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Abstract: The dinoflagellate genus Heterocapsa includes several widely distributed and potentially
toxic species associated with Harmful Algal Blooms (HABs), particularly affecting the Western Pacific
Ocean. To reveal the biodiversity of Heterocapsa in Beibu Gulf, six strains were morphologically
characterized using light and scanning electron microscopy, while large subunit rDNA (LSU rDNA)
and internal transcribed spacer (ITS) were sequenced for phylogenetic analysis through maximum
likelihood and Bayesian inferences. Two strains (BGERL169, BGERL170) were identified as Heterocapsa
philippinensis ribotype I, three (BGERL171-BGERL173) as a new Heterocapsa philippinensis ribotype
II, and one strain (BGERL174) as Heterocapsa pseudotriquetra. Cells of H. philippinensis were ovoid
to spherical, yellowish-brown, with reticulate chloroplasts, and had a sausage-shaped nucleus
positioned longitudinally along the dorsal side of the cell, and the theca was arranged in Po, cp, X, 5′,
3a, 7′′, 6c, 5s, 5′′′, 2′′′′. Additionally, BGERL169 and BGERL171 showed no hemolytic toxicity in rabbit
erythrocyte lysis assays. To the best of our knowledge, this research provides the first morphological
and phylogenetic analysis of H. philippinensis, including the identification of a new ribotype, as well
as the discovery of H. pseudotriquetra in Chinese waters. The findings contribute to the understanding
of Heterocapsa species biogeography and toxicity in Chinese waters, offering valuable data for future
HAB monitoring in Beibu Gulf.

Keywords: phylogeny; taxonomy; toxicity; erythrocyte lysis assay; dinoflagellate; harmful algal
blooms; Beibu Gulf

1. Introduction

The genus Heterocapsa belongs to the phylum Dinophyta, class Dinophyceae, order
Peridiniales, and family Heterocapsaceae. This dinoflagellate, known for causing harmful
algal blooms (HABs), is widely distributed in temperate, subtropical, and tropical marine
environments [1,2]. The taxonomic history of the genus is notably complex. In 1883, Stein
renamed Glenodium triquetrum Ehrenberg to Heterocapsa triquetra Ehrenberg, establishing
the genus Heterocapsa; and later, Loeblich designated H. triquetra as the type species of
the genus [3,4]. However, over 100 years later, phycologists discovered that the originally
defined type species, H. triquetra, actually belonged to the genus Kryptoperidinium rather
than Heterocapsa [5,6]. Additionally, the other two species Stein initially described under
Heterocapsa, Heterocapsa quadridentata F. Stein and Heterocapsa umbilicata F. Stein, were not
Heterocapsa, with the former species now belonging to Blixaea Gottschling and the latter
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species to an undefined genus [7]. To preserve the genus Heterocapsa and avoid extensive
nomenclatural changes, it was proposed reassigning Heterocapsa steinii, discovered in the
Baltic Sea where the type species of Heterocapsa was originally established, as the new type
species for the genus [7,8]. This proposal was accepted by the Nomenclature Committee
for Algae in 2020 [9]. To date, 26 species of Heterocapsa have been recorded.

The cell of Heterocapsa is spindle-shaped, centrally symmetrical, and covered with
minute three-dimensional body scales, with yellow-brown chloroplasts and thecal plate
formula of Po, cp, X, 4–5′, 2–3a, 6–7′′, 6c, 5s, 5′′′, 2′′′′ [2,8]. Morphological identification
primarily depends on the shape of the cell, the relative position and structure of the
nucleus and pyrenoid, as well as the ultrastructure of the body scales [2]. Among these
characteristics, body scale features are regarded as reliable indicators for distinguishing
species within the genus Heterocapsa [1,10]. Moreover, rDNA markers including the large
subunit rDNA (LSU rDNA) and internal transcribed spacer (ITS) region also play a key
role in Heterocapsa spp. systematics and has been widely used for species identification [11].

In addition to forming HABs by mass occurrence, certain species of Heterocapsa also
produce hemolytic toxins that cause mass mortality in marine organisms. The first Hete-
rocapsa species reported to produce hemolytic toxins is Heterocapsa circularisquama, which
has been linked to significant bivalve mortality events in Japan and the Western Pacific
region [12,13]. Heterocapsa bohaiensis, discovered in the coast of Bohai Sea of China, has also
been found to exhibit hemolytic toxicity, causing mass mortality of cultured prawns and
larvae of Chinese mitten handed crabs in aquaculture ponds [14]. In 2019, during a HAB
outbreak dominated by Skeletonema, Prorocentrum, Gymnodinium, and Heterocapsa species in
Sansha Bay, Fujian, China, Heterocapsa horiguchii, Heterocapsa cf. pygmaea, and Heterocapsa cf.
niei were isolated from the seawater [15]. These three species were confirmed to be lethal to
brine shrimp Artemia salina [15]. In addition to hemolytic toxicity, the ichthyotoxicity of Het-
erocapsa and its cytotoxic effects on other marine organisms like microzooplankton rotifer
and Artemia nauplii, towards cells from the gills of rainbow trout, and even bactericidal
activity have also been reported [11,16–18].

The study area is the Beibu Gulf, located in the northwest of the South China Sea, is
characterized by vast shallow coastal waters, making it an ideal area for marine aquaculture
in China. However, in the Beibu Gulf the frequency, duration, and extent of HABs have
significantly increased over the past two decades, exhibiting not only damages to the
marine ecosystem but also negative impact on coastal aquaculture and human health [19].
Although no Heterocapsa blooms have been recorded in the Beibu Gulf to date [20], this
species is recognized as one of the main toxic and HAB-causing organism in the Chinese
and Western Pacific waters. Nearby waters in Hong Kong have already reported blooms of
H. circularisquama [21,22]. Therefore, it is crucial to identify the species composition and
toxicity of Heterocapsa in the Beibu Gulf. In this study, six Heterocapsa strains were isolated,
and species were identified using a combination of light microscopy, scanning electron
microscopy (SEM), and phylogenetic analysis. Hemolytic toxicity was also determined on
two Heterocapsa strains.

2. Results
2.1. Morphological Characteristics

Both strains, BGERL169 and BGERL171, were unicellular and brownish-yellow in color,
with ovoid and spherical cells (Figures 1–4). The length of BGERL169 was 20.0 ± 3.9 µm,
and the width was 16.7 ± 2.6 µm (n = 30), while BGERL171 had a length of 21.0 ± 3.2 µm
and a width of 17.6 ± 3.7 µm (n = 30) (Figures 1–4). Both BGERL169 and BGERL171
exhibited similarly sized hemispherical epitheca and hypotheca (Figures 1a–d and 3a–e),
with a relatively wide and deep cingulum that exhibited a distinct left-hand displacement
(descending). The distance between the two ends of the cingulum was approximately equal
to its width (Figures 1a,b and 3a). The nucleus was sausage-shaped and located at the
periphery of the dorsal side of the cell, while the pyrenoid was centrally located, with two
conspicuous red bodies (Figures 1d,g and 3c,e).
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Figure 1. Light microscope images of Heterocapsa strain BGERL169. (a): live cells and empty theca, 
(b): ventral view, (c): dorsal view, (d): red body (rb) and pyrenoid (Py), (e–p): fluorescence 
microscope images, with chloroplast (Chl), (g): nucleus (Nu), (h): ventral view, (i): dorsal view, (j–
l): apical view, (m): right lateral view, (n): left lateral view, (o): antapical view, (p): ventral view. Po: 
apical pore plate, cp: cover plate, X: canal plate, 1′–5′: apical plates, 1a–3a: anterior intercalary plates, 
1″–7″: precingular plates, C1, C2, and C6: cingular plates, Sa, Ssa, Sd, Sp, and Ssp: sulcal plates, 1‴–
5‴: postcingular plates, 1⁗–2⁗: antapical plates. Scale bar: 10 µm. 

The plate arrangement was Po, cp, X, 5′, 3a, 7″, 6c, 5s, 5‴, 2⁗ (Figures 1–4). The apical 
pore complex (APC) featured a nearly pentagonal horseshoe-shaped apical pore plate 
(Po), with a prominent globular cover plate (cp) in the center of the Po plate, connected to 
the canal plate (X) (Figures 2d and 4d). A circular ridge with a depression corresponding 
to the apical pore plate was observed (Figures 2d and 4d). The irregular-shaped canal plate 
(X) was located between the first and fifth apical plates (1′ and 5′) (Figures 2d and 4d). 
Among the five apical plates (1′–5′), the fifth apical plate was the largest (Figures 2d and 
4d). Of the three anterior intercalary plates (1a–3a), the second anterior intercalary plate 
(2a) had a wide and thick margin, lacking pore structures (Figures 2b,e and 4e,f). Seven 
precingular plates (1″–7″) connected to the cingulum, which was composed of six 
cingulum plates (C1–C6); C1 and C6 were located on the ventral side, while the remaining 
cingulum plates were positioned on the lateral and dorsal sides (Figures 2a,b and 4a–c).  

Figure 1. Light microscope images of Heterocapsa strain BGERL169. (a): live cells and empty theca,
(b): ventral view, (c): dorsal view, (d): red body (rb) and pyrenoid (Py), (e–p): fluorescence microscope
images, with chloroplast (Chl), (g): nucleus (Nu), (h): ventral view, (i): dorsal view, (j–l): apical view,
(m): right lateral view, (n): left lateral view, (o): antapical view, (p): ventral view. Po: apical pore
plate, cp: cover plate, X: canal plate, 1′–5′: apical plates, 1a–3a: anterior intercalary plates, 1′′–7′′:
precingular plates, C1, C2, and C6: cingular plates, Sa, Ssa, Sd, Sp, and Ssp: sulcal plates, 1′′′–5′′′:
postcingular plates, 1′′′′–2′′′′: antapical plates. Scale bar: 10 µm.

The plate arrangement was Po, cp, X, 5′, 3a, 7′′, 6c, 5s, 5′′′, 2′′′′ (Figures 1–4). The apical
pore complex (APC) featured a nearly pentagonal horseshoe-shaped apical pore plate (Po),
with a prominent globular cover plate (cp) in the center of the Po plate, connected to the
canal plate (X) (Figures 2d and 4d). A circular ridge with a depression corresponding to the
apical pore plate was observed (Figures 2d and 4d). The irregular-shaped canal plate (X)
was located between the first and fifth apical plates (1′ and 5′) (Figures 2d and 4d). Among
the five apical plates (1′–5′), the fifth apical plate was the largest (Figures 2d and 4d). Of
the three anterior intercalary plates (1a–3a), the second anterior intercalary plate (2a) had a
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wide and thick margin, lacking pore structures (Figures 2b,e and 4e,f). Seven precingular
plates (1′′–7′′) connected to the cingulum, which was composed of six cingulum plates
(C1–C6); C1 and C6 were located on the ventral side, while the remaining cingulum plates
were positioned on the lateral and dorsal sides (Figures 2a,b and 4a–c).
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antapical view. Po: apical pore plate, cp: cover plate, X: canal plate, 1′–5′: apical plates, 1a–3a: 
anterior intercalary plates, 1″–7″: precingular plates, C1–C6: cingular plates, Sa, Ssa, Sd, Sp, and Ssp: 
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Among the five sulcal plates (Sa, Ssa, Sd, Sp, Ssp), the Sa plate extended to the 
epitheca and connected with the apical plate 1′ and 5′, and precingular plates 1″ and 7″, 
while the Sd plate connected to the C6 plate on the right side. Two smaller sulcal plates 
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Therefore, the morphological characteristics of the two strains, BGERL169 and 
BGERL171, align with those of H. philippinensis, particularly the longitudinally elongated 
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we suggest that these two strains belong to H. philippinensis or its closely related 
morphotypes. 

Figure 2. Scanning electron microscope images of Heterocapsa strain BGERL169. (a): ventral view,
(b): dorsal view, (c): left lateral view, (d): apical view, (e): the second anterior intercalary plate,
(f): antapical view. Po: apical pore plate, cp: cover plate, X: canal plate, 1′–5′: apical plates, 1a–3a:
anterior intercalary plates, 1′′–7′′: precingular plates, C1–C6: cingular plates, Sa, Ssa, Sd, Sp, and
Ssp: sulcal plates, 1′′′–5′′′: postcingular plates, 1′′′′–2′′′′: antapical plates. Scale bar: 5 µm (a–d,f) and
3 µm (e).

Among the five sulcal plates (Sa, Ssa, Sd, Sp, Ssp), the Sa plate extended to the epitheca
and connected with the apical plate 1′ and 5′, and precingular plates 1′′ and 7′′, while the
Sd plate connected to the C6 plate on the right side. Two smaller sulcal plates (Ssa, Ssp)
were located along the edge of the sulcal plates, and the Sp plate extended to hypotheca,
connecting with the postcingular plates 1′′′ and 5′′′, as well as antapical plates 1′′′′ and 2′′′′

(Figures 2a and 4a). The hypotheca was made up of five postcingular plates (1′′′–5′′′) and
two antapical plates (1′′′′–2′′′′) (Figures 1–4).

Therefore, the morphological characteristics of the two strains, BGERL169 and BGERL171,
align with those of H. philippinensis, particularly the longitudinally elongated sausage-
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shaped nucleus and the circular second anterior intercalary plate (2a) [2]. Thus, we suggest
that these two strains belong to H. philippinensis or its closely related morphotypes.
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Figure 3. Light microscope images of Heterocapsa strain BGERL171. (a): ventral view, (b): dorsal
view, (c): nucleus (Nu) and red body (rb), (d): flagellum (f), (e): pyrenoid (Py), (f–p): fluorescence
microscope images, (f,g): chloroplast (Chl), (h): nucleus (Nu), (i): ventral view, (j): dorsal view,
(k,l): apical view, (m): apical-right lateral view, (n): ventral-left lateral view, (o): dorsal view, (p): par-
tial antapical view. Po: apical pore plate, cp: cover plate, X: canal plate, 1′–5′: apical plates, 1a–3a:
anterior intercalary plates, 1′′–7′′: precingular plates, C1–C6: cingular plates, Sa, Ssa, Sd, Sp, and Ssp:
sulcal plates, 1′′′–5′′′: postcingular plates, 1′′′′–2′′′′: antapical plates. Scale bar: 10 µm.
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anterior intercalary plates, 1″–7″: precingular plates, C1–C6: cingular plates, Sa, Ssa, Sd, Sp, and Ssp: 
sulcal plates, 1‴–5‴: postcingular plates, 1⁗–2⁗: antapical plates. Scale bar: 5 µm (a–e,g) and 3 µm (f). 
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from the Beibu Gulf clustered with H. philippinensis (LC621346 and KT389965), with 
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Figure 4. Scanning electron microscope images of Heterocapsa strain BGERL171. (a): ventral view,
(b): dorsal view, (c): left lateral view, (d): apical view, (e,f): the second anterior intercalary plate (2a),
(g): antapical view. Po: apical pore plate, cp: cover plate, X: canal plate, 1′–5′: apical plates, 1a–3a:
anterior intercalary plates, 1′′–7′′: precingular plates, C1–C6: cingular plates, Sa, Ssa, Sd, Sp, and
Ssp: sulcal plates, 1′′′–5′′′: postcingular plates, 1′′′′–2′′′′: antapical plates. Scale bar: 5 µm (a–e,g) and
3 µm (f).

2.2. Phylogenetic Characteristics

The average lengths of LSU rDNA and ITS sequences for six Heterocapsa strains from
the Beibu Gulf were 1400 bp and 638 bp, respectively. After trimming and alignment,
the sequence lengths used for phylogenetic analysis including gaps were 949 bp and
654 bp, respectively. In this study, Prorocentrum minimum was used as the outgroup to
construct ML and BI phylogenetic trees like the previous studies [2,15]. The tree topologies
generated by both methods were largely consistent; thus, the ML tree was presented here
(Figures 5 and 6).

The LSU rDNA phylogenetic tree revealed that strains BGERL169 and BGERL170
from the Beibu Gulf clustered together with H. philippinensis (LC621346 and KT389965),
with support values of 90/1.0. Strains BGERL171-BGERL173 formed a separate clade with
a support value of 100/1.00. This clade did not cluster directly with any other identified
Heterocapsa species but formed a sister clade to the H. philippinensis branch, which included
BGERL169 and BGERL170, with support values of 82/0.99. Additionally, BGERL174 from
the Beibu Gulf initially clustered with the strain H. pseudotriquetra HP-HD1804-01, with



Mar. Drugs 2024, 22, 514 7 of 15

support values of 100/1.00, and this branch subsequently formed a sister clade with H.
pseudotriquetra strain GeoB 222 in support values of 100/1.00 (Figure 5).
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The ITS phylogenetic tree similarly showed that strains BGERL169 and BGERL170
from the Beibu Gulf clustered with H. philippinensis (LC621346 and KT389965), with sup-
port values of 100/1.00. Strains BGERL171-BGERL173 clustered together with a support
value of 95/0.99, and, like the LSU rDNA phylogenetic tree, this clade did not cluster
directly with any other identified Heterocapsa species but formed a sister clade to the H.
philippinensis branch, with support values of 60/0.84. Strain BGERL174 clustered with
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two H. pseudotriquetra strains (AB084100 and AY499509), with support values of 100/1.00
(Figure 6).
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0.75 are indicated by “-” in the tree).

In the LSU rDNA phylogenetic analyses, the interspecies genetic distances among Het-
erocapsa species ranged from 0.016 (between H. claromecoensis and H. orientalis) to 0.778 (be-
tween H. bohaiensis and H. circularisquama). The genetic distance between strains BGERL171-
BGERL173 and the closest H. philippinensis branch was 0.043, which was greater than the
distance between H. claromecoensis and H. orientalis (0.016) and H. lanceolata and H. rotundata
(0.036). In the ITS phylogenetic tree, the interspecies genetic distances ranged from 0.005
(between H. orientalis and H. claromecoensis) to 0.765 (between H. circularisquama and H.
illdefina). The genetic distance between strains BGERL171-BGERL173 and the closest H.
philippinensis branch was 0.022, which was greater than the interspecies distance between
H. orientalis and H. claromecoensis (0.005). Similarly, the intraspecies genetic distances in the
LSU rDNA and in the ITS phylogenetic tree for Heterocapsa spp. varied from 0–0.039 and
0–0.040, respectively. Therefore, based on genetic distance alone, it was clear that the strains
BGERL171-BGERL173 formed a distinct clade and ribotype from H. philippinensis. However,
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no obvious morphological differences from the typical characteristics of H. philippinensis
were identified.

2.3. Hemolytic Toxicity

Only strains BGERL169 (H. philippinensis ribotype I) and BGERL171 (H. philippinen-
sis ribotype II) were subjected to hemolytic toxicity assays. The result showed that no
hemolytic toxicity was detected in either the methanol or chloroform fractions of these
two strains.

3. Discussion

Due to the relatively small size and morphological similarities of most Heterocapsa
species, as well as intraspecies variability in cell shape even during culture maintenance [10],
identifying Heterocapsa species using light microscopy remains difficult. In this study, the
plate pattern of Heterocapsa strains BGERL169 and BGERL171, Po, cp, X, 5′, 3a, 7′′, 6c, 5s, 5′′′,
2′′′′, was the most common plate arrangement observed among Heterocapsa species [1,23].
Their morphological characteristics matched those of H. philippinensis defined in the litera-
ture [2], particularly the rectangular, sausage-shaped nucleus located in the middle of the
dorsal side, and the thick-edged, poreless circular second anterior intercalary plate (2a).
Benico et al. [2] emphasized that the distinctive features of the second anterior intercalary
plate (2a) in H. philippinensis were unique among known Heterocapsa species, making it a
key trait when defining this species in morphology. Therefore, strains of BGERL169 and
BGERL171 from the Beibu Gulf should be very closely related with H. philippinensis. The
LSU rDNA and ITS phylogenetic analysis further confirmed BGERL169–170 belonged to
the species H. philippinensis.

However, the ribosomal sequences of BGERL171–173 differed somewhat from those
of H. philippinensis, forming an independent clade in the phylogenetic tree, with strong
bootstrap support and Bayesian inference posterior probabilities values of 100/1.0 and
95/0.99, respectively. The genetic distances also suggest that these three strains may
represent interspecies divergence from H. philippinensis. Therefore, strains BGERL171-
BGERL173 are tentatively defined as H. philippinensis ribotype II, while the type species
H. philippinensis is designated as H. philippinensis ribotype I. Cryptic diversity, with a
clearly well-supported new ribotype, is revealed through LSU rDNA and ITS phylogenetic
analysis. However, due to the lack of morphological differences, no taxonomic arguments
can be provided for establishing a new species. To clarify their taxonomy, further research,
including more strains of these ribotypes and their ultrastructural features, such as body
scale characteristics, is necessary.

This study is the first to report H. philippinensis and H. pseudotriquetra in Chinese
waters. H. philippinensis is a newly described species, first discovered in the Philippines [2].
The H. philippinensis strains BGERL169–170 from the Beibu Gulf were closely related to
the type strain GBNW14 and the strain KJ34-3-05 from the South China Sea [2,24]. Strain
KJ34-3-05 was recorded in 2015, and its ribosomal sequence was 1583 bp comprising part
of the 18S rDNA, the complete ITS region, and part of the 28S rDNA. However, this strain
lacked a morphological description and was initially identified as H. triquetra. Later, Benico
et al. [2], when defining H. philippinensis, found that strain KJ34-3-05, despite the absence
of morphological data, had LSU and ITS sequences that were 100% identical to the type
strain GBNW14 of H. philippinensis. This suggests that H. philippinensis had already been
present in Chinese waters, although it had not been properly reported. Our study confirms
the presence of H. philippinensis in Chinese waters, providing crucial molecular and mor-
phological data that rectifies previous misidentifications and enhances our understanding
of the species’ distribution range. Additionally, H. pseudotriquetra was first recorded by
Iwataki [10], but this species has been infrequently recognized. Currently, only three strains
of H. pseudotriquetra are available in the NCBI GenBank database (HP-HD1804-01, GeoB
222, and NIES473). Strain BGERL174 from the Beibu Gulf showed a high similarity to
these strains, exhibiting 100%/1.0 similarity to strains HP-HD1804-01 and GeoB 222 in
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LSU rDNA, and 100%/1.0 similarity to strains NIES473 and GeoB 222 in ITS. Although
this study lacked morphological data of BGERL174, the LSU and ITS phylogenetic results
strongly suggest that it belongs to H. pseudotriquetra.

Hemolysin is one of harmful toxins secreted by HAB species [25,26]. Among Hete-
rocapsa species, H. circularisquama, one of the earliest discovered, has caused particularly
serious problems in the Western Pacific Ocean, and its hemolytic toxicity has been ex-
tensively studied. Previous research showed hemolytic toxicity of H. circularisquama was
associated with its cell density, the duration of experimental cultivation, and the type of
Heterocapsa cells used in experiments (e.g., live cell suspensions, lysed cell extracts, or de-
thecated cell solutions) [13,16,27–29]. H. circularisquama contains the hemolytic toxin (H2-a)
that has similar chemical structure to pyropheophorbide a methyl ester, a well-known
photoactive hemolytic agent [28]. Even at low density (5 cells mL−1) and low temperature
(15 ◦C), exposure to H. circularisquama can induce broad cytotoxic effects in the vital organs
of Mediterranean mussels (Mytilus galloprovincialis) [30]. Bloom of H. circularisquama has
caused serious economic losses in mariculture in Japan [31–33]. Although this species has
not been recorded in the Beibu Gulf, nearby waters in Hong Kong have reported recur-
rent blooms since 1986 [21,22]. Investigating the distribution and potential toxicity of H.
circularisquama in the Beibu Gulf is essential.

Hemolysins from Heterocapsa spp. may be photosensitizing porphyrin derivatives,
aligns with the observed effect of light on the hemolytic toxicity, i.e., hemolytic activity of
Heterocapsa is present under light conditions but disappears in the dark [29,34]. In addition
to H. circularisquama, a similar light-dependent relationship with hemolytic activity has also
been recently described in Heterocapsa horiguchii, Heterocapsa cf. pygmaea, and Heterocapsa
cf. niei, isolated from a HAB event in Sansha Bay, Fujian, China [15]. However, another
toxic species of H. bohaiensis isolated in 2018 from Bohai Sea, China, had hemolytic toxicity
regardless of light or dark conditions, and the toxicity was primarily correlated with cell
density [17,35]. Prior to this study, there has been no research on the hemolytic toxicity of
H. philippinensis. In this study, hemolytic activity of H. philippinensis ribotype I (BGERL169)
and H. philippinensis ribotype II (BGERL171) was determined under light, with cell densities
of (1.1–1.9) × 104 cells mL−1, which is comparable to the Heterocapsa densities used in
the previous publications. Despite this, no hemolytic toxicity was detected. Therefore, it
proves that the studied H. philippinensis strains tested here, like some other species such
as H. triquetra [13,36], do not produce hemolytic toxins. It remains to be tested with other
strains from different localities if all representatives of this species are non-toxic/lytic or
under which conditions.

4. Materials and Methods
4.1. Culture Resources

Phytoplankton samples were collected from Lianzhou Bay and Tieshan Harbor in
the Beibu Gulf of China, on January, 2022. Sample collection, storage, and transportation
were carried out followed the specification for marine monitoring of China (GB17378.1-
2007) [37]. In the laboratory, Heterocapsa cells were isolated using capillary pipettes under
the inverted microscope (TS100, Nikon Corporation, Tokyo, Japan). Six Heterocapsa strains
were successfully established and maintained in modified K medium (without Si), 23 ◦C,
salinity of 32‰, light intensity of 150 µmol m−2 s−1, and a light–dark cycle of 12 h:12 h
(Table 1). Phylogenetic analysis of rDNA was conducted on all six Heterocapsa strains.
However, due to culture loss during maintenance, only strains BGERL169 and BGERL171
were subjected to microscopic observation and hemolytic toxicity assays.
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Table 1. Sampling information.

Species Strain Location Latitude
and Longitude LSU Accession No. ITS Accession No.

H. philippinensis
ribotype I BGERL169 Tieshan Harbor 21◦35′37′′ N,

109◦35′42′′ E OQ383330 OQ383353

H. philippinensis
ribotype I BGERL170 Lianzhou Bay 21◦31′06′′ N,

109◦03′42′′ E OQ383331 OQ383354

H. philippinensis
ribotype II BGERL171 Lianzhou Bay 21◦30′23′′ N,

109◦07′28′′ E OQ383332 OQ383355

H. philippinensis
ribotype II BGERL172 Lianzhou Bay 21◦30′23′′ N,

109◦07′28′′ E OQ383333 OQ383356

H. philippinensis
ribotype II BGERL173 Lianzhou Bay 21◦30′44′′ N,

109◦05′43′′ E OQ383334 OQ383357

H. pseudotriquetra BGERL174 Tieshan Harbor 21◦35′37′′ N,
109◦35′42′′ E OQ383335 OQ383358

4.2. DNA Extraction and Amplification

Heterocapsa cultures in the exponential growth phase were collected by centrifuga-
tion, and DNA was extracted using BioFastSpin DNA extraction kit (Bioer Technology,
Hangzhou, China) following the protocol of the manufactor. For the amplification of the
LSU rDNA sequence, the forward primer was 28S-D1R (ACCCGCTGAATTTAAGCATA),
and the reverse primer was 28S-1483R (GCTACTACCACCAAGATCTGC) [38,39]. For the
ITS sequence amplification, the forward primer was ITSA (CCTCGTAACAAGGHTCCG-
TAGGT), and the reverse primer was ITSB (CAGATGCTTAARTTCAGCRGG) [40,41]. The
total PCR reaction volume was 40 µL, containing 20 µL of 2× Es Taq Master Mix, 1 µL
each of the forward and reverse primers, 1 µL of DNA template, and 17 µL of ddH2O.
PCR was performed using a Biometra Easy Cycler Gradient thermal cycler (Analytik Jena
GmbH+Co., Jena, Germany) with an initial denaturation step at 94 ◦C for 3 min, followed
by 35 amplification cycles. Each cycle consisted of a denaturation step at 94 ◦C for 30 s, an
annealing step at 53 ◦C for 30 s for LSU rDNA and 56 ◦C for 30 s for ITS, and an extension
step at 72 ◦C for 30 s. The reaction concluded with a final elongation at 72 ◦C for 5 min.
The PCR products were sequenced using the Sanger method in Beijing Tsingke Biotech Co.,
Ltd., Beijing, China.

4.3. Morphology Observation

For light microscopy observation, Heterocapsa cells in the exponential growth phase
were observed under a fluorescence microscope (Ni-U, Nikon Corporation, Tokyo, Japan)
using an oil immersion objective at 100× magnification. The cell morphology and cell
size were analyzed using the NIS-Elements D (v4.50.00 ). Chloroplasts were observed
under blue light excitation at 510–560 nm. The nuclei of Heterocapsa cells were stained with
SYBR Green I (Shanghai yuanye Bio-Technology Co., Ltd., Shanghai, China) and observed
under blue light excitation at 450–490 nm. The thecal plates were stained with Fluorescent
Brightener (Shanghai yuanye Bio-Technology Co., Ltd., Shanghai, China) and also observed
under blue light excitation at 330–380 nm.

For SEM observation, Heterocapsa cells in the exponential growth phase were fixed
for 4 h by adding 50% glutaraldehyde solution (Sigma-Aldrich Ltd., St. Louis, MO, USA),
then filtered through a 3 µm polycarbonate membrane (Merck Millipore Ltd., Darmstadt,
Germany) for further desalination and dehydration treatment. For desalination, sterile
seawater was used, and the cells were gradually exposed to a salinity gradient of 90%, 70%,
50%, 30%, 10%, 0%, and 0%, with each step lasting 15 min. The cells were subsequently
dehydrated using ethanol in a concentration gradient of 10%, 30%, 50%, 70%, 90%, 100%,
and 100%, with each step also lasting 15 min. The samples were subsequently dried using
a critical point dryer (Quorum K850, Quorum Technologies Ltd., Laughton, UK), sputter-
coated with gold in a Cressington 108auto coater (Cressington Scientific Instruments
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Ltd., Watford, UK), and observed and made pictures in SEM (TM-1000, Hitachi High-
Technologies Corporation, Tokyo, Japan).

4.4. Phylogenetic Analysis

The LSU rDNA and ITS sequences of the six Heterocapsa strains were used for phylo-
genetic analyses (Table 1). Therefore, similar sequences were searched using BLAST and
downloaded from NCBI database. Sequences were aligned using MUSCLE algorithm and
genetic distances were calculated in MEGA-X (v10.1.8). The evolutionary models were
determined using jModelTest 2 (v0.1.11) [42,43]. Phylogenetic trees were constructed using
the maximum likelihood method in RAxML (v8.2.X) [44], with 1000 bootstrap replicates to
assess branch confidence. The GTR + G + I and GTR + G evolutionary models were applied
for the LSU rDNA and ITS sequence, respectively. Additionally, Bayesian inference trees
were constructed using MrBayes 3.2.7a [45]. The TIM3 + I + G and GTR + G evolutionary
models were used for the LSU rDNA and ITS sequence, respectively. Bayesian analysis was
run for 2 million generations with four Markov chains, sampling every 200 generations, and
convergence diagnostics were calculated every 1000 generations. The temperature constant
was set to 0.2, and a burnin percentage of 25% was applied. Finally, the phylogenetic trees
were viewed and edited using FigTree (v1.4.4) and Adobe Illustrator (2020 v24.1.1), and
displayed based on the maximum likelihood tree.

4.5. Hemolytic Toxicity Assay

The assay followed the protocol by Eschbach et al. [46]. Cells of BGERL169
(1.9 × 104 cells mL−1, totaling 1.8 × 107 cells) and BGERL171 (1.1 × 104 cells mL−1, to-
taling 9.9 × 106 cells) in the exponential growth phase were centrifugally harvested and
resuspended in a chloroform: methanol: water mixture (13:7:5) to perform ultrasonic dis-
ruption in an ice bath. The supernatant was centrifugally collected and stored overnight at
4 ◦C to allow for methanol and chloroform layers separation. These two layers were then
transferred into separate 15 mL centrifuge tubes. After drying the methanol and chloro-
form fractions using a nitrogen evaporator, the residues were dissolved in 1 × PBS buffer
solution, and further filtered through a 0.22 µm membrane to obtain the crude hemolysin.
For hemolytic toxicity measurement, 0.5 mL of the crude hemolysin extract and 0.5 mL of
0.5% rabbit erythrocyte solution were added to a 2 mL tube (As). The following controls
were used: 0.5 mL of 1 × PBS buffer and 0.5 mL of 0.5% rabbit erythrocyte solution as a
negative control (Aa); 0.5 mL of the crude hemolysin extract and 0.5 mL of PBS buffer as a
blank control (Ab); and 0.5 mL of 1% non-ionic surfactant Triton X-100 (Sigma-Aldrich Ltd.,
St. Louis, MO, USA) and 0.5 mL of 0.5% rabbit erythrocyte solution as a positive control
(Ac). Each reaction was carried out in triplicate. The mixtures were incubated at 25 ◦C
with a light intensity of 100 µmol m−2 s−1 for 6 h. The absorbance value was measured at
405 nm in a microplate reader and used to calculate the percentage of hemolytic activity (P)
according to the following formula [47].

P = (As − Aa − Ab)× 100/Ac (1)

5. Conclusions

In this study, six strains of Heterocapsa were isolated from the Beibu Gulf, China.
Based on a combination of morphological characteristics and molecular phylogenetic
analyses, these strains were assigned to H. philippinensis ribotype I (the type species of H.
philippinensis), H. philippinensis ribotype II, and H. pseudotriquetra. This study performed
the first morphological and phylogenetic description of H. philippinensis in Chinese waters,
as well as the first assessment of its hemolytic toxicity. H. pseudotriquetra is also newly
recorded in Chinese waters, while H. philippinensis ribotype II is the first discovery of this
genotype globally, potentially representing a new species.

This study provides essential biological data for HAB prevention and control in the
Beibu Gulf and enhances our understanding of the distribution and toxicity of Heterocapsa
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species in Chinese waters. While culturing is a reliable approach for studying species
biodiversity, it presents challenges in isolating dinoflagellate cells like Heterocapsa from
natural seawater. Integrating high-throughput sequencing, such as metabarcoding, with
culturing methods will enable a comprehensive understanding of Heterocapsa species
composition and distribution and may help to discover potential overseen diversity and
new invasive species.
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