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Our recent ice sheet reconstruction, PaleoMIST 1.0, was created on the
basis of using near-field (i.e., ice sheet proximal) geological constraints.
This was done so that it would be independent of far-field relative sea
level observations, that are subject to uncertainties in the global dis-
tribution of ice, and deep sea proxy based global mean sea level
reconstructions, which have large uncertainties due to temperature and
salinity effects. We do not disagree with the interpretation of the far-
field data highlighted by Yokoyama et al., but emphasise that near-field
constraints should be the starting point for reconstructing ice sheets.

We thank Yokoyama et al. for the opportunity to further discuss
our ice sheet and paleotopography reconstruction, PaleoMIST 1.01 and
acknowledge their extensive work acquiring sea level proxy data.

Yokoyama et al. state: community efforts have led to better
understanding of the GMSL (e.g., PALSEA). We agree, and this is why
we provided a comparison of our modelled sea level against scruti-
nised paleo relative sea level proxies for over 150 regions2, primarily
taken from databases assembled by the HOLSEA project3. We focused
on including datasets that we used to reduce the misfit with modelled
near-field relative sea level in North America4,5 and Europe6–8. We
included a far-field dataset from southeastern Asia9 and selected
locations in tropical regions based on a database of coral relative sea
level proxies10, including Tahiti and the Huon Peninsula. This model-
data comparison was used to justify the Earth model used in our
reconstruction.

No standardised database exists for the LGM, so we entered data
from a few well known far-field areas to test if the ice sheet volume in
our reconstruction was reasonable. This was neither claimed nor
meant to be a comprehensive review, and we unintentionally missed
adding some data from the Bonaparte Gulf11. We do dispute the

interpretation of Yokoyama et al. that relative sea level lowstand was
between −120.6 and −124.5m at the location of core GC5 in the
Bonaparte Gulf. Here, we have included this data, along with several
other far-field sites (Fig. 1).

For the Great Barrier Reef, when converting the data from ref. 12
to index points, we made an error by subtracting half of the water
depth range estimate instead of adding. As a result, the index points
plotted below the depth of the sample, instead of above.We apologise
to Yokoyama et al. for this error. We do not dispute their interpreta-
tions. The corrected plot is shown in Fig. 1.

Originally, we conservatively set proxies with large uncertainties
(i.e., >10m)10,13 to be marine limiting (i.e., sea level was above the ele-
vation of the indicator). Such large uncertainties reduce the utility of
these data to precisely define paleo sea level. Here, we plot them as sea
level indicators (index points), using different colours for data with
vertical uncertainties below and above 10m.

Themodel-data comparison shown in Fig. 1 demonstrates that the
calculated relative sea level from our ice sheet reconstruction is con-
sistent with many of the available proxies that constrain far-field LGM
sea level to be between −100 and−130m. Specific to this comment, the
calculated minimum relative sea level with our preferred Earth model
is −117m at the location of core GC5 in the Bonaparte Gulf (Yokoyama
et al.’s estimate is −120 to −123m), and −120m off the coast of Cairns
(Yokoyama et al.’s estimate is −118m). The discrepancy between our
modelled sea level and the Bonaparte Gulf proxy can plausibly be
explainedby the lackof ocean thermal expansion effects, groundwater
storage changes, and the absence of smaller ice caps and glaciers in
our reconstruction, estimated to be 3–4m of sea level equivalent at
the LGM14.
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Figure 2 shows relative sea level at a number of locations between
57 and 27 kyr BP (covering Marine Isotope Stage (MIS) 3). Some of the
data support the deep sea δ18O records, while some support sea level
that is 10 s of metres higher. For Papua New Guinea, we have plotted
the data as interpreted in three different studies10,15,16. Our calculated
relative sea level during MIS 3 is higher than estimates presented by
ref. 16, but is consistent with the revised estimates from ref. 10, and
ref. 17. For Tahiti, our modelled relative sea level is consistent with the

estimate pointed out by Yokoyama et al. (although the estimate in
ref. 18was −67 to −101m, not−65 to −75m). This proxy is from the final
part of MIS 3 when the ice sheets were advancing, and does not
represent the MIS 3 highstand period.

The geological constraints of limited ice sheet extent make it
implausible for global average sea level to be −60 to −90m during
most ofMIS318, evenwhen accounting for twodifferent hypotheses for
Laurentide Ice Sheet configuration19,20. It is possible to increase the ice

Fig. 1 | Last Glacial Maximum paleotopography reconstruction from Paleo-
MIST, and far-field relative sea level proxies.Theminimumsea level in thismodel
happens at 20 kyr BP (thousands of years before present). Since we calculate sea
level at the location of eachobservation, in some locations there is a range of values
if there is a regional gradient. The orange lines represent the sea level curves in the
comment by Yokoyama et al. Index points (IP) have been separated based on
whether the water depth range uncertainty is below or above 10m. Error ranges

represent 2-sigma uncertainties. a Paleotopography reconstruction.
bBarbados28,29. c Sunda Shelf30–32.dBonaparte Gulf (BG)11,13 using the interpretation
from ref. 13. e Bonaparte Gulf (BG)11 using the interpretation from ref. 11. f Great
Barrier Reef (GBR) near Mackay12. g GBR at Cairns12. h Vanuatu, using coral depth
range from refs. 10,33,34. i Ganges Delta35. j Miyakojima36. k Tsushima/Korea
Strait37. l Mururoa, using coral depth range from refs. 10,38. The figure is plotted
using Generic Mapping Tools27.
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volume in ourmodel by increasing the basal shear stress.We increased
the maximal scenario values by 20%, but this only lowered sea level by
5.2m. The core region of the Laurentide Ice Sheet was likely warm-
bedded through the glacial cycle21, so it is unlikely that this could be
invoked to significantly increase ice volume.

Our reconstruction was based only on near-field constraints. One
reason for this was so that it would be independent of deep sea for-
aminifera δ18O records. δ18Oforam reflects changes in ambient (deep
water) temperature as well as the oxygen isotopic composition of
seawater, which itself is a functionof global ice volume andwatermass
mixing22–24. A second reason is that sea level proxies prior to about

12 kyr BP are rare and subject to uncertainties due to tectonics and
sediment loading, and the ~40 kyr limit of the radiocarbon method.
The third reason is that the available LGM (and MIS 3) records are
ambiguous as to where the water is distributed between the ice
sheets25. There are significant differences in the Earth structure
between ice sheets and locations where far-field relative sea level
records exist26. Therefore, it is questionable if sea level calculated
using spherically symmetric Earth structures (used by us and by
Yokoyama et al.) can precisely represent far-field sea level. Finally, our
models do not include non-ice sheet and GIA sources of water volume
changes, which will lead to an inherent uncertainty on sea level of
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Fig. 2 | Relative sea level proxies from Marine Isotope Stage 3. This period is
between 57–27 kyr BP (thousands of years before present). Index points (IP) have
been separated based on whether the water depth range uncertainty is below or
above 10m. Error ranges represent 2-sigma uncertainties. The solid lines represent
the PaleoMISTmaximal scenario (Hudson Bay remains ice covered), and the dotted
line is theminimal scenario (Hudson Bay is ice free for a period). aHuon Peninsula,
Papua New Guinea, using coral depth range estimates from refs. 10,15,39,40. The
yellow circles show the sea level estimates from ref. 15 based on terrace elevations.

b Huon Peninsula, from marine terraces and revised uplift rates from ref. 16.
cCairns, Australia12.dVanuatu41. e Tahiti, French Polynesia, using coral depth range
from Hibbert et al., and including the MIS 3 depth range estimate from Thomas
et al. in pink10,17. f Sunda Shelf, Southeast Asia31,42 (g) Strait of Malacca, Southeast
Asia9,43. h Chao Phraya, Southeast Asia9,44. i Tsushima/Korea Strait, Eastern Asia37.
j Yellow Sea, Eastern Asia45–47. k South Bohai Sea, Eastern Asia47,48. l Mid-Eastern
United States49–57. The figure is plotted using Generic Mapping Tools27.
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several metres14. This is why we used these proxies qualitatively to test
our ice sheet reconstruction, rather than as an absolute constraint.

We consider our model as preliminary and we expect different
results in future reconstructions with different assumptions on Earth
model and ice sheetmargin configuration. This is demonstrated by the
calculated sea level lowstand at the Bonaparte Gulf and GBR sites
(Fig. 1), which is similar to Yokoyama et al’s despite having a different
ice sheet configuration. This is what led us to conclude there is no LGM
“missing ice problem”, and that the solution to global ice volume at the
LGM may be non-unique given the current constraints.

Ultimately, the solution to reducing the uncertainties on past sea
level and ice sheet configuration is to collect new data. Yokoyama et al
are providing a great service to the community with their efforts to do
this. However, though far-field sea level proxies are a valuable resource
to deduce global ice volume through time, they should not be used in
exclusion of glacial-geological and near-field sea level observations,
which we believe are the fundamental starting point for ice sheet
reconstruction.

Data availability
Updated versions of the two reports comparing calculated sea level
and sea level proxies at over 150 locations2, which includes a descrip-
tionof the evaluationmethods, are available at https://doi.org/10.5281/
zenodo.5647136. The scripts and paleo sea level proxy database used
to create these reports are available at https://github.com/evangowan/
paleo_sea_level. Source data are provided with this paper.
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