
been assessed –most reliably using the 22S/22S+ 22R C31 homohopane
ratio – as being uniformly in the earliest stages of the oil window (Cao
et al., 2009), and thus unlikely to have significantly impacted the δ34S
values of inorganic or organic S species.

3. Analytical methods

3.1. Sample preparation

The bitumen fraction of the sediments (~5–25 g) was isolated by
microwave extraction (x2) of the finely ground sediment sample in
DCM:MeOH (9:1 v/v) at 80 ◦C. Activated copper was added to the
bitumen extracts to remove elemental sulfur, which was found to be
negligible. The bitumen were then separated by column chromatog-
raphy over activated silica gel (120 ◦C) into aliphatic, aromatic and
polar fractions using n-hexane, n-hexane:DCM (7:3; v/v) and DCM:
MeOH (1:1; v/v) eluants, respectively. A S-rich aromatic sub-fraction
was obtained by column chromatography over aluminum oxide (AlO2;
Type 507C neutral; Fluka) with three successive n-hexane:DCM eluants
(99:1; 90:10; 0:100; the last of which gave the S-rich aromatic fraction;
Grotheer et al., 2017).

3.2. GC–MS

The molecular composition of the S-rich aromatic fractions was
characterised using a HP 6890 GC interfaced to an Agilent 5975 mass
selective detector (MSD). The GC was fitted with a DB-5MS capillary
column (60 m × 0.25 mm i.d. × 0.25 µm film thickness). Helium carrier
gas was used at a constant flow rate of 1.3 mL/min and the GC oven
temperature was programmed from an initial 40 ◦C (held 2 min) to 325
◦C (held for 30 min) at a rate of 3 ◦C/min. The MSD was operated at a
source temperature of 230 ◦C. Full scan (m/z 30–530 Da) 70 eV mass
spectra were acquired at a rate of ~ 4 scans per second.

Parent and alkyl DBT products were identified based on correlation
of the mass spectral and GC analyses to laboratory standards and pub-
lished data (Asif et al., 2009; Grotheer et al., 2017). Quantification of
DBT (184 Da) and methyl DBT (198 Da) compounds were determined by
correlation of parent ion peak areas to an external calibration curve
established with several DBT standards of different concentration.

3.3. Compound Specific Sulfur Isotope Analysis

The δ34S values of DBTs in the S rich aromatic fraction (III) were
analysed using an Agilent 6890 GC interfaced to a Thermo Neptune Plus
multi-collector inductively coupled plasma mass spectrometer (MC-ICP-
MS; Greenwood et al., 2014). The S-analytes were separated on the GC
with a DB-5 MS column (30 m × 0.25 mm i.d. × 0.1 µm film thickness).
The GC oven was heated from 100 ◦C (held for 0.5 min) to an end
temperature of 300 ◦C (held for 15 min) at a rate of 8 ◦C/min. Argon gas
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for the ICP torch was pre-heated to assist the transfer of analytes from
the GC. An SF6 gas standard of known δ34S value was used for tuning and
calibration of the MC-ICP-MS. Two pulses of SF6 were included at both
the start and end of all GC-MC-ICP-MS analyses to internally calibrate
δ34S measurements. δ34S results were reported as permil (‰) relative to
the international sulfur isotope standard Vienna Canyon Diablo Troilite
(VCDT).

A δ34S precision of < 0.2 ‰ is typically for OSCs with ≥ 80 pmol
sulfur (Greenwood et al., 2014) and confirmed by daily analyses of a
mixture comprising four authentic S-compounds (benzothiophene,
dodecanthiol, dibenzothiophene and octadecanethiol). The duplicate
analysis of the Meishan samples mostly gave δ34SOSC values with a
standard variance < 0.5 ‰.

3.4. Isolation, quantification and isotopic analysis of bulk S fractions

Sedimentary total reducible inorganic sulfur (TRIS) fraction –
essentially considered to consist of pyrite (FeS2) – was separated from
dry sediment powders according to a single-step hot acidic Cr(II)
distillation (Fossing and Jørgensen, 1989). Generated H2S was trapped
in a Zn acetate solution and measured spectrophotometrically (Specord
40, Analytical Jena). Results were used to calculate the TRIS content in
wt% of dry sample (% dwt). For stable isotope measurements, ZnS was
transferred into Ag2S using an AgNO3 solution, washed and dried. The
residue from Cr(II) distillation was considered as being representative of
kerogen (Passier et al., 1999). Combustion-isotope ratio monitoring
mass spectrometry (C-irmMS) analysis of Ag2S samples and washed and
dried residues from the Cr(II) distillation (i.e., KerS) were conducted by
combustion in a Thermo Flash 2000 elemental analyser, connected to a
Thermo FinniganMAT 253 gas mass spectrometer via a Thermo Conflow
IV interface.

3.5. Fe Speciation

The pyrite-associated iron fraction (FePy) was calculated assuming
ideal FeS2 stoichiometry from the analytical TRIS amounts. Total iron
(FeT) was measured using ICP-OES (Thermo Icap 6300 DUO) after
complete acid digestion in a pressure digestion system PDS-6 (Loftfield
Analytical Solutions; Heinrichs et al., 1986; Kowalski et al., 2012). The
remaining reactive sedimentary iron was extracted with 1 M HCl (FeHCl)
or buffered sodium dithonite solution (FeD; Canfield, 1989) and
measured spectrophotometrically (Specord 40, Analytical Jena). The
highly reactive iron fraction (FeHR) was calculated as the sum of domi-
nating FePy and FeHCl or FeD.

4. Results

Geochemical parameters measured from the Meishan-1 sediments
including δ34S (‰) and content (% wt) of TRIS, KerS and DBT as well as
Fe phase ratios are given in Table 1. The δ34STRIS, δ34SKerS and δ34SDBT
profiles of the Meishan-1 section studied are displayed in Fig. 1 (Fig. 1A-
C show δ34S profile of whole section; Fig. 1G-I expands δ34S profile of
beds 22–34); and the abundance profiles of TRIS, KerS as well as of the
TRIS/(TRIS + KerS) ratio and TOC are given in Fig. 2.

δ34STRIS was − 36.5 ‰ in the deepest sample (153.95 m), then rela-
tively stable at ~ -27‰ (±2‰) through most of the Late Permian (beds
12–21; Fig. 1A). A large fluctuation in δ34STRIS was evident closer to the
extinction transition, comprising increasing values (~ +15‰) through
bed 22 to amaximum value of − 13.4‰ in the lower Bed 24 sample, then
receded in bed 26 to values (− 25 to − 30 ‰) similar to those in the
deeper Late Permian samples (Fig. 1G). The Early Triassic sample (bed
34) showed a further δ34STRIS decrease to − 37‰.

Interestingly δ34SKerS was relatively stable at approx. − 16 ‰ below
140 m (beds 7–14), then increased moderately to − 11‰ at the bottom
of bed 22 where it generally remained through the remaining P-T
transition (Fig. 1B). It did not fluctuate in value through bed 22–24 like Ta
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observed for δ34STRIS, but did reflect a notable 34S depletion (δ34SKerS =
-19‰) in upper bed 26 just before the PTB (Fig. 1H). The Early Triassic
bed 34 sample showed a further 34S depletion with δ34SKerS = -21 ‰,
which was similar to the δ34STRIS value measured in this youngest
sample.

Individual OSCs for which δ34S values were measured were DBT and
mDBT − the three separate GC peaks of latter (4-methyl, co-eluting 2&3-
methyl and 1-methyl) were co-integrated and δ34S reported as ΣmDBT.
No other OSCs were detected with sufficient abundance (≥80 pmol S per
compound; Greenwood et al., 2014) for reliable δ34S measurement. δ34S
values of co-eval DBT and ΣmDBTwere generally similar (Table 1) so for
brevity just δ34SDBT will be discussed here forth. Through the deeper
Late Permian section (bed 7–22; Fig. 1C) δ34SDBT ranged between a low
of − 29‰ (140.01 m) and high − 17‰ (111.04 m/bed 22). Through bed
22–24, coincident with the fluctuation in δ34STRIS values, δ34SDBT
showed a small decrease to − 24 ‰ (bed 24–107.1 m) then similar
magnitude rebound to − 19 ‰ (bed 24–106.74 m; Fig. 1I). It remained
relatively stable through bed 26 (− 20‰). A low DBT concentration (2.4
µg/g) unfortunately precluded a δ34S measurement of the Early Triassic
sample (102.6 m/bed 34).

5. Discussion

5.1. Sulfur Biogeochemistry and δ34S

The sulfur (S) of sulfide minerals and organic sediments is largely
sourced from the reduction of seawater SO42- by sulfate reducing bacteria
(SRB). The end product of sulfate reduction is H2S which can subse-
quently react with reactive metal ions (e.g., Fe2+, Mn2+) or organic
matter depending on their availability. Pyrite (FeS2) formation is the
kinetically favored process (Hartgers et al., 1997). Organic sulfurisation
proceeds via the transformation of H2S to a range of intermediate
oxidation compounds with different S-valences (e.g., HS-, Sx- , S0, S2O32-,
SO32-), though these reactive species are also susceptible to other trans-
formation processes (i.e., bacterial reduction to H2S; mineral precipi-
tation, e.g., FeS; S0 disproportionation to H2S and SO42-; Canfield and
Thamdrup, 1994; Canfield, 2001).

A δ34S based model of the sulfur cycle of a marine sedimentary
system is shown in Fig. 3. The microbial reduction of SO42- (blue arrow,
Fig. 3) has a strong kinetic bias against 34S and imparts a first order
control on the δ34S values of environmental samples (Canfield, 2001).
The magnitude of S-isotopic fractionation due to microbial (dissimila-
tory) sulfate reduction has been measured to vary widely with SRB

Fig. 1. Meishan-1 δ34S profiles of (A) TRIS; (B) KerS; (C) DBT; (D) DBT-TRIS; and abundance profile of the euxinic/anoxic biomarkers (E) isorenieratane (IsoR); (F)
Σ(C14-C27) arylisoprenoids (ArylI). E-F data from Grice et al. (2005) − included for correlation of water column redox with the S-isotopic data: blue data points/
profile correspond to samples of present study; orange data points/profile are from full sample suite of Grice et al. (2005). (G-L) showed zoomed bed 22–34 regions of
(A-F). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

P.F. Greenwood et al.
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species and environment, ranging from just 2‰ (Detmers et al., 2001) to
as large as 72‰ (Wortmann et al., 2001), but generally is in a narrower
range of 20 ‰ to 45 ‰ (Hartmann and Nielsen, 2012; Goldhaber and
Kaplan, 1980; Chambers and Trudinger, 1979; Habicht and Canfield,
1997; Brüchert et al., 2001). A quite consistent fractionation of approx.
20 ‰ was suggested for microbial sulfate reduction based on a com-
parison of the δ34S values of petroleum samples (i.e., whole oils) span-
ning a wide range of phanerozoic ages and coeval seawater SO42- inferred
from δ34S measurements of evaporative or carbonate associated sulfate
(Engel and Zumberge, 2007).

Secondary δ34S impacts on the main S-phases (i.e., H2S, SO42-) are
imparted from other S cycling stages and potentially also gradual
sequestration of some parts. The transformation of H2S to FeS2 (i.e.,

pyritization; purple arrow, Fig. 3) occurs with negligible S-isotopic
fractionation (<1 ‰; Price and Shieh, 1979; Canfield, 2001). Compar-
atively, the diagenetic reaction of functionalised or reactive organic
molecules with reduced sulfur intermediates (yellow arrow, Fig. 3) to
form organic sulfur usually occurs with a modest 34S enrichment leading
to an increase in the δ34SOS of a few‰ (cf., δ34SH2S; Anderson and Pratt,
1995; Amrani and Aizenshtat, 2004a, 2004b). Oxidizing bacteria can
convert sulfides back to sulfate (brown arrows, Fig. 3), adding 34S
depleted S back to the previously 34S enriched residual SO42- pool,
potentially reversing most of the isotopic bias introduced by the initial
microbial sulfate reduction. Furthermore, S0 may be utilised by auto-
trophic sulfur disproportionating bacteria (SDB) and partially converted
in an equilibrium reaction to sulfate and sulfide, experiments with

Fig. 2. Meishan-1 abundance profile of (A) TRIS; (B) KerS; (C) TRIS/(TRIS + KerS); and (D) TOC.

Fig. 3. Major biotic and abiotic S transformation pathways and general δ34S relationships of the S-cycle of P-T marine sediments. Major processes include sulfate
reduction (blue arrow; Nb. δ34S of seawater sulfate source at P-T ≈ +10 ‰), sulfide mineralisation (purple), organic sulfurisation (yellow) and sulfide oxidation
(brown). Pathways which may sequester S from the cycle include carbonate associated (CAS) and evaporative (EvS) sulfate formation (orange), pyrite burial (dark
grey) or autochthonous S-aggregation (light grey). Black arrows provide further secondary detail of the interconnectivity between the major S-phases and several
important intermediate sulfur species − including elemental sulfur (highlighted green) which can directly link the sulfate-sulfide-sulfurised reservoirs of S. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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enrichment cultures of SDB showing the δ34S value of the produced
sulfate approx. + 14 ‰ higher and sulfide − 8 ‰ lower, respectively,
than that of elemental S (Canfield and Thamdrup, 1994).

Various processes might also remove sulfur from the cycling system.
One common event is the burial of pyrite, impacting the sulfide pool
available to sulfide oxidisers or potentially the stochiometric buffering
support for the SDB conversion of S0. S might also be removed via direct
microbial (e.g., biofilm) aggregation of the secondary products of sulfate
reduction (e.g., S0, FeS2; Raven et al., 2016), with the autocthonous
sequestration of 34S depleted S having a 34S enrichment effect on the
continuing S-cycles.

Other environmental factors which can contribute to large δ34S dif-
ferences between the main S-phases include a strong redox dependance
of biotic and abiotic sulfurisation processes. The magnitude of S-isotopic
fractionation may be amplified with repeated reduction–oxidation
cycling as has been credited for the very large δ34S fractionations
(40–70 ‰) determined between seawater SO42- and the sulfides in
modern anoxic waters like the Black Sea (Fry et al., 1991; Canfield and
Thamdrup, 1994). The mixing of S-phases involved in different cycles
may also moderate the full S-isotopic fractionation effect of particular
disproportionation or fractionation processes.

5.2. Seawater δ34S of Late Permian and Early Triassic

Several paleo-reconstructions of seawater δ34SSO4 values have been
established from isotopic measurements of evaporative sulfates, pyrites
and CAS, including through the Permian and Triassic periods (e.g.,
Newton et al., 2004; Kaiho et al., 2006a; Bernasconi et al., 2017). These
studies have generally shown δ34SSO4 to decrease in the very late
Permian to Phanerozoic minimums typically close to + 10 ‰ near the
PTB, before returning to more 34S enriched values through the Early
Triassic. A high-resolution reconstruction (Bernasconi et al., 2017) of
seawater δ34S from gypsum and anhydrite measurements of several
studies (e.g., Worden et al., 1997; Insalaco et al., 2006; Bernasconi et al.,
2017) indicated a small Late Permian (Lopingian) decrease (+11‰ to+
8‰) adjacent to the PTB, followed by a sharp increase to more than +

30‰ in the Early Triassic before a more gradual decline to approx.+ 17
‰ through the Late Triassic. A more pronounced Late Permian decrease
(− 30‰) in CAS measured δ34SSO4 values to a relatively lowminimum of
0‰was reported in a previous study of Meishan outcrop sediments (bed
24e to bed 29; Kaiho et al., 2006a).

The Late Permian 34S depletion of seawater SO42- was caused by
greater mixing of the prevailing stratified and anoxic ocean (Nb., sup-
ported by co-incident 18O depletion of CAS; Newton et al., 2004), with
an increase in reactive iron and sequestration of S as pyrite contributing
to an amplification of δ34SSO4 dynamics. Re-oxidation of BSR reduced
H2S (Newton et al., 2004) and meteorite impact (Kaiho et al., 2001,
2006b) have both been suggested as potential triggers of major ocean
turbulence. Substantial pyrite burial would have significantly decreased
the marine sulfate reservoir, potentially aiding the large δ34S variations
measured through the P-T transition (Newton et al., 2004, Hay et al.,
2006) which were far more dynamic than the long residence times
(~10–20 Myr) and slow δ34SSO4 flux (1.1 ‰ change per Myr) of our
modern oceans (Algeo et al., 2015).

5.3. δ34STRIS dynamics of Meishan P-T

The δ34STRIS values of − 27 ± 2‰ through most of the late Permian
(beds 12–21) were interrupted in the P-T transition (beds 22–24;
Fig. 1G) with an apparent 34S enrichment phase to reach a maximum
− 13 ‰ before returning to approx. − 27 ‰ just prior to the PTB (beds
24–26). The δ34STRIS increase interval coincided with elevated abun-
dances of the green sulfur bacterial biomarkers isorenieratane (Fig. 1E
and K) and arylisoprenoids (Fig. 1F and 1L; Grice et al., 2005) indicative
of photic zone euxinic oceans.

The δ34STRIS/pyrite values of a P-T section spanned by Tenjinmaru

rocks (Chichibu Terrane, Japan; Kajiwara et al., 1994) showed a similar
trend, with Late Permian values mostly around − 25 ‰ becoming
sharply higher in the extinction event to a maximum value of − 7‰ near
the PTB. The Early Triassic rocks of this section also showed δ34STRIS
values extending to less than − 40‰, indicative of greater 34S depletion
(Kajiwara et al., 1994).

Further, the presently reported δ34STRIS profile is generally consistent
with previous measurement of δ34SSO4 (CAS) and δ34Spy data from
Meishan-1 (Kaiho et al., 2001, 2012; Riccardi et al., 2006; Song et al.,
2014). Data through bed 22–24 reported by Riccardi et al. (2006)
comprised δ34SSO4 values mostly near 0‰ from bed 22 to near top of bed
23; then fluctuated between 0‰ to+ 25‰ in bed 24 (most values at the
higher end); with bed 24 δ34Spy values between − 25‰ and − 12‰ (Nb.,
− 25 ‰ to − 37‰ < δ34SSO4).

5.4. δ34SKerS dynamics of Meishan P-T

The Late Permian δ34SkerS profile was relatively stable (approx. − 11
‰) through most of the P-T transition (Fig. 1B and H; Table 1), including
in beds 22 – 24 when δ34STRIS sharply increased (~ +15 ‰). δ34SkerS
decreased, indicative of more 34S depletion, in bed 26 and more so in the
Early Triassic which is consistent with the relatively low δ34SSO4 and
δ34STRIS values of this sample. δ34SKerS were mostly > 10‰ than co-eval
δ34STRIS through the whole of Meishan-1, typical of the preferential ki-
netic reaction of the 34S depleted reduced sulfur pool (i.e., H2S) with
iron to form pyrite with negligible S isotopic bias (Price and Shieh, 1979;
Canfield, 2001), and secondary organic sulfurisation of reduced or in-
termediate S with a small enrichment of 34S (Anderson and Pratt, 1995;
Amrani and Aizenshtat, 2004a, 2004b), under normal equilibrium
conditions.

The disconnect between δ34SkerS values and the more dynamic
δ34STRIS behavior (and other biochemical indicators) through the
extinction transition indicates KerS has a reduced isotopic sensitivity to
the extinction causes. Fe speciation data of the Meishan samples
(Fig. 4A-C), indicated the bed 22–24 samples in which the high δ34STRIS
values were recorded had Fepy/FeT values < 0.8 indicative of ferrugi-
nous conditions, and distinct from the other Meishan 1 samples (Fepy/
FeT values > 0.8). Furthermore, bed 22–24 showed a decrease in the
abundance of TRIS (Fig. 2A) which in an Fe2+ rich environment implies
a limitation of reduced S. In S limited systems there is less opportunity to
preferentially utilise the lighter isotope, often resulting in higher δ34S
values which was evident in the bed 22–24 enrichment excursion of
δ34STRIS (Fig. 1G). The content changes in TRIS and KerS are amplified
by the TRIS/(TRIS + KerS) ratio which is a sensitive redox parameter
and likely influenced in Meishan by the fluctuating euxinic/ferroginous
intervals.

The insensitivity of δ34SKerS to these redox dynamics may be due to
the large sulfurisation collective represented by this fraction. S can be
incorporated into kerogen from several different sources and via mul-
tiple pathways, including directly within the molecular lattice (intra-
molecular S) or as oxidized sulfur bridges (e.g. Sx2-) between discrete
organic units (intermolecular S) (Amrani, 2014).

5.5. δ34SDBT dynamics of Meishan P-T

The δ34SDBT values of the Meishan sediments ranged from − 29‰ to
− 17 ‰ and were significantly lower than δ34SKerS (i.e., by as much as
− 15‰). In the late Permian they had similar values and trajectory to co-
eval δ34STRIS, until a decrease in beds 22–24 (− 17‰ to − 24‰) which
was inverse to the enrichment excursion observed for δ34STRIS. The
isotopic digression between δ34STRIS and δ34SDBT, amplified by the
Δδ34SDBT-TRIS parameter profiled in Fig. 1D and 1J, suggests a coincident
response to the redox changes (high Fe2+ availability) in the water
column.

The negative Δδ34SDBT-TRIS values of the bed 22–24 excursion iden-
tifies DBTs to be more depleted than TRIS, which is atypical of the
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normal kinetic bias of pyrite formation over organic sulfurisation.
Organic sulfur could potentially become more 34S depleted than pyrite
with multiple sulfate reduction-sulfide oxidation cycles in an organic
matter-rich, iron-limited system, such that Fe2+ is consumed prior to the
exhaustion of organic sulfurisation which continues to utilise a gradu-
ally 34S depleted reduced S pool. This scenario would seem unlikely for
Meishan-1 given the negative Δδ34SDBT-TRIS values coincide with ferru-
ginous deposition. The DBTs might, however, be syngenetically pro-
duced from an open SO42- system within the water column maintained
over a relatively prolonged ferruginous period, whilst the pyrite is
diagenetically produced below the sediment–water interface from the
reduced S of slowly diffusing porewater SO42- that becomes isotopically
enriched with depth (Shawar et al., 2018, 2020).

Other plausible explanations for the occurrence of OSCs that are 34S
depleted compared to pyrite include i) irreversible incorporation of Sx-

anions into organic sulfur compounds with a kinetic isotope effect –
although this mechanism has been observed to produce OSCs only a few
‰ lighter than pyrite (Amrani et al., 2008), so may not account for the
up to 15 ‰ discrepancy measured in Meishan sediments; or ii) an
organic sulfurisation pathway that is more reactive than Fe to Sx- re-
actants (Shawar et al., 2020).

Organic reactants involved in subsurface sulfurisation reactions
yielding products such as DBTs are not well understood (Amrani et al.,
2014). DBTs have been produced in the laboratory by reaction of hy-
drocarbon compounds such as petroleum n-alkanes (Kowalewski et al.,
2010; Nguyen et al., 2013) and biphenyls (Asif et al., 2009) with
reduced S (e.g. H2S, S0). The DBTs might also be later diagenetic prod-
ucts of primary OSCs (e.,g alkyl thiophenes, triterpenoid thiane and
highly branched isoprenoid thiolanes) produced by the interaction of
inorganic sulfur species with functionalised lipids in organic sediments
(Brassell et al., 1986; Deshmukh et al., 2001). Several such primary
OSCs were measured to have low δ34S values compared to pyrite
(Δδ34SOSC-pyrite up to − 10 ‰) and more so kerogen (Δδ34SOSC-Ker up to
− 20‰) in sediments from the Cariaco Basin, a modern anoxic, sulfidic
rich basin north of Venezuala (Raven et al., 2015). Different organic
sulfurisation pathways were suggested as a potential reason for this
isotopic discrepancy. Bisulfide (HS-) reactants were preferred over
polysulfides (Sx- ) as a likely source of the 34S depleted OCS on the bases
of energetics and an ensuing kinetic isotope effect implied from the
respective δ34S versus depth profiles of the different S-species measured

in the Cariaco Basin sediments (Raven et al., 2015).
Variations in molecular structure (e.g., functional groups) might also

influence the reactivity and S isotope fractionation of organic sulfur-
isation pathways (Amrani and Aizenshtat,2004a,b; Amrani et al., 2008;
Amrani, 2014). The δ34S of OSCs co-occurring in immature sediments
can span a wide range of values (Δδ34S of different OSCs> 30‰; Werne
et al., 2008; Raven et al., 2015, Shawar et al., 2020). The Δδ34S between
OSCs was observed to increase with pyrite content (and presumed
availability of Fe2+), suggesting organic sulfurisation was competing
with pyritization for the available S, with slower sulfurisation reactions
having to utilise a residual and isotopically heavier reduced S pool
(Shawar et al., 2020).

Specifics OSCs or classes of compounds may be representative of
specific sulfurisation processes, reaction rates or spatial dynamics such
as micro-environments (e.g. microbial aggregates, biofilms) which can
influence the δ34S of porewater sulfides and pyrite (Raven et al., 2016).
The temporal and spatial controls on S-cycling processes may be less
resolvable from the entirety of the kerogen sulfur which is typically
representative of a combination of sulfurisation processes contributing
diverse δ34S values. Sulfurisation reactions producing OSCs (e.g., DBTs)
are also likely to occur much more rapidly than the time it takes to
develop or infiltrate the 3-dimensional covalent lattice of kerogen – thus
may be less vulnerable to secondary processes and fractionations which
can dissipate δ34S signatures. The relatively small S-content of individ-
ual OSCs might also aid their responsiveness to biochemical dynamics
such as the δ34S character of incident BSR (Raven et al., 2016). The bed
22 abundances of DBTs (<6 μg/g) were much lower than the deeper
Permian sediments (>24 μg/g) which could make them more sensitivity
to changes in the reactivity or isotopic character of incident S supplies.

6. Conclusions

The δ34S of individual OSCs, likely representative of particular
organic S-moieties or sulfurisation processes, can complement the more
traditional organic sulfur isotopic analysis of kerogen. The δ34S of DBTs
and reduced inorganic S in Meishan-1 showed opposing isotopic ex-
cursions in a transition interval just prior to the PTB. The inverted DBT
and TRIS isotopic trends were driven by fluctuating euxinic and ferru-
ginous ocean conditions and resulted in negative Δδ34SDBT-TRIS values
indicating greater 34S discrimination by organic sulfur than pyrite

Fig. 4. Iron speciation profiles of Meishan-1 (A) highly reactive Fe relative to total Fe (FeHR/FeT); (B) pyrite Fe relative to highly reactive Fe (Fepy/FeHR); and (C)
Cross plot of FePY/FeHR versus FeHR/FeT reflecting the redox conditions of the water column during deposition (Li et al., 2010). A-C data points shaded green = oxic
deposition; blue = euxinic deposition; and red = ferruginous deposition. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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formation which is usually kinetically favored. The δ34SDBT deviation
was not reflected by δ34SKerS, however, highlighting the enhanced
sensitivity of individual organic S compounds to certain S-biochemical
fluxes and the biochemical clarity that the δ34S values of OSCs can
provide. The δ34S values of bulk organic fractions like kerogen, on which
previous organic sulfurisation evaluations have been traditionally
based, represent an average value of many different sulfurisation
processes.

Sulfurisation controls which might account for the negative
Δδ34SDBT-TRIS values measured during the extinction interval include an
organic substrate with an unusually higher reaction affinity for S2-x than
Fe2+; or an organic sufurisation pathway with an irreversible kinetic
isotope effect. Spatial or temporal differences in the formation of
different S-species might also be a factor. Preferential organic sulfur-
isation in a ferruginous (Fe2+ rich) water column point to an open SO42-

system, but the isotopically light DBTs could preferentially form in the
water column (i.e., syngenetic formation) whereas pyrite may mostly
derive from sedimentary (diagenetic) utilisation of H2S from the SRB of
diffused and progressively 34S enriched SO42-. The actual impact of some
of these controls could be explored further with laboratory simulated
experiments and incorporation of compound specific δ34S analysis to
resolve different organic sulfurisation processes.

The S-biogeochemistry dynamics of the P-T transition provided here
by δ34S measurement and evaluation of reduced and organic S phases of
Meishan-1 sediments demonstrates how they can complement tradi-
tional sulfate-based characterisation of S-cycles throughout Earth’s
history. Further application of this approach could help to further
resolve the S-fluxes of other major mass extinction events.
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