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1. Introduction 

1.1 Phytoplankton: a brief foreword 

When we walk in the countryside and admire vast expanses of herbaceous plants, we are 

focusing our attention on a set of species that fulfil a specific ecological role: they are 

producers, meaning they appropriate atmospheric carbon dioxide (CO2) molecules and, 

through photosynthesis, combine them into longer molecules, such as glucose (C6H12O6), 

which they use to obtain the energy necessary for survival. The production of the molecules 

necessary for survival by the same organism that uses them is a process called autotrophy, and 

not all organisms are able to perform this process: this is the case for consumers, which must 

obtain the long carbon chains from other living beings. Humans, for example, are consumers. 

If we were to find some fruit during our walk, we would pluck it from the producer and eat it. 

Through this process, called heterotrophy, we would obtain the molecules we need to survive.  

Consumers are not all the same: some feed on producers and are therefore called primary 

consumers, while others feed on primary consumers, and are thus called secondary consumers, 

and so on, until we reach a species of consumers that is not consumed by anyone else. These 

latter are called apex predators.  

Both producers and consumers split the carbon molecules they procure to obtain energy: in 

the process, new carbon dioxide molecules are created and released into the environment, 

which will be used by producers for new synthesis processes. This all sounds like a complete 

cycle, but it is not. With only producers and consumers, the existence of an ecosystem would 

become quite difficult. In fact, to operate the synthesis processes, producers need other 

inorganic molecules besides carbon dioxide, and that is taken care of by detritivores and 

decomposers. The waste products of consumers (such as feces, or their bodies) along with those 

of producers, represent the food source for detritivores and decomposers, which transform 

organic matter into inorganic matter available to producers for their synthesis operations. 

If during our walk in the countryside we focused on a specific producer species and were 

able to reconstruct its fate, that is, understand which species are part of one of the patterns in 

Figure 1 – in which decomposers and detritivores are missing –, we would have reconstructed 
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one of the food chains that characterize the ecosystem in which we are immersed. By 

intersecting all the identifiable food chains in the ecosystem, we would obtain a directed graph 

called a food web (Pimm et al., 1991) – the center of Figure 1 represent a very small food web). 

This tool is essential for understanding an ecosystem as it allows us to understand in which 

direction energy flows inside the system, in other words, “who depends on whom” for their 

survival.  

 
Figure 1 | An hypothetical small food web. On the left are the trophic levels at which the organisms shown in 

the center of the figure are placed: these are categories used to classify the type of nodes present in the food web 

graph. On the right, there are other terms to define the above nodes, based on the type of diet defined by their 

trophic relationships. (Scitable, n.d.) 

As terrestrial animals, we can immediately identify the producers of a terrestrial ecosystem: 

plants. But which are the primary producers in aquatic ecosystems? As for terrestrial 

ecosystems, the producers of an aquatic ecosystem are photosynthetic organisms of many sizes 

(Sigman and Hain, 2012). Some are benthonic, which means that they are fixed to the bottom 

of the body of water in which they reside, but in most cases, they are mobile microscopic 

organisms which are not fixed to any support, but at the same time they cannot swim. This 

characteristic puts them in the plankton category, which name comes from the Greek word 

meaning “drifter” or “wanderer”: unable to swim, these organisms are at the mercy of the 

currents.  
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Not all plankton are producers, since the term plankton is an umbrella term that encompasses 

all organisms transported by tides and currents, often including organisms such as crustaceans 

and jellyfish, which are consumers. Moreover, numerous species of consumers may have 

planktonic juvenile stages, while the adult form can resist currents (Mansur et al., 2014). Thus, 

there is a clear need to possess more stringent classification tools to navigate the vast variability 

that the term “plankton” implies.  

Traditionally, to overcome this problem, the microscopic organisms that make up plankton 

have been divided into two major groups: phytoplankton (or microalgae) which are autotrophic 

organisms capable of producing the molecules they need to sustain themselves through 

photosynthesis, and zooplankton (in which, based on size, we can distinguish mesozooplankton 

and protozooplankton), heterotrophic organisms that feed on phytoplankton. In recent years 

this classification has been modified by the identification of a new group of plankton, the 

mixoplankton, which can both operate autotrophy and heterotrophy (Glibert and Mitra, 2022). 

A schematic representation of the relationships between the different types of plankton and the 

rest of the oceanic food web is offered by Figure 2 below. 

 
Figure 2 | Model of interactions between the different types of plankton and the rest of the oceanic food web. 

This scheme envisions phytoplankton as the primary producers using dissolved inorganic matter (DIM, green 

arrow) and light for carbon fixation. Orange arrows indicate grazing activities while brown arrows, excretion, and 

defecation. Orange-green gradient arrows depict the photo-phago-mixotrophic feeding strategies of 

mixoplankton. The microbial loop, depicted using gray arrows, portrays the multi-role of the bacteria: dissolved 

inorganic and organic matter (DIM and DOM, respectively) are taken up by bacteria that are in turn consumed by 

protozooplankton and mixoplankton. Not only bacteria are important in this scheme, but also viruses are (viral 
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processes are represented by the dashed red arrows). They infect bacteria, mixoplankton, phytoplankton and 

protozooplankton, in turn releasing particulate and dissolved organic matter. (Glibert and Mitra, 2022) 

This thesis work focuses on phytoplankton, the study of which is fundamental because of 

their many prominent roles in marine ecosystems and the Earth system: the next chapter will 

provide a brief overview of these ecological functions and it will try to explain why our species 

should invest time and resources in the observation of such organisms.  
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1.2 Ecological roles of phytoplankton  

As Figure 3 shows, several measurements conducted since the second half of the 20th 

century on different samples – like Antarctic ice samples (Neftel et al., 1985) – clearly indicate 

how the era in which we live is characterized by a steady increase in the concentration of carbon 

dioxide in the atmosphere.  

 
Figure 3 | Measured mean CO2 concentration in ice air bubbles plotted against the estimated mean gas age. 

The dots depicted in this graph represent the concentration of CO2 in gas bubbles trapped inside Antarctic ice 

samples analyzed by Neftel and colleagues: ice deposits are formed by gradual deposition of snow layers that 

compact into ice. During this process, small air bubbles, identical in composition to the rest of the air on the planet 

at the time of deposition, become trapped in the ice. By being able to access these bubbles, the evolution of the 

composition of Earth's atmosphere can be estimated. Neftel and his team analyzed samples obtained by ice coring, 

in other words, cylinders of ice extracted from the Antarctic ice sheet by drilling: in this way they gained access 

to a series of air bubbles deposited over several hundred years. They dated them and measured the average CO2 

concentration within them. From this they obtained the graph in the figure, where the horizontal axis of the ellipses 

indicates a close-off time interval of 22 years, and the vertical one reports the uncertainties of the concentration 

measurements. The dotted line represents the atmospheric CO2 concentration calculated with the model they 

developed, assuming only CO2 input from fossil fuel. (Neftel et al., 1985) 

This is due to various types of human activities that rely on energy production through the 

burning of fossil biomass, and which, increasing dramatically in recent decades, have greatly 

increased the amounts of CO2 in the atmosphere compared to the pre-industrial era. According 

to measurements conducted at the Mauna Loa Observatory by staff of the U.S. National Ocean 

and Atmospheric Administration (NOAA) agency, the current concentration of carbon dioxide 

in the atmosphere is close to the frightening value of 424.55 ppm (Figure 4).  
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Figure 4 | Monthly mean atmospheric CO2 concentration measured at Mauna Loa observatory. The red lines 

and symbols represent the monthly mean values, centered on the middle of each month, while the black lines and 

symbols represent the same, after correction for the average seasonal cycle. Seasonal cyclic variation is corrected 

by averaging the seasonal mean over a moving window with width equal to seven seasonal cycles and centered 

on the month of interest. The vertical lines protruding from the black squares are an indication of the uncertainty 

associated with the measurement. (Global Monitoring Laboratory, n.d.) 

This increase does not occur without consequences; in fact, it involves several changes in 

numerous components of the Earth system that, as they change, trigger a series of domino 

effects that affect the entire rest of the planet, in many cases affecting the well-being of our 

species. One of the many examples that could be brought to support this assertion are the 

serious consequences that the increase in the concentration of CO2 in the atmosphere has on 

the global temperature, and the consequences that this increase has on crops yields. In a 

beautiful study published in 2019 it is shown that the increasing amount of carbon dioxide in 

the atmosphere influences the rain frequency and intensity in West Africa, giving more water 

to the crops and thus increasing their yield. Up to here, it would almost seem that the increase 

in carbon dioxide leads to positive phenomena. The problem is that it also correlates with an 

increase in global temperatures due to the greenhouse effect (Zhong and Haigh, 2013), and this 

increase prevents water from being trapped in the soil, thus available to plants, and places plants 

under heat stress. These effects exceed the benefit reported above, causing a net decrease in the 

yield of the West African crops, worsening the continent food insecurity situation (Sultan et al., 

2019). Although the study just mentioned focused on the West African region, these kinds of 

phenomena also affect other regions of the planet, in fact, similar studies have also been 

conducted in other regions such as the United States’ Midwest (Jin et al., 2018) and Europe 

(Supit et al., 2012).  
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For these reasons, an overview of the roles that phytoplankton play within the earth system 

must necessarily begin with an account of the close link that, as photosynthetic organisms, they 

have with atmospheric carbon dioxide.   

The difference in the concentration of carbon dioxide that exists between the Earth's 

atmosphere and the oceans causes diffusion phenomena by which CO2 molecules reach the 

surface of the oceans and dissolve among the waves. Although interaction with water does not 

always leave carbon dioxide molecules unchanged – for example, due to hydration reactions, 

they can take forms such as that of the bicarbonate ion (CO2 + H2O ↔ H2CO3 ↔ H+ + HCO3
−) 

– phytoplankton are able to use many types of inorganic carbon dissolved in water as building 

blocks for organic molecules. Once fixed in molecules of biological origin (biogenic 

molecules), carbon atoms are subject to the fate that such molecules incur; for example, if 

several atmospheric carbon atoms are fixed in a molecule used for structural purposes by the 

phytoplankton that performed photosynthesis, and the cell dies without being subjected to 

predation processes, and precipitates to the bottom of the water basin in which it is contained, 

the carbon atoms are said to have been “sequestered” from the atmosphere and deposited in 

sediments in which they will remain for several hundred years.  

Collectively, all aquatic processes involving the sequestration of atmospheric carbon 

through the fixation of it into molecules of biological origin and the transport of the molecules 

to the bottom of the water basin are identified through the concept of biological carbon pump 

(BCP), which first appeared in 1985 (Volk and Hoffert, 1985). Although above only one 

example of how a biogenic molecule containing atmospheric carbon atoms can be transported 

to the depths of the oceans was shown, many more have been identified over the years, and 

until a few years ago, at least three different types of BCP were recognized (Le Moigne, 2019): 

• Gravitational BCP, i.e., the totality of all the phenomena that include the precipitation 

of particulate organic carbon – which is the ensemble of suspended and sinking organic 

particles with size ≥ 0.2 μm (Kharbush et al., 2020)– of planktonic origin: the example 

proposed above about the dead phytoplankton cells falls into this category.  

• Mixing BCP, i.e., the totality of physical mechanisms that, through the movement of 

water masses, transport downward the carbon fixed at the surface.  

• Migration BCP, i.e., the transport of carbon to the depths by migrating fish and 

plankton: different species of plankton and fish move to the surface at night – to feed 

by limiting the likelihood of being subject to predation – and return to deeper areas 
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during the day. Here, by defecating, they release some of the carbon they have 

recovered at the surface.  

The different types of BCPs do not contribute equally to the total amount of carbon 

sequestered by the oceans but, as Nowicki and colleagues show (Nowicki et al., 2022), the 

amount of carbon sequestered by different BCPs, as well as the amount of time the sequestered 

carbon spends in sediments, varies depending on the parts of the planet being considered 

(Figure 5).  

 
Figure 5 | Different contributions of different BCPs to the total carbon sequestered in different parts of the 

planet. The total number of grams of carbon per square meter sequestered by each of the five ocean biomes 

defined in the figure is shown on the y-axis depicted in the figure, while the x-axis shows the total number of 

grams of carbon per square meter exported each year from each of the above ocean biomes. Carbon is exported 

when it is respired by organisms, typically zooplankton, in the lower layers of the water column, where it can 

remain from several years to several hundred years. Outer rings represent the fractional contribution of each type 

of BCP to total export in the corresponding region, with inner pies representing the fractional contribution of each 

type of BCP to total sequestration in that region. The location of each pie chart on the trend lines shows the average 

sequestration time (which is the total carbon sequestration divided by total carbon export) for each biome. 

(Nowicki et al., 2022) 

In recent years, new types of biological carbon pumps have been recognized (Claustre et al., 

2021), but in each of these what is at the center is the photosynthetic activity of phytoplankton. 

It is the fixation of atmospheric carbon through photosynthesis that gives rise to BCPs, through 

the activity of which the oceans and seas are transformed into what is defined as carbon “sinks”. 

To provide some indicative figures of the magnitude of these phenomena, it is good to mention 

that about 50 percent of the primary production (i.e., in simpler terms, photosynthesis) that 

takes place each year on planet Earth is operated by phytoplankton (Losa et al., 2017), and 
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BCPs that are grafted onto this phenomenon sequester 11 Gt of carbon each year from the 

atmosphere (Sanders et al., 2014; Basu and Mackey, 2018). 

The impact of this on the earth system is enormous: the constant removal of such amounts 

of CO2 from the atmosphere affects global temperatures and climate phenomena to such an 

extent that phytoplankton are a consideration when proposing hindcast and forecast simulations 

(Bracher et al., 2022). However, the climate changes to which our planet is subjected can 

seriously threaten the stability of mechanisms such as BCPs that are dependent on the 

physiology of phytoplankton and their community structure and distribution (Basu and 

Mackey, 2018), which is why, constantly having accurate information regarding these 

phenomena is of crucial importance, especially in these times.  

The reasons that lend importance to the observation of phytoplankton communities’ 

structure and distribution, however, do not end with their relationship to carbon in the 

atmosphere, but extend by virtue of numerous other characteristics. As the basis of aquatic 

trophic networks, for example, phytoplankton is the limiting factor for the growth and 

abundance of all aquatic organisms. In fact, biomass production is not only dependent on 

atmospheric carbon fixation, but also on the production of fatty acids by phytoplankton (Budge 

et al., 2014). Fatty acids (FA) are essential for the growth of all vertebrates, both marine and 

terrestrial, and since the only source of fatty acids in the oceans is phytoplankton, these 

organisms must obtain essential FA either directly, by feeding on phytoplankton, or indirectly, 

through the food web.  

The direct correlation between the primary production and synthesis of fatty acids by 

phytoplankton and the size of fish stocks lends great commercial interest to these organisms: 

knowing their distribution and community characteristics is crucial for the fishing industry, but 

not only. Public health administrators are also interested in this kind of information since 

terrestrial vertebrates such as Homo sapiens have a need to assimilate certain fatty acids, such 

as eicosapentaenoic acid (EPA), represented in Figure 6, which they access by consuming 

organisms that have fed on phytoplankton. However, as shown by Budge and colleagues, due 

to the steady growth of human population, global production of EPA is in danger of no longer 

meeting the demand for this molecule, and this would prove to be a problem because of the 

many benefits it provides as hypotriglyceridemic and anti-inflammatory to prevent 

cardiovascular disease (Siriwardhana et al., 2012).  
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Figure 6 | Carbon skeletal structure of eicosapentaenoic acid. (Peter et al., 2013) 

Budge and colleagues point out that, so far, we have had only very limited knowledge of the 

amount, distribution, and rate of fatty acid synthesis in the oceans, and given the impact of 

these molecules on human health, gaps of this kind need to be covered as soon as possible.  

When it comes to phytoplankton, public health administrators have much to look out for, 

not just fatty acid production. In fact, phytoplankton proliferations, known as algal blooms 

(Figure 7), can prove to be dangerous for humans living near the coasts because of the toxins 

produced by the proliferating organisms: in this case the phenomenon falls into the category of 

what is called harmful algal bloom (HAB), while in the case where the algae should not produce 

toxins we speak of eutrophication, a phenomenon with serious ecological consequences, but 

not worrying from a point of view strictly related to public health.  

 

Figure 7 | Portrait of an algal bloom. (Intergovernmental Oceanographic Commission, n.d.) 

Until 2016, the year of publication of the article from which the following information was 

taken (Grattan et al., 2016), five types of diseases directly related to HABs were recognized: 

Ciguatera Fish Poisoning, Paralytic Shellfish Poisoning, Neurotoxic Shellfish Poisoning, 

Amnesic Shellfish Poisoning and Diarrheic Shellfish Poisoning. Each of these diseases arises 

after contact with poisoned fish or seafood, and for none of the toxins underlying these diseases 

were antidotes available, therefore, disease prevention was, and still is, of paramount 

importance in managing the risks associated with HABs. Over the years, several datasets have 

been compiled in which the characteristics and frequency of HAB events are recorded 

(Hallegraeff et al., 2021), and these tools have proven to be very useful in producing time series 
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that allow policy makers to get a clear idea of the past and present trends of these phenomena 

(Figure 8) and hypothesize a future one.  

 

Figure 8 | Time series representing the occurrence of cases from Ciguatera Fish Poisoning in different places 

on the planet. Thanks to the creation of new datasets, it is possible to map the proliferation sites of certain toxic 

phytoplankton species – such as dinoflagellates of the genus Gambierdiscus and Fukuyoa that produce the toxins 

responsible for Ciguatera poisonings represented, respectively, by the blue dots and yellow dots in part A of the 

figure – and to record the presence of toxins in fish and shellfish (red dots and yellow dots in part B of the figure). 

Not only that, but time series can also be created to keep track of the occurrence of these poisoning cases in 

different parts of the planet, part C of the figure, and to get an idea of the trend of these phenomena over time. 

(Hallegraeff et al., 2021) 

Phenomena and studies such as those just mentioned make it clear that the study of 

phytoplankton communities’ structure and distribution is an issue that not only interests basic 

research, but which is of immense applicative importance. It should be part of the agendas of 

public administration, which must ensure the health of citizens and the availability of 

ecosystem services for them. The necessary condition for this to happen, however, is the 

possession of accurate information on the distribution and composition of phytoplanktonic 

communities, but, unfortunately, “the large-scale patterns of [phytoplankton] diversity are not 

well understood and are often poorly characterized in terms of statistical relationships with 

factors such as latitude, temperature, and productivity” (Dutkiewicz et al., 2020). Is it possible 

to fill this gap?  
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1.3 Phytoplankton Functional Types 

The attempt to address the question expressed in the previous chapter has, over the years, 

brought to the surface the concept of phytoplankton functional type (PFT): when studying 

phytoplankton and their involvement in certain biogeochemical mechanisms occurring on the 

Planet, it is necessary to orient ourselves in the multitude of species included in that grouping. 

One strategy to do this is to identify groups of species based on the biologically mediated 

biogeochemical transformations they are able to perform (IOCCG, 2014). Such groups are 

called phytoplankton functional types.  

Since the “functional type approach” recognizes that we cannot keep track of the evolution 

of the distribution of every phytoplankton species in the ocean, and that some dimensions of 

variation will not matter for some research questions (Irwin and Finkel, 2017), the use of the 

PFT concept allows for the conduct of inquiry processes with categories that are both 

manageable and more stringent than those generated by some definitions used in more general 

ecological contexts.  

It is important to emphasize that these categories do not reflect the taxonomic divisions to 

which the species contained within them belong, as the use of taxonomy in these situations can 

be counterproductive: taxonomically related species may exhibit very different ecological 

adaptations, and taxonomically distant species may have evolved similar ecological roles  

(Salmaso et al., 2015).  

This thesis work is aimed at developing tools that can facilitate the understanding of 

phenomena concerning two PFTs, commonly referred to as nitrogen fixers – or cyanobacteria 

– and silicifiers – or diatoms – (IOCCG, 2014):  

• Nitrogen fixers get their name from their ability to use nitrogen dissolved in water to 

operate photosynthesis processes. Normally, phytoplankton are only able to utilize 

nitrogen in the form of nitrate, nitrite, or ammonium, and since these compounds are 

present at low concentrations in the more superficial layers of water bodies, they are a 

limiting factor for phytoplankton growth. Nitrogen fixers can overcome this problem 

through the use of nitrogen dissolved in water. Generally, the species that are included 

in this PFT belong to the class of cyanobacteria (an example of which is given in Figure 

9).  
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• On the other hand, the name of silicifiers derives from the silicon exoskeletons that 

surround them: to build such structures, silicifiers – a set to which species belonging to 

the class of diatoms are commonly ascribed – have a constant need for silicon. An 

example of a silicifier, a diatom, is portrayed in Figure 10.  

 
Figure 9 | Image of filamentous cyanobacterium. The filaments in the picture are composed of cells of the 

cyanobacterium species Arthronema africanum, which image was obtained through 100-fold magnification 

operated by light microscope. (Damatac and Cao, 2022) 

 

Figure 10 | Image of diatom. The black rectangle in the upper right of the image represents a scale bar equal to 

10 μm, and the diatom species portrayed is Diploneis smithii. (Bonomo et al., 2009) 

The concept of PFT allows studies to be conducted with a more manageable set of categories 

than the one that the broad term phytoplankton offers but, pragmatically, how is it possible to 

get an idea of the distribution of different PFTs on our planet?  
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1.4 Satellite technology 

Studying the distribution of PFTs on our planet is a complex matter. One could attempt to 

address it through a series of in situ measurements, that is, by going in person to different points 

on the planet and collecting water samples that would then be analyzed in the laboratory to 

determine how many and what kind of phytoplankton functional groups are contained there. 

However, this kind of approach would yield a very limited number of measurements, which 

would provide accurate information only relative to the sampling points considered, but 

without giving an idea of the global distribution of the PFTs of interest. Not to mention the 

temporal resolution: it would be constrained to the days on which the measurements were 

taken.  

To overcome this problem, remote sensing, a set of techniques that can be defined as 

“noncontact recording of information from the electromagnetic spectrum by means of 

mechanical, photographic, numeric, or visual sensors located on mobile platforms” (Fussell & 

Rundquist, 1986), is used. This means, in other words, that instead of coming into direct contact 

with the object of interest, the interactions it has with electromagnetic radiation of various kinds 

are recorded, and from this the needed information is derived.   

In the case of PFTs, since phytoplankton are photosynthetic organisms, thus rich in pigments 

(such as chlorophyll-a) that absorb light in the visible spectrum, the interaction of pigments 

with electromagnetic waves from the sun is recorded through the use of sensors mounted on 

satellites orbiting the Earth. The sensors “divide” the planet’s surface into pixels, varying in 

area depending on the instrument considered, and, as they orbit the Earth, acquire values from 

each of these. In this way, the problem of in situ measurements is overcome because 

information is obtained for the entire planet, and with much better temporal resolution than the 

one that could be obtained by going to the field in person.  

For several years now, ESA, the European Space Agency, has had a number of sensors 

mounted on satellites that, as they orbit the planet, record the electromagnetic radiation from 

the sun that is reflected and scattered by the surface of the seas and oceans: these radiance 

values are collected in datasets that are subsequently processed and analyzed from the ground, 

in order to obtain several types of information regarding our planet. As suggested by Bracher 

and colleagues (Bracher et al., 2022), different information about the Earth's surface can be 

derived by retrieving different types of electromagnetic waves: 
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• Visible wavelength radiation allows for observing vegetation coverage extent and 

analyzing the surface of water bodies. 

• Near-infrared wavelength radiation (λ ~ 0.7 to 1.3 μm) enable the assessment of 

vegetation health and other surface properties. 

• Shortwave infrared (SWIR) wavelength radiation is useful for investigating the mineral 

composition and moisture content of the Earth's surface. 

• Thermal infrared wavelength radiation (λ ~ 3 to 14 μm) is employed to measure the 

surface temperature and heat distribution of the planet. 

• Radio waves with longer wavelengths than those in the thermal infrared range are ideal 

for exploring soil moisture content and ocean currents. 

Visible wavelength radiation is the kind of radiation that can be useful for the studying of 

phytoplankton since chlorophyll-a absorbs it. This pigment is of particular importance because, 

given its presence in all phytoplankton species (and thus in all PFTs, clearly), chlorophyll-a 

concentration values can be used as a proxy to determine the concentration values of the totality 

of phytoplankton in an area of interest. However, if one is interested in the distribution of 

specific PFTs in an area of interest, obtaining the map of distribution of chlorophyll-a in that 

area is not sufficient: further analysis should be conducted to understand how much the 

different PFTs of interest contribute to the formation of these values. From there, distribution 

maps of phytoplankton functional groups can be obtained. 

Retrievals of the visible light backscattered and reflected by the surface of Earth’s water 

basins in order to gain insight on the distribution of different PFTs has been done along the 

years through the use of several instruments mounted on board of several satellites. This thesis 

work looked at the retrievals by OLCI and TROPOMI instrument mounted, respectively, on 

the Sentinel-3 satellite, Figure 11, and Sentinel-5P satellite, Figure 12, of ESA’s Copernicus 

system.  
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Figure 11 | The Copernicus system’s Sentinel-3 satellite. (EUMETSAT, 2020) 

 

Figure 12 | The Copernicus system’s Sentinel-5p satellite. (ESA, n.d.) 

 

Launched by ESA in 2016, OLCI (Ocean and Land Color Instrument) can capture ten bands 

within the visible spectrum, which are ten wavelength windows ranging from 0.4 to 0.7 µm. 

The number of bands that OLCI can observe is greater compared to its predecessor, ENVISAT 

MERIS (Sentinel Online, n.d.), representing a significant advancement in remote observation 

of phytoplankton distributions. Indeed, having an instrument that can capture multiple 

wavelength windows allows for better identification of PFTs: although distinguished through 

the distinction of certain characteristic pigments, these groups contain many molecules that 

absorb in a similar manner and can only be discerned by increasing the spectral resolution of 

the measuring instrument.  

Despite these characteristics, the strength of an instrument such as OLCI, called 

multispectral, is not the amount of wavelengths that it can retrieve, which, as will be shown 

below, is limited compared to instruments like TROPOMI, but rather, the size of the pixels into 
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which it divides the planet: in the case where one wanted to use the instrument in full resolution 

mode, FR, one would be able to have pixels of 300 m × 300 m. Alternatively, in reduced 

resolution mode, RR, it detects pixels with sides equal to 1.2 km.  

On the other hand, the TROPOMI instrument (TROPOspheric Monitoring Instrument) was 

launched on 13 October 2017 on board the Sentinel-5 Precursor, also known as Sentinel-5P, as 

the first Copernicus mission dedicated to monitoring our atmosphere. In fact, covering the 

global atmosphere every day with a spatial resolution as high as 7 km × 3.5 km for almost all 

spectral bands (Sentinel Online, n.d.), and a spectral resolution of 0.5 nm (Guanter et al., 2015), 

TROPOMI is designed mainly to map a multitude of trace gasses, which affect the air we 

breathe and therefore our health and our climate. However, this instrument can also be 

employed for other purposes. In fact, it is not solely useful to measure the reflected and 

transmitted light from the atmosphere but, like OLCI, it can be used to obtain data from all the 

spheres of the planet: atmosphere, lithosphere, hydrosphere… The reason for its usefulness for 

the purposes of this thesis lies precisely in the possibility to employ it for measuring the 

concentration of PFTs in Earth's waters. In fact, TROPOMI is what it is called a hyperspectral 

instrument, and its characteristics exactly mirror those of OLCI: it can sample the wavelength 

range of 675 nm to 775 nm every 0.5 nanometer, which means that it has a very high spectral 

resolution, but the area of pixels it detects does not allow for as fine a spatial resolution.  

Both OLCI and TROPOMI are two spectrometers that measure the reflected and 

backscattered solar radiation from various components of planet Earth. This means that the 

data obtained from these instruments undergo several conversions in order to transform them 

into values indicating the concentrations of PFTs in specific areas. Following a conversion, it 

is said that data “go through a level”. Below, I report a simple scheme of these operations:  

OLCI → L1A → L1B → L2: Chl-a → L2A: [PFTs] 

TROPOMI → L1A → L1B → L2A: [PFTs] 

The instruments provide data referred to as level 1A (L1A) data, which immediately undergo 

a “dark current” correction, which is the subtraction of the noise generated by the electronic 

components of the satellites. In fact, despite orbiting in a vacuum, the satellites hosting the 

instruments are subject to unstable conditions. For instance, depending on their position 

relative to the Sun, they may experience temperature variations that affect the functioning of 

the electrical circuits, thereby compromising the accuracy of the data recorded by the onboard 
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instruments. Fortunately, this “internal noise” can be subtracted from the datasets, bringing 

them to level 1B (L1B). From here, the conversions applied to the data from OLCI and 

TROPOMI take slightly different paths. 

Regarding OLCI, an algorithm called Polymer is used for atmospheric correction, which 

involves subtracting signals originating from all atmospheric components of the planet. This 

ensures that we only have signals coming from the Earth’s surface, classified as level 2 (L2) 

data. At this level, the data represents the concentrations of chlorophyll-a in the planet’s water 

bodies and needs to be converted into PFTs concentration values using a special algorithm that 

is called OC-PFT (Ocean Color-Phytoplankton Functional Types). OC-PFT belongs to a 

category of algorithms based on what is known as an “abundance-based approach”, which 

utilizes empirical knowledge of the relationships between phytoplankton abundance in a certain 

area and the percentages of PFTs that generate them to convert level 2 data to level 2A data 

(this level contains the PFTs concentration values). The empirical relationships underlying an 

abundance-based algorithm are investigated through the analysis of samples from various sites 

using high pressure liquid chromatography (HPLC), a technique that allows quantification of 

the concentrations of characteristic pigments of various PFTs in a specific area. Clearly, 

abundance-based algorithms are not effective in describing scenarios where the quantities of 

PFTs deviate from established relationships, such as situations where climate change affects 

phytoplankton populations. Fortunately, these algorithms are not the only viable option for 

transitioning from level 2 to level 2A data: ecological-based algorithms and spectral-based 

algorithms also exist. The former utilize level 1B data and other environmental variables 

derived from satellite measurements to determine the ecological niches represented by different 

areas of interest and the associated phytoplankton communities. However, ecological-based 

algorithms have similar limitations to abundance-based algorithms: “Since there can be 

deviations (natural or anthropogenically driven) from the tuned ecological relationships, we 

must be careful in interpreting time-series using these approaches” (Bracher et al., 2022). On 

the other hand, spectral-based algorithms analyze variations in the optical properties of the 

marine/oceanic surface, which vary with the concentration of phytoplankton pigments and the 

size of the cells present in it.  

Once we understand the steps by which L2A data can be obtained from OLCI, understanding 

the steps by which we can do the same with TROPOMI is much easier: in fact, level 1B data 

from TROPOMI is transformed directly into level 2A data through a spectroscopic method 

called DOAS (Differential Optical Absorption Spectroscopy). 
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The L2A data by themselves do not represent the maps that one looks for when interested 

in understanding the distributions of phytoplankton, since they relate to the orbits that satellites 

make around the planet. To obtain a set of information that refers, for example, to the entire 

Atlantic Ocean, it is necessary to merge L2A data from different orbits creating a grid 

representative of the mentioned area. This operation is called gridding, and it is necessary to 

perform it in order to obtain datasets that can be used in the graphical representation of maps 

showing the global distribution of different PFTs.  
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1.5 Aim of the project  

As shown in Section 1.2, the times in which we live makes clear the need to possess quality 

information on the global distribution of different phytoplankton functional types. Numerous 

attempts to obtain this information have been conducted using both datasets from various 

multispectral satellites and datasets collected from different hyperspectral satellites.  

In both cases, the results obtained had some strengths but also some defect aspects: in the 

case of the maps obtained through the use of multispectral instruments, the strengths lay in the 

great spatial resolution shown by the maps, while the defect aspects consisted of their low 

spectral resolution. Conversely, the maps obtained through the use of the datasets formed 

through the activity of hyperspectral instruments represented more accurate PFT concentration 

values but related to much larger pixels. Thus, these were maps with high spectral resolution 

but low spatial resolution. 

In recent years an approach, called synergistic, has been experimented with, which aims at 

obtaining maps that possess the best characteristics of both types of instruments. Through data 

assimilation techniques, datasets from hyperspectral and multispectral instruments are fused in 

such a way that maps that have both good spectral resolution and good spatial resolution can 

be produced. An example of this type of approach can be found in the work published in 2017 

by Losa and colleagues, in which an algorithm was developed, called SynSenPFT, that allowed 

them to fuse data from OC-CCI and SCIAMACHY instruments to obtain maps with the above 

characteristics. An excerpt of the results achieved during the span of this work can be seen in 

Figure 13.  

This thesis work is in the vein of studies such as the one just mentioned and aims to produce 

a synergistic method that can be applied to datasets from instruments of more recent conception 

than those considered by Losa and colleagues, namely, the OLCI and TROPOMI instruments 

of the European Space Agency’s Copernicus system. Such a method can be used to produce a 

set of datasets representative of a time span spanning several months, on which time series 

analyses can be conducted to understand spatiotemporal variations in diatoms and 

cyanobacteria distributions. In addition, such datasets can be used to deepen the understanding 

of important biological information about these two PFTs, such as, for example, their 

phenology.  
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Figure 13 | Distribution maps of three different PFTs obtained through the SynSenPFT algorithm. These 

maps represent the global average PFT distribution of diatoms, coccolithophores, and cyanobacteria during 

September 2006, and were obtained by applying the SynSenPFT algorithm to data obtained from SCIAMACHY 

and OC-CCI instruments during the indicated period. The concentration of the different PFTs is expressed in 

milligrams per cubic meter of water.  (Losa et al., 2017) 
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2. Theoretical background  

As seen in the previous chapter, this thesis work focuses on the development of a synergistic 

method to combine the concentration values of two different phytoplankton functional types 

obtained using the OLCI and TROPOMI instruments. This chapter aim to answer in detail three 

questions that are necessary to proceed in that direction:  

• Chapter 2.1 – How can plankton concentration values be obtained from TROPOMI?   

• Chapter 2.2 – How do we obtain plankton concentration values from OLCI?  

• Chapter 2.3 – How do we merge two datasets?  

 

2.1 Differential Optical Absorption Spectroscopy (DOAS) 

Imagine that during a field expedition you recovered a seawater sample containing 

cyanobacteria and, hypothetically, you could extract all other organic absorbing species from 

the sample. How could the concentration of cyanobacteria in the sample be measured? By 

taking advantage of the Beer-Lambert’s law – or Beer-Lambert-Bouguer’s law – (Gold, 2019). 

In fact, if we poured the sample into a laboratory cuvette, and irradiated it with a 

monochromatic beam of electromagnetic waves, that is, with a set of waves characterized by 

the same wavelength (λ), we would notice a difference between the intensity of the beam before 

and after interaction with the sample. This is due to the absorption of electromagnetic radiation 

by the pigments contained in cyanobacteria, and this phenomenon can be described through 

the equation  

,  

where A represents the amount of electromagnetic radiation of wavelength λ that the solution 

absorbs, I0 the intensity of the incident wave beam, and I the intensity of the wave beam after 

interaction with the sample. In addition to the ratio between the intensities of the wave beam, 

the absorbance (A) can also be determined by the multiplication of three parameters:  
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• ϵ, the molar absorption coefficient, which is a constant of proportionality.  

• c, the concentration of the absorbing species within the sample.  

• l, the length of the optical path traveled by light, that is, the length of the path within 

which the light interacts with the absorbing species. In the hypothetical case introduced 

above, the depth of the cuvette.  

It is evident how, thanks to this relationship, it is possible to calculate the concentration of 

cyanobacteria in the cuvette: simply irradiate it with a monochromatic beam of electromagnetic 

waves, measure its intensity before and after interaction with the cuvette, and calculate the 

absorbance of the sample. From there, knowing the optical path length and the molar absorption 

coefficient of cyanobacteria, the desired value can be derived. But how does Beer-Lambert’s 

law relate to a satellite instrument like TROPOMI? 

Starting with the intensity of electromagnetic radiation coming from the sun with a certain 

λ, I0(λ), and the measured top-of-atmosphere radiance, I(λ, s), satellite sensors such as 

TROPOMI exploit the Beer-Lambert law to calculate the concentration of various inorganic 

compounds in the atmosphere (Losa et al., 2017). However, they can also be used to measure 

the concentration of absorbing objects residing on the planet’s surface. In fact, the radiation 

that converges in the top-of-atmosphere radiance values comes from different paths: in some 

cases, radiation incident on planet Earth has penetrated the atmosphere, come in contact with 

the planet’s surface (for those interested in phytoplankton, it has come in contact with the 

surface of the seas and oceans), and from there has been reflected or backscattered to the 

atmosphere. From this radiation, we can derive the concentration of phytoplankton on the 

surface layer of terrestrial waters.  

The DOAS technique involves calculating the optical density (τ, a synonym for absorbance) 

of a certain optical path as a function of a certain wavelength (λ) and a certain zenith angle (s), 

which is the angle comprised between the direct line from the center of the Sun to the center 

of the Earth and the normal to the Earth’s surface at a specific point on the planet. In other 

words, it is the angle between the incident solar rays and the local vertical. Once the value of τ 

has been determined according to the equation 

,  
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the components that generate it are identified, so that a new equality can be developed. To this 

end, Astrid Bracher and her group (Bracher et al., 2009), based on the study by Vountas and 

colleagues (Vountas et al., 2007), identified a series of components of τ that they summarized 

in the following equation:  

. 

To best understand it, let us carefully consider each component of this equality:   

• σi (λ) represents the cross-section of the generic atmospheric trace gas i at a certain λ. 

The term “cross-section” refers to a virtual area representing the probability of 

interaction between a photon of light at wavelength λ and the molecule i. This value is 

multiplied by Si(s) which, roughly, can be defined as the number of elements i present 

along the optical path. The expression 

 

thus represents the absorption contribution of all trace gases present in the atmosphere.  

• σring(λ) indicates the cross-section related to the inelastic interactions that an 

electromagnetic radiation may undergo when it impinges against N2 and O2 molecules 

in the atmosphere: this phenomenon is called the Ring effect. According to the same 

logic expressed in the previous point, σring(λ) is multiplied by Sring(s).  

• Inelastic interactions like those occurring in the atmosphere can also involve the water 

molecules with which electromagnetic radiation interacts. In this case we speak of a 

phenomenon known as Vibrational Raman Scattering, which is considered by the 

factors σVRS(λ) and SVRS(s).  

Both the Ring effect and the VRS are referred to as pseudo-absorbers: the equation 

of Bracher and colleagues takes into account only these two pseudo-absorbers, while 

Vountas and colleagues consider more through the inclusion of additional factors in the 

equation.  
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• σphyto(λ) and Sphyto(s) represent the contribution of phytoplankton to absorption 

processes. To be able to derive σphyto(λ), as well as the rest of the cross-sectional values, 

it is necessary to consider absorption spectra of the absorbing species of interest. Figure 

14 shows an example of such spectra: 

 
Figure 14 | Example of spectra used for determining cross-sectional values. (Vountas et al., 2007) 

The DOAS method makes it possible to derive both the concentration values of 

chlorophyll-a, and from these to understand what the concentration levels of 

phytoplankton on the water surface are, and to directly derive the concentration values 

of the different phytoplankton groups (the PFTs): instead of using the cross-section 

value of chlorophyll-a as σphyto, it is possible to assign to this parameter the cross-section 

value of a specific pigment of the phytoplankton group in which one is interested. 

Pigments typical of phytoplankton groups have different absorption spectra, which 

means that they absorb the same λ differently, however, often the differences are small: 

for this reason, it is important to have hyperspectral instruments such as TROPOMI: 

given the large number of wavelengths they can detect, it is possible to apply the DOAS 

method to a wavelength at which a certain pigment responds well. On the other hand, 

multispectral satellites such as OLCI do not give this possibility, since they cannot 

detect a large number of wavelengths: they usually detect wavelengths around 443 nm, 

and therefore they allow  to measure the concentration of chlorophyll-a on the water 

surface, but then it is necessary to process this kind of data to get an idea of the 

concentrations of the different phytoplankton groups.  
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• ak is instead the coefficient of a low-degree polynomial – typically of a degree of three 

(Vountas et al., 2007) – which is included in the equation to separate spectrally dynamic 

features from the slowly varying attenuation. 

The “S” parameters are called fit factors, and they are at the heart of the DOAS method: 

once the cross-section and optical density values have been derived, an initial estimate of the 

value of the fit factors is advanced, the optical density value that corresponds to the estimate is 

calculated, and the difference with that obtained through measurements is derived (and it is 

squared). From this point, we proceed to iteratively reduce that difference by least-square 

minimization.  

Having finished the process, one can derive the phytoplankton concentration on the water 

surface from the Sphyto fit factor. In fact, the concentration of phytoplankton, c, expressed as mg 

of chlorophyll-a per cubic meter, is obtained by the formula 

,  

where δ represents the penetration depth into water of electromagnetic waves of wavelength λ.   

In conclusion, DOAS is thus a spectroscopic technique that allows us to derive, from 

TROPOMI retrievals of radiances at different top-of-atmosphere points and a formula, the 

concentration of phytoplankton at corresponding points on the planet’s surface. As will be seen 

in the next chapter, the method that allows us to derive phytoplankton concentrations from 

measurements made by OLCI stands on a quite different logic.  
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2.2 POLYnomial-based algorithm applied to MERIS (Polymer) and 

Ocean Color – Phytoplankton Functional Types (OC-PFT) 

To derive data from OLCI without the help of a spectroscopic technique such as DOAS, it 

is necessary to rely on two algorithms, Polymer and OC-PFT.  The former, deals with what is 

commonly referred to as atmospheric correction, i.e., it removes the absorption contributions 

of anything that is not phytoplankton, while OC-PFT allows one to distinguish the contribution 

of the PFTs of interest within the set of absorbers that Polymer identifies as phytoplankton. 

Let’s delve deeper into these algorithms.  

Polymer’s process of operation can be broken down into three steps (Soppa et al., 2021): 

pre-correction of the top-of-atmosphere radiance (LTOA), fitting process, and retrieval of the 

chlorophyll-a concentration values. 

1. Pre-correction of the top-of-atmosphere radiance: after the conversion of LTOA 

measured by the sensor into reflectance (ρTOA), ρTOA is defined as a function of several 

variables:   

a. Gaseous transmittance estimated for O3 and for NO2. 

b. Reflectance due to scattering by air molecules (ρmol).  

c. Sunglint reflectance (ρgli with transmission factor T). The phenomenon of 

sunglint occurs when sunlight is reflected off the surface of water at the same 

angle that a sensor views it.  

d. Aerosol reflectance (ρaer). 

e. The coupling between Sun glint, molecules, and aerosols (ρcoup). 

f. The water-leaving reflectance just above the surface (ρw
+) with direct and 

diffuse atmospheric transmission (t).  

The equation that sum up all these variables is the following: 

. 

ρTOA undergoes initial corrections for gaseous transmittance, absorption by air 

molecules, Rayleigh scattering, and sunglint, resulting in a pre-corrected reflectance 

(ρ’), which still contains a residual sun glint (∆ρgli) and it’s defined as it follows:  

. 
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Then, the variables composing ρ’ can be grouped into atmospheric and sun glint 

contribution (ρag) and water components contribution (tρw
+): 

. 

2. Fitting process: ρag and tρw
+ are optimized in such a way as to obtain the best fit of ρ’.  

3. Chlorophyll-a values retrieval: the water-leaving reflectance is modelled as a function 

of two variables (taking for granted λ): chlorophyll-a concentration (chl) and a 

coefficient, fb, that scales the backscattering coefficient of particles in the water body: 

. 

The fitting process provided the value of ρw
+, and this allows, through the way it is 

modeled, to obtain the chlorophyll-a concentration values (proxy of phytoplankton 

concentration) that will be used as the input of OC-PFT.  

To understand what OC-PFT is and how it works, it is necessary to delve into the study that 

sanctioned its birth. OC-PFT was developed by Takafumi Hirata and colleagues in 2011 (Hirata 

et al., 2011) to build a bridge between the information obtained from studies using high 

pressure liquid chromatography (HPLC) and that derived from space-borne ocean color 

sensors.  

Indeed, HPLC analyses allow accurate characterization of the composition of planktonic 

communities starting from the total concentration of chlorophyll-a (TChla) contained in 

samples obtained from in situ measurements, but unfortunately, they have a very low 

spatiotemporal resolution: the one of the researchers going on the field. On the other hand, 

space-borne ocean color sensors can provide TChla concentration values at a much higher 

spatiotemporal resolution (unlike in situ observations, satellites can cover the entire planet in 

few days), but at the time Hirata and colleagues developed OC-PFT, the existing algorithms 

for processing such data did not provide accurate information about the composition of the 

phytoplanktonic communities: they could only determine the dominant PFT, or distinguish a 

very limited number of PFTs, from each TChla value. Thus, the goal that Hirata and colleagues 

desired to achieve through their algorithm was to be able to combine the information from 

HPLC analyses with the data from satellites, to obtain maps that could help researchers gain 

insight into the composition of phytoplankton communities on a global scale (Hirata et al., 

2011).  
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To do so, they collected a series of in situ measurements taken over the course of several 

expeditions (a picture of which is shown in Figure 15), eliminated outliers, and divided the 

remaining 3966 observations in the following way: 70 percent were used for the model 

development and 30 percent for validation operations.  

 
Figure 15 | Geographical locations of the places from which in situ observations used by Hirata and 

colleagues were taken. (Hirata et al., 2011) The blue dots have been explored by the NERC AMT cruise (Aiken 

et al., 2009), while the black triangles by the JAMSTEC BEAGLE cruise (Barlow et al., 2007). The cyan 

diamonds are relative to the NASA NOMAD dataset (Werdell and Bailey, 2005), while the magenta crosses to the 

NASA SeaBASS dataset. The brown stars are both the points explored by the SEEDS II cruise (Suzuki et al., 

2005) and the sampling stations located along the northwest Pacific Ocean monitoring “A-line” (Isada et al., 

2009). Lastly, the green squares are the points explored by the HU Oshoro-maru cruise. 

To the data chosen for model development, Hirata and colleagues applied a procedure called 

Diagnostic Pigment Analysis (DPA), developed by Vidussi and her team (Vidussi et al., 2001) 

– and subsequently refined (Uitz et al., 2006)– for the purpose of distinguishing phytoplankton 

functional types from other elements detected during an HPLC procedure.  

DPA involves identifying one or more characteristic pigments for each PFT that one wishes 

to recognize, so that by subjecting a sample derived from an in situ observation to HPLC it is 

possible to quantify the relative abundance of each PFT (f-PFT) based on the ratio between the 

concentration of the PFT’s diagnostic pigments ([PFT-DPs])1 and the sum of the concentrations 

of all the other diagnostic pigments:   

 

1 [X] is a commonly used notation to indicate the concentration of compound X.  
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. 

The list of diagnostic pigments that Hirata and colleagues have associated with the different 

PFTs of their interest is shown in Figure 16, on which two points need to be made:  

1. The developers of OC-PFT were not only interested in phytoplankton functional types, 

but also in phytoplankton size classes, PSCs, which are used to classify phytoplankton 

based on their size. PSCs are not in the interest of this thesis, as well as 5 of the 7 PFTs 

that Hirata and his team also focused on: diatoms, dinoflagellates, green algae, 

prymnesiophytes (haptophytes), pico-eukaryotes, prokaryotes, and Prochlorococcus sp. 

Nevertheless, to better understand Hirata’s study, it is appropriate to report all the results 

that came out of it.   

2. As can be seen from Figure 16, some diagnostic pigments are shared among functional 

groups, and this can cause several problems in estimating the relative abundances of 

PFTs. For example, fucoxanthin (Fuco) was chosen as the diagnostic pigment for the 

PFT “diatoms”, however, Fuco is also a precursor of 19'-Hexanoyloxyfucoxanthin 

(Hex), the diagnostic pigment for haptophytes, and may be present in this group. Hirata 

writes that during the development of OC-PFT it was necessary to attend to this issue 

to avoid overestimating the relative abundance of diatoms (Hirata et al., 2011).  

 

Figure 16 | List of diagnostic pigments that Hirata and colleagues have associated with different PFTs. 

(Hirata et al., 2011) 
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By applying DPA to data from in situ observations, Hirata and colleagues were able to 

produce graphs, shown in Figure 17, in which they correlate, to different values of TChla, the 

relative abundance of different PFTs. These data were then fit by the method of least squares 

in such a way as to produce continuous curves that were used during the development of the 

algorithm: in other words, the models over which OC-PFT was developed.  

The accuracy of these relationships was evaluated by calculating the error generated by 

the difference between a value produced from the fitting curves and the corresponding value 

obtained from the in situ observations. All these errors were then summarized in an average 

value, the root mean square error (RMSE), which is obtained through the following formula,  

, 

where yobs is a generic value associated to an observation, yfit is the corresponding (meaning 

relative to the same x) value derived from the fitting curve, and N is the number of observations. 

This evaluation is summarized in Figure 18.  

At this point the empirical model, i.e., the curves in figure 17 below, was validated by 

comparing it with in situ observations that were not used for its development (Figure 19), the 

30% of the in situ dataset that was left behind. These samples have already been subjected to 

HPLC to determine what is the total concentration of chlorophyll-a within them, and what are 

the percentages of PFTs contributing to that value: from the value of TChla they contain, the 

models created earlier are used to calculate the percentages of PFTs contributing to that value. 

The closer the results of this operation are to the values obtained through HPCL, the more 

accurate the models are.  

After model development and validation operations are finished, an algorithm (OC-PFT, in 

fact) was created to apply the model to the mean chlorophyll-a concentrations detected by the 

SeaWiFS satellite sensor during the period 1998-2009 (O’Reilly et al., 1998). The results 

obtained by Hirata and colleagues are shown in Figure 20 and the errors associated with them 

in Figure 21. 
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Figure 17 | Relationships between total chlorophyll concentration and relative PFT concentration. The first 

row of graphs relates to phytoplankton size classes, and determines the color of the graphs below: since both 

diatoms and dinoflagellates, for example, are microplankton, and since the curve relating to the “microplankton” 

PSC is colored red, the graphs of the “diatom” and “dinoflagellates” PFTs are colored red. The thick yellow fitting 

lines are those derived by the least squares method, mentre le linee di fitting nere sono ricavate per differenza. For 

example, if we consider the fitting lines in the first row of graphs: if picoplankton represents a percentage X of a 

certain value of chlorophyll-a concentration, and microplankton represents a percentage Y, then nanoplankton will 

be the Z = 100% − (X + Y) of the chlorophyll-a concentration. Applying this reasoning to the whole fitting curves, 

one can understand how the black curves were obtained. (Hirata et al., 2011) 

 
Figure 18 | Uncertainties of the relationships between total chlorophyll concentration and relative PFT 

concentration. The x-axis of each graph shows different values of chlorophyll-a concentration, reported in 

milligrams per cubic meter, while the y-axis shows the relative errors as percentages of the value estimated through 

the fitting curve. The root mean square error is reported in each plot, and it’s calculated as described above. (Hirata 

et al., 2011) 
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Figure 19 | OC-PFT validation results. Given the total concentration of chlorophyll-a in a series of samples, the 

percentages of phytoplankton comprising it are measured by HPLC and estimated using the models depicted in 

Figure 17. The results of both operations are plotted in the scatter plots depicted above and interpolated with a 

linear curve: the more the line overlaps the bisector of the Cartesian plane, the more the measurements and 

estimates resemble each other. Ergo, the more accurate the models are. (Hirata et al., 2011) 

 

Figure 20 | Distribution of surface PFTs derived from SeaWiFS data. (Hirata et al., 2011) 
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Figure 21 | Uncertainties of the distributions of surface PFTs [%Chl-a] derived from SeaWiFS data. (Hirata 

et al., 2011) 

After describing how OC-PFT was developed and showing what early results it produced, 

to conclude this chapter, it is crucial to emphasize the close link that an algorithm such as OC-

PFT has with observations conducted in the field. As shown, models that link total chlorophyll-

a concentrations to the relative abundance of PFTs are built based on empirical data, so they 

have several limitations:  

• They cannot predict atypical associations: relationships derived from empirical data and 

taken for granted globally may have regional variations. Mariana Soppa and colleagues 

(Soppa et al., 2014) have highlighted this critical issue excellently, showing that the 

OC-PFT algorithm, as developed by Hirata and colleagues, underestimates the diatom 

abundance in the Southern Ocean. Through this study, it was possible to advance the 

hypothesis that diatoms in the Southern Ocean might be more abundant than previously 

thought, and to tie that estimate to the lack of in situ phytoplankton pigment data, and 

to the fact that, probably, the relationship between the total chlorophyll-a concentration 

measured in one sampling point in the Southern Ocean and the relative concentration 

of diatoms in the same point is different from the rest of the world.  

• They may vary with environmental conditions and thus the model parameters may 

change over time.  

• They can lead to incorrect predictions of the structure of different phytoplanktonic 

communities if variations in the same occur without any change in TChla. 
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For these reasons, it is critically important to update the datasets with which the models 

underlying algorithms such as OC-PFT are developed as soon as there is availability of new 

data.  
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2.3 Data assimilation 

Investigating a component of the Earth system provides two main sources of information: 

observations and models (Lahoz and Schneider, 2014). Observations are defined as 

measurements that are made in direct contact with the object of investigation, while models are 

defined as all instruments that describe relationships between variables, such as, for example, 

equations. Because of their close contact with the object of investigation, observations exhibit 

more pronounced spatiotemporal discontinuities than those exhibited by models, which, on the 

other hand, are less reliable because of their looser connection with the object of investigation. 

Fortunately, the information from observations and models can be interpolated through various 

data assimilation procedures that yield results that are spatiotemporally homogeneous and, at 

the same time, more reliable than models alone. Figure 22 graphically represents these 

concepts. 

 
Figure 22 | A schematic representation of a data assimilation process. Observations are more dispersed in space 

and time than model data, but they derive from a more accurate interaction with the object: if assimilated with 

model data, they provide accurate information with less spatiotemporal discontinuity. In this picture the model 

data are reported as “Forecast” while the result of the assimilation process is called “Analysis”. (Lahoz and 

Schneider, 2014) 

Should it be desired to interpolate data from TROPOMI and OLCI, the characteristics of the 

two instruments would allow the data to be considered as observations in the former case, and 

models in the latter. For this reason, it was thought to combine the information from OLCI and 
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TROPOMI using a data assimilation procedure known as Optimal Interpolation (OI), the same 

as that used in the article published by Svetlana Losa and colleagues in 2017 (Losa et al., 2017). 

This procedure consists of an equation for integrating information obtained from different 

measurements (y) to previously obtained data — that is, model data, in the data assimilation 

language — called background data (xb, where the superscript b is not an exponent, but stands 

to indicate that xb refers to background data), and comes in this form:  

. 

The result of the first equation, xa (the a at the exponent sums up the word “analysis”), is 

what is sought when operating an OI process: the “integrated” dataset that contains both 

information from y and from xb. The other components of the equation, K and H, are referred 

to as “Kalman filter” and “mapping function” and are critical to the success of the interpolation 

process (Lacey, n.d.).   

While the mapping function is concerned with transforming the background data into the 

space of measurements (i.e., in other words, the mapping function makes the background data 

compatible with the measurements so that the two types of data can interact), the Kalman filter 

determines how much individual data should influence the formation of xa. Before showing 

how it was decided to define y, xb, K and H, it is necessary to explain how the general logic of 

the data assimilation process was imagined.  

Imagine a geographical area bounded by four points, each of the four defined by its own 

latitude and longitude coordinates (lat, lon). Now imagine dividing the interior of this area into 

pixels whose size is dependent on the resolution of the instruments referred to: in the case 

where we wanted to place data from TROPOMI in this area, the pixels would be larger than in 

the case where we wanted to place data from OLCI. In other words, if we drew on the same 

geographic area first the pixels identified by the resolution of TROPOMI, and then those 

identified by the resolution of OLCI, we would realize that one pixel of TROPOMI “contains” 

several pixels of OLCI. For clarity, refer to Figure 23 below: the left matrix represents a generic 

grid of pixels containing data from TROPOMI, while the right matrix represents a generic grid 

of pixels containing data from OLCI. 
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Figure 23 | Example of the relationship between a generic TROPOMI grid and a generic OLCI grid. Data 

mimicking the possible concentration values assumable by chlorophyll-a relative to the PFT cyanobacteria were 

generated and arranged in grids formed by pixels mimicking a possible size ratio between TROPOMI pixels and 

OLCI pixels. In this case, the ratio considered is 1:5. 

The precise number (N) of OLCI pixels contained in a TROPOMI pixel can be determined 

by the formulas given below, where ξ represents the spatial resolution of the instruments: in 

the first case, that in which the pixels are square, the ξ of the instruments is the same on both 

the latitude and longitude dimensions, while in the case in which the pixels are rectangular, ξ 

varies depending on the dimension considered. 

 

So, in sight of the spatial resolution and spectral resolution characteristics, it was planned to 

proceed with data assimilation by considering data from TROPOMI as measures (i.e., y), and 

data from OLCI as background data (i.e., xb). Since the project’s area of interest was decided 

to be the entire Atlantic Ocean, stowing all the data for such a large area in two variables turned 

out to be an infeasible route: the runtime of the algorithms would be incredibly long, and so it 

proved necessary to devise a strategy to deal with this problem.  

We therefore thought, once the data from TROPOMI and OLCI were arranged on two grids, 

to operate a cycle in the TROPOMI grid, and consider a single pixel at a time. The choice to 

loop over the TROPOMI grid was almost forced: since this grid contains fewer pixels than the 

other, the cycles that affect it are shorter than those that are performed on the OLCI grid. So 

only one TROPOMI pixel is considered at a time, and the value in it, a scalar, is assigned to 

the variable y. The variable xb, on the other hand, is assigned to the values of the OLCI pixels 
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located within the considered TROPOMI pixel. Ergo, while y is a scalar, xb is a vector 

containing N elements (also scalars).  

Now that we have defined y and xb, it is necessary to understand how the other components 

of the equation  

 

can be obtained, so that it is possible to obtain xa. Let’s start with H.  

The purpose of H is to transform xb in the space of y so that the two variables can interact; 

in this case, since y must be subtracted from H(xb), H must transform xb into a scalar. How to 

do this? Following several days of reflection, a fruitful dialogue with Dr. Svetlana Losa 

highlighted the answer to this question. By defining H as the average of the values contained 

in the vector xb, one can easily move from vector space to scalar space. 

 

It now remains to understand how the so-called Kalman filter, K, defined by the following 

equation, can be obtained: 

. 

The three main components of this equality are:  

• Pb, that is, the matrix of covariances relative to the background data.  

• H which is the matrix of the prime partial derivatives of H(xb) with respect to the 

variables that make up xb, calculated in xb.  

• R, the matrix of covariances relative to the measured data, i.e., to y. 

HT was not mentioned in the previous bullet point list because it is simply the transposed 

matrix of H, that is, a matrix obtained by exchanging the rows and columns of H. And since H 

is a matrix with one row and N columns, HT will be a matrix with N rows and one column. But 

specifically, what kind of matrix is H? What does it mean?  
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H indicates how much each of the variables that make up xb affect H(xb), in other words, it 

allows us to understand how much “weight” a single OLCI pixel has in forming the scalar that 

is made to interact with y. For this reason, H is defined according to the following equation: 

 

Since H(xb) is defined as the arithmetic mean of the values contained in xb, we can expect 

the contribution of the individual variables in the formation of H(xb) to be identical. In other 

words, if: 

, 

then:  

. 

Having defined H, it remains to figure out how to get Pb and R, and to do so it is necessary 

to define what a covariance matrix is, starting from what the covariance is. The covariance of 

two variables, say X and Y, that are distributed over N value with mean, respectively, x̄ and ȳ, 

is calculated according to the following formula:  

. 

Now, since we must imagine that, to form Pb, we are calculating the covariance of two OLCI 

pixels, that is, two variables of xb, the formula is simplified, since the variables do not consist 

of populations of observations, but they consist of only one value. Thus:  

. 

From this, we can construct the matrix of covariances, which, in the case of a vector 

containing N values such as xb, will be an N × N matrix in which the row and column at which 

a value is placed indicate the two variables whose covariance is represented: at position Pb
(2, 3), 

for example, Cov(xb
2, xb

3) will be found. 
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Since the variance of a variable is defined according to the equation  

, 

and since the variables of xb are assigned to single values, then:  

. 

This equation makes it very clear that the variance of a variable is equal to the covariance 

of the same variable with respect to itself, 

, 

from which it follows that:  

. 

Once the structure of covariance matrices is understood, it is necessary to find a convenient 

way to obtain them. A possible solution can involve noticing that the difference between the 

value of a variable and the expected value of that same variable is the error associated with that 

variable. It is therefore possible to obtain the matrix of covariances of a variable by multiplying, 

through outer product, the vector of errors associated with that variable by its transpose. Thus, 

if one could obtain the vector of errors associated with the values contained in xb, which we 

call eb, it is possible to obtain Pb by the multiplication of eb with ebT.  

To obtain eb, we define the absolute error associated with the values of xb as a percentage of 

the values themselves – for the moment, let’s imagine it between 0% and 50% – which we stow 

in the err vector. At this point, to obtain eb we simply multiply element by element the xb vector 

with the err vector, and then multiply via outer product eb with ebT to obtain Pb.  
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It is very important to emphasize the difference between the type of product that is applied 

to the vectors xb and err and that which is applied to the vectors eb and ebT. In the former case 

it is an element-wise product, also called Hadamard’s product (Styan, 1973), which is defined 

according to the equation:  

. 

In the second case, however, it is an outer product (Golub and Van Loan, 2013) that, given 

two vectors  

, 

is defined as:  

. 

Written this definition in a more expanse way we obtain:   

. 

After understanding how to define a matrix of covariances, and applying the definition to 

Pb, obtaining R is quite easy. In fact, while Pb is the matrix of covariances relative to the values 

of xb, R is the matrix of covariances relative to the values of y, but since y is a scalar, R will be 
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a scalar as well (and for this reason we will denote it as R instead of R), and can be easily 

obtained as:  

. 

At this point we possess all the components necessary to obtain K:  

. 

All that remains is to verify that there are no dimensional problems that prevent the interaction 

between them. Taking into consideration the equation defining K,    

, 

we see that Pb, being an N × N matrix, when multiplied with HT, an N × 1 vector, gives rise to 

an N × 1 vector, which, when multiplied to H, a 1 × N vector, forms a scalar: 

. 

The two addends in the round bracket are both scalars, therefore, the result of the addition 

involving them will itself be a scalar, which will be multiplied to PbHT, that is a N × 1 vector, 

giving rise to a new N × 1 vector: K.  

 

Thus defined, the process of forming K works, and gives no dimension problems. Moreover, 

K fits perfectly into the optimal interpolation formula since, being an N × 1 vector, it can be 

easily multiplied with the scalar (y - H(xb)), and added to xb, another N × 1 vector. 
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We now have obtained xa, the result of the optimal interpolation process. Nonetheless, it is 

to be reminded that this optimal interpolation process is applied on two data sets that are not 

considered in their entirety. In fact, in order to avoid too much execution time, it was decided 

to operate a loop on the data set coming from TROPOMI, considering the individual elements 

of this set as y, and the corresponding elements in the data set coming from OLCI as xb. Thus, 

the result of the total assimilation process is obtained when the results of the individual 

assimilation processes that have been carried out during the loop are combined in a consistent 

manner. In other words, since the data from TROPOMI and OLCI are related to a geographic 

area of interest, the result of a single interpolation process must be placed in the same sub-area 

from which the TROPOMI data used as y and the OLCI data used as xb originate.   
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3. Methods and instruments  

3.1 The Alfred Wegener Institute and the PHYTOOPTICS group 

The entire process aimed at acquiring the necessary knowledge to be able to develop the 

synergistic algorithm that is the focus of this thesis work, and the actual development of it, took 

place in Bremerhaven, Germany, at the offices owned by the PHYTOOPTICS group of the 

Alfred-Wegener-Institut Helmholtz-Zentrum für polar und meeresforschung.  

The institute, whose name is commonly shortened to AWI, is dedicated to conducting 

research that can increase understanding of the mechanisms involving the seas, oceans, and 

polar regions of our planet. To do this, it makes use of various logistical tools such as 

icebreakers (like the Polarstern ship), aircrafts, observatories, field laboratories, and three 

permanent stations, two of which are located in Antarctica (Neumayer station III and Kohnen 

station) and one in the Svalbard Islands (AWIPEV arctic research base): the precise location of 

these stations is reported in the Figure 24 below.  

 

Figure 24 | Location of AWI’s permanent bases. The marker at the top of the image represents the AWIPEV 

Arctic base, shared with the French polar institute Paul Emile Victor (IPEV), and located in Ny-Ålesund, Svalbard. 
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In contrast, the markings in the lower part of the map represent, the one at the top, Neumayer III station, and the 

one at the bottom, Kohnen station. (AWI, n.d.) 

Scientific research within the institute is organized into three research divisions:  

• Biosciences, directed by the Prof. Dr. Maarten Boersma.  

• Geosciences, guided by Prof. Dr. Gesine Mollenhauer. 

• Climate sciences, which refers to the Prof. Dr. Christian Haas. 

The PHYTOOPTICS group, which welcomed me during my thesis course, is located in the 

research division that is interested in climate sciences, specifically, within the wing that deals 

with physical oceanography, under the supervision of Prof. Dr. Torsten Kanzow. The group has 

long been involved in various projects involving the use of tools to analyze the optical 

properties of our planet’s waters in order to “contribute significantly to a better understanding 

of the attribution of anthropogenic and natural sources of climate change to the marine 

ecosystem and biogeochemical cycles” (AWI, n.d.). These projects are led by Prof. Dr. Astrid 

Bracher, to whom my sincere thanks go for allowing me access to the spaces and knowledge 

of her group.  

I would also like to thank Dr. Leonardo Alvarado who, although he made a position 

transition in favor of DLR, the German space agency, found a way to follow me throughout 

my stay in Germany and in the developing of this work.  

I would also like to take this opportunity to thank the members of the group – Moritz 

Zeising, Ehsan Mehdipour, Sonja Wiegmann, Christian Hohe, and Drs. Hongyan Xi and 

Mariana Altenburg Soppa – who gave me the pleasure of numerous edifying discussions 

through which I was able to better understand some of the concepts that were fundamental to 

the writing of this paper. In addition, thanks to the support of the group, I had the opportunity 

to experience a week-long field expedition at Lake Constance and to be able to present the 

progress of this project at an international conference for young researchers, in Oldenburg.  

I am very grateful for the opportunities I received, and I am sure that the skills and 

knowledge I gained this year at the PHYTOOPTICS group have enriched and will enrich my 

academic career and personal growth path.  

 

Figure 25 | PHYTOOPTICS group logo. (AWI, n.d.) 

https://www.awi.de/en/about-us/organisation/staff/single-view/maarten-boersma.html
https://www.awi.de/en/about-us/organisation/staff/single-view/gesine-mollenhauer.html
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3.2 Polymer and OC-PFT application 

Once the theoretical background needed to baste a process of assimilating two datasets was 

obtained, it was necessary to determine which datasets from OLCI and which datasets from 

TROPOMI would be used in this process. The choice fell on the datasets that the instruments 

produced from 01/05/2018 to 30/06/2018, as the research team has access to an in situ dataset, 

covering the same period, that could be used for the validation of the algorithm. In other words, 

once the drafting of the algorithm and the verification of its operation is completed, the results 

that the algorithm produces using real data as input could be compared with the data from the 

in situ measurements to have an element of evaluation of how well the codes work.  

Once the datasets to be assimilated had been chosen, the first issue that needed to be 

addressed concerned the need to “prepare” the data coming from OLCI for the assimilation 

process: in other words, a way had to be found to apply the Polymer and OC-PFT algorithms 

to this kind of data. Remember that, thanks to the DOAS technique, data coming from 

TROPOMI can be easily brought to level 2A, while, to reach the same level, data coming from 

OLCI should be processed with Polymer and OC-PFT.  

 A necessary condition to proceed in the processing of OLCI data was to choose their 

resolution type and download them from the catalog of datasets held by ESA. It was decided 

to proceed with the downloading of reduced-resolution data, which means data related to pixels 

of about 1 km side, because, compared to the full-resolution OLCI data, there was the 

possibility of accessing the errors associated with these data, an aspect of fundamental 

importance for constructing the covariance matrices mentioned in Chapter 2.3. In addition to 

the desired period and resolution, during the downloading process it was necessary to specify 

the area of the Planet to which the data would refer: a rectangular area overlapping the Atlantic 

Ocean was chosen. More details regarding the characteristics of the downloaded OLCI data 

can be found in the Appendix at the end of the document.    

The download operation was conducted through the adaptation of a Python code devised by 

Ehsan Mehdipour, a doctoral student in the PHYTOOPTICS group, which made it possible to 

store all the files of interest in a folder of Albedo, the high-performance computer (HPC) at 

AWI’s disposal, in the possession of Dr. Leonardo Alvarado.  

Once this point was reached, since for the application of both Polymer and OC-PFT it would 

have proved much more convenient to have data sorted by reference date, one of the first codes 

that was written was devoted to the solution of this problem.   
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3.2.1 OLCI data sorting 

The purpose of the Python code named OLCI_zip_sorting was to move the compressed 

OLCI files from the folder in which they had been uploaded to a folder in my personal space 

in Albedo, in which they would then be automatically sorted according to the referenced date. 

We speak of compressed files because each of the OLCI files that OLCI_zip_sorting 

proposed to sort consisted of a folder containing several databases related to the date to which 

the folder referred.  

The logic behind OLCI_zip_sorting, explained in detail in the Appendix, rests on the 

nomenclature conventions of OLCI files, which, following the European Space Agency’s 

scheme (Sentinel Online, n.d.), have in their names a triplet of temporal information, the first 

element of which indicates the time when the measurement was started, called the “sensing 

start time”. The files downloaded from the ESA catalog were in the form shown in the figure 

below, and to give an example of what was mentioned above, the first of them is a file 

containing databases whose data began to be retrieved on May 1, 2018. 

Figure 26 | Some among the compressed OLCI files that were downloaded for this thesis work.  

Being fairly contained, the function that characterizes OLCI_zip_sorting is written and 

called in a single script, so that anyone who needs to use it can simply run the script, taking 

care to enter in the script the name of the folder in which the downloaded folders are randomly 

stored, and the name of the folder in which it is wanted to store them according to their 

reference date.  

 

3.2.2 Application of atmospheric correction (Polymer) to OLCI data  

Once the OLCI files were arranged according to the reference date, thought was given to 

how to subject them to atmospheric correction through Polymer. First, it was necessary to 

install Polymer through the appropriate channels, i.e., through the website of the HYGEOS 
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company (HYGEOS, n.d.), and then find a way to be able to circumvent a computational length 

problem. In fact, while a contained script such as OLCI_zip_sorting, which is used to 

conduct simple operations on a small amount of data, can be executed without problems 

through the resources of the supercomputer node in which it is located, applying an algorithm 

such as Polymer to a very conspicuous amount of data such as the OLCI data of our interest 

can be a problem.  

HPCs such as Albedo possess a request management system that divides user-ordered work 

among its compute nodes (Figure 27), and this allows more onerous tasks to be completed than 

would be possible for a single compute node to perform. In the case of Albedo, the user is 

responsible for writing a file in Bash in which he enters some specifications about himself and 

the job he is requesting to be done, the maximum time he believes should be devoted to his 

request, and the instructions he wishes to be executed: once the command to execute that Bash 

file is run, Albedo’s request management system will take care of allocating the resources of 

different computation nodes to fulfill the user’s wishes. 

 

Figure 27 | Diagram of the structure of a general HPC. (Iowa State University, n.d.) 

Unfortunately, even taking advantage of this job splitting system, applying Polymer to the 

entire OLCI data set would have been too time-consuming. Therefore, it was necessary to find 

a way to reduce the weight of the individual job that was being submitted to the request 

management system. Since the original intention was to request Albedo to apply Polymer to a 

61-day dataset, it seemed a good idea to request the HPC to apply the algorithm to 61 one-day 
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datasets. In other words, the resource management system was required to handle many jobs 

in parallel, but with each job having a low specific weight.   

In order to operationalize this idea, it was necessary to find a way to automate the 

parallelization process, and for this reason a Python code called new_polymer_submission 

was conceived. This code consists of two parts:   

• Creation and submission of requests to Albedo 

This part of new_polymer_submission relies on a command line interface (CLI) 

developed by Dr. Leonardo Alvarado, which allows Polymer to be launched on a 

data set through the simple use of the command  

polymer_run   path-to-config_file 

where: 

o polymer_run is the command that refers to path-to-config_file. 

o path-to-config_file is the path that tells polymer_run where to find a 

configuration file called config_file. In that file are marked the specifics 

of the data to which Polymer should be applied, such as, for example, 

directions to find the folder in which they are stowed, the period of interest 

(in our case, the days from May 1 to June 30, 2018), the resolution of the 

data, etc…  

It is evident that being able to apply Polymer to a dataset through the use of these 

two simple elements (the command, and the configuration file) is a great facilitation 

for the work that was necessary to do. Hence, the first part of 

new_polymer_submission was structured in order to produce a desired number 

of Bash files (61, in our case) to be delivered to the HPC request handling system: 

each of these files would order the supercomputer to execute a command similar to 

the one given above. Further details about the functioning of this part of 

new_polymer_submission are available in the Appendix.  

• Error management 

Each of the requests that are submitted to the supercomputer, however, may result in 

an error that, given their large number, would be difficult to detect without the proper 

tools. For this reason, while creating new_polymer_submission, it was thought it 

would be appropriate to devote a portion of the code to creating a folder in which all 

error messages coming from the HPC would be stowed in an orderly manner. To do 
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this, a folder was created, called pol_sub, and a text file that would act as a counter. 

When new_polymer_submission was started, the code would look for the counter 

file in a predefined path (represented by the variable counter_loc): in the case 

where new_polymer_submission was started for the first time, the counter file 

would automatically be created in counter_loc and a 0 would be written inside it, 

while in the case where the code had been run before, the counter file would simply 

be read.  

In either case, the number found in the counter file would be used as the name for 

a folder to be created within pol_sub, where all supercomputer communications 

generated by the current execution of new_polymer_submission would be stored. 

For this process to happen, it is necessary to specify during the creation of the .sh 

scripts (the files delivered to the HPC’s request handling system) that the 

communications related to that job submission should be stored in the numbered 

folder mentioned above. In this way, within pol_sub there will be a set of numbered 

folders within which there will be a series of files, named according to the job 

submission from which they were generated. In such a context, it is quite easy to 

keep track of errors: just run new_polymer_submission and, in case of unforeseen 

problems, move to pol_sub, look for the folder marked by the higher number and 

consult its content.  

Clearly, for this mechanism to hold, it is necessary for 

new_polymer_submission to update by one unit the number marked in the 

counter file, after using it to create the folder in pol_sub.  

new_polymer_submission proved quite efficient and accurate in doing the job it was 

designed to do, and once Polymer was applied to the OLCI data of interest, the next step could 

be tackled: applying OC-PFT to it.  

 

3.2.3 OC-PFT CLI testing and application to OLCI data  

The processing of OLCI data by OC-PFT, conceptually speaking, was quite simple. In fact, 

a mode of operation very similar to that used with Polymer was followed. Dr. Alvarado devised 

a command line interface that would allow, in the same way as polymer_run, OC-PFT to be 

applied to a data set by exploiting the command: 
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ocpft   path-to-config_file.  

Unlike polymer_run, whose use had become established over time, the development of 

the CLI for OC-PFT ended at the same time as the development of 

new_polymer_submission, which made it necessary to spend some time testing it.  

Once the testing phase was successfully concluded, a Python code, ocpft_submission, 

was created, which functioned according to the same logic as new_polymer_submission, 

but changing the information contained in the configuration files and the names of the folders 

in which to store the Bash files, the configuration files themselves, and the error notifications.  

The successful performances of ocpft_submission and the command line interface made 

it possible to apply OC-PFT to OLCI data, bringing them to level 2A. Since the TROPOMI 

level 2A data for the period 01/05/2018-30/06/2018 were already in the possession of the lab 

staff, we had everything we needed to begin the development of the assimilation algorithm. At 

the end of the development of the latter, and of the testing phase, the level 2A data from both 

satellites would be subjected to the gridding process, and finally processed through the 

algorithm itself. 

 

3.3 Assimilation algorithm development and structure 

Given that the studies by Dr. Losa and colleagues on the assimilation of data collected by 

OC-CCI and SCHIAMACHY had led to the production of the SynSenPFT algorithm (Losa et 

al., 2017), the initial idea for the development of the algorithm underlying this thesis work was 

aimed at the simple translation of SynSenPFT from Fortran to Python. Once this quick, it was 

thought, translation work was completed, an algorithm would have been ready to be applied to 

data from OLCI and TROPOMI.  

However, despite the implementation of several strategies, the process of translating the 

algorithm was very difficult, given the extent and complexity of the original code, and time 

was running out, as it was decided to present this project in Oldenburg, at the International 

Conference for Young Marine Researchers, to be held between September 18 and 22, 2023 

(ICYMARE, n.d.). 

In the face of these problems, it was decided to abandon the translation attempt, and embark 

on a different endeavor: creating an algorithm from scratch. Of course, compared to a 

translation process it would certainly prove more challenging, but this perspective offered total 
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control over the logic behind the algorithm and, therefore, a better understanding of it. It was 

therefore decided to structure the algorithm in three parts:  

1. file handler script – in this script would be concentrated all the functions necessary for 

data input in the assimilation process, and for the management of the output data, which 

includes their saving and eventual graphical representation.  

2. processor script – this script would contain the functions dedicated to the actual 

assimilation process.  

3. main script – would serve as a management point for the previous two scripts, fitting 

their fragments into a congruent workflow.  

More detailed descriptions of these scripts will be given in Sections 3.3.1, 3.3.2 and 3.3.3.  

 

3.3.1 File handler script  

This script contains four functions devoted to the following tasks:  

• Produce a list of files that satisfy a certain characteristic  

The list_files function, once the folder where the files of interest are contained, 

their extension, and the dates to which the files should refer are specified, is responsible 

for returning a list containing all files that satisfy the imposed conditions.  

• Extracting essential information from the files  

The level 2A data files of interest to are DataArray objects of Xarray (Xarray, n.d), 

stored in netCDF4 format (Rew et al., 1989), and it is necessary to extract from them 

the information needed for the assimilation process, namely, the values recorded by the 

instruments in each pixel they screened, and the corresponding coordinates of the 

pixels. A DataArray is nothing more than a kind of meta-structure, a wrapper, around 

a set of n-dimensional NumPy arrays (NumPy v1.26 Manual, n.d.), which makes it 

possible to associate arrays containing different information by distinguishing them into 

categories: there are arrays that contain data related to the variables of interest, 

coordinate arrays, which contain values representing a coordinate type to which the 

data of interest refer, and attributes, i.e., a whole range of information useful for being 

able to interpret the data. An example of an attribute might be the units of measure 

associated with the values of the variables, or a brief description of them.  
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The load_dataset function takes charge, once the file, i.e., the DataArray to be 

accessed, and the name of the variable of interest are indicated, of returning the array 

representing the variable and the arrays containing the latitude and longitude values that 

relate to the variable values.  

• Saving the result of the assimilation process  

The output_saving function takes care of loading the DataArray result of the 

assimilation process into an indicated directory, and then providing the path to it: it will 

be useful during the operations that will be conducted in the main script. Since it was 

envisioned that most of the assimilation processes would involve OLCI and TROPOMI 

data related to an extended period, it was thought to equip output_saving not only 

for saving the results in a directory, but also for their orderly arrangement. To this end, 

it was planned to use the date marked on the OLCI files (an arbitrary choice, driven 

simply by the immediate availability of the OLCI files in order to test the mechanism) 

as a reference for the following operation: in the event that the folder designated as the 

container for the results does not exist, output_saving will create it, inserting within 

it a sequence of folders reflecting the date indicated above. This will result in a sequence 

of folders reflecting the following pattern:  

destination_directory/yyyy/mm/dd 

Here, the DataArray obtained through the assimilation process will be saved in 

netCDF4 format, and named as:  

synergistic_product_yyyy/mm/dd.nc 

• Graphically represent the result of the assimilation process  

The last function of this script is called plotter, and it allows users to visualize a 

graphical representation of the results of assimilation operations using the Cartopy 

(Cartopy 0.22.0 documentation, n.d.) and Matplotlib (Matplotlib, n.d.) libraries. 

plotter requires only the input of two parameters to work: the path to which to find 

the dataset to be represented (which is why it is useful for output_saving to return 

it), and the name by which the NumPy array to be represented was named. 
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3.3.2 Processor script  

This script contains the two functions that, pragmatically, deal with the interpolation 

process: optimal_interpolation and processor. As reported in Chapter 2.3, the 

interpolation process is not done “in one go” but, to avoid operations with overly voluminous 

data masses, it proceeds pixel by pixel of the TROPOMI grid. It is therefore necessary to have 

a function that is responsible for scrolling through each pixel on the grid in which the 

TROPOMI data are arranged, selecting the corresponding pixels on the grid in which the OLCI 

data are arranged, and passing the values contained in both types of pixels to another function 

that is responsible for operating the assimilation of them. The first function, the one that flows 

between the grids, is processor, while the one that operates the assimilation process is 

optimal_interpolation. Let’s go into more detail. 

• processor 

The conception of processor was quite complex. First, it was necessary to try to 

figure out how to define pixels in such a way as to iterate on them quickly: once the 

gridding procedure is completed, pixels are basically rectangles or squares, which 

means that they can be defined by four points, the corners, that delimit their area. In the 

first instance, it was chosen to proceed by identifying each pixel with only one of these 

corners, specifically, if we imagined the vertices of a regular quadrilateral, that of the 

upper left point. For the sake of brevity, I will refer to this point as UL (Upper Left), 

while I will denote the other points that define a pixel as UR (Upper Right), LL (Lower 

Left), and LR (Lower Right).  

The first idea that came up to try to run processor was a quadruple for loop that 

would consider all the UL points in the TROPOMI grid, and for each of them, consider 

all the UL points in the OLCI grid to check whether a series of conditions were met: if 

the UL-UR segment of an OLCI pixel is included in the UL-UR segment of the 

TROPOMI pixel, and if the UL-LL segment of the same OLCI pixel is included in the 

UL-LL segment of the same TROPOMI pixel, then the value contained in the OLCI 

pixel will be included in a list to be passed, along with the value contained in the 

TROPOMI pixel, to the optimal_interpolation function.  

Theoretically, such a mechanism should have worked, and indeed it did, but it was 

practically unusable on large grids because of its slowness. To solve this problem, it 
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was thought to use Numba decorators (Numba, n.d.), i.e., to rely on a compiler that 

would translate the Python language in which the quadruple for loop was written into a 

language more similar to machine language, so as to make it faster. Indeed, applying 

the Numba decorators to the loops showed some small improvement, but unfortunately, 

in order to make them compatible with the libraries used in the rest of the code it was 

necessary to make so many changes to the it that the benefits obtained from the 

decorators became negligible. After a long period of exploring this strategy, it was 

decided to abandon it in favor of another solution: boolean masks.  

Rather than sifting through whether each individual pixel in the OLCI grid meets the 

above conditions, the Boolean masks allow all pixels that do not meet them to be 

“deleted” from that grid. The name of this technique derives from the fact that Boolean 

masks are nothing more than matrices filled with 1s and 0s, distributed according to the 

conditions desired by the user, which are multiplied to the data grid of interest: all data 

that do not meet the conditions according to which the masks were constructed become 

zeros, while those that do meet them remain unchanged.  

Imagining OLCI grids as N × M matrices, what the use of masks allowed to obtain 

was the set of indices (n, m) of the matrix elements that satisfied the desired conditions. 

To give a graphic illustration of how one could cycle over the OLCI matrix by 

exploiting Boolean masks, imagine a TROPOMI matrix defined by 9 elements and an 

OLCI matrix defined by 81 elements: for each of the TROPOMI elements, one must 

check which elements of the OLCI matrix are included in its UL-UR and UL-LL 

segments, and this can be done by maintaining a fixed condition structure, in which the 

coordinates of the UL-UR and UL-LL segments simply vary. In this way, with only a 

double for loop and nine masks, one can cycle over the TROPOMI grid and obtain the 

corresponding pixels of the OLCI grid. We saved ourselves 729 (9 × 81) condition-

checking operations.   
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Figure 29 | Graphical representation of cycling over a grid with the help of Boolean masks. Applying a 

Boolean mask to a data grid means multiplying each element of that matrix with the corresponding value within 

a matrix, of the same size, which, however, contains only numbers 1 and 0. The distribution of 1’s and 0’s follows 

a certain condition, based on which the shape of the mask is defined. By varying the mask shape 9 times, the 

number of pixels in an imaginary grid of TROPOMI data, one can easily select the pixels in an imaginary grid of 

81 OLCI pixels. 

Implementing such a solution significantly improved processor performance, but 

it was felt that it could be improved even more. In fact, although the mask strategy had 

eliminated the two for cycles related to the OLCI grid, there were still two left that were 

used to cycle on the TROPOMI grid. How to reduce the number of cycles? The idea 

that came to mind revolved around the fact that the information contained in the grids 

could have been summarized in arrays with this structure:  

[[mi, ni, vali], [mj, nj, valj], …]2 

where:  

o i and j represent two different pixels.  

o mi, ni, vali represent, respectively, the row index of the value contained in 

the pixel i, the column index of the same value, and the value associated with 

the pixel.  

o mj, nj, valj are equivalent to what is given in the previous point, but refer to 

the pixel j.  

 
2 For the sake of convenience, in this text the array is shown as a horizontal array, but it is a vertical array.  
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The use of such structures, and knowledge of the latitude and longitude resolutions 

of OLCI and TROPOMI, would have made it possible to operate only a single for loop 

on the array of arrays representing the TROPOMI matrix: for each of its points, let us 

imagine the generic point [mTROP, nTROP, valTROP], masks would be applied to the other 

array of arrays, the one representing the OLCI array, to see which elements would 

satisfy the following conditions:  

mOLCI ≥ mTROP * lat_ratio  

mOLCI < (mTROP * lat_ratio) + lat_ratio 

nOLCI ≥ nTROP * lon_ratio  

nOLCI < (nTROP * lon_ratio) + lon_ratio 

where:  

o mOLCI and nOLCI represent the row and column indices of the values contained in 

a generic OLCI pixel.  

o lat_ratio and lon_ratio are, respectively, the ratios between the 

resolutions in latitude of OLCI and the resolutions in latitude of TROPOMI, and 

the ratio between the resolutions in latitude of OLCI and the resolutions in 

latitude of TROPOMI. 

Effectively, using this strategy seemed to further improve processor execution 

times. An attempt was made to quantify this improvement by comparing the 

performance of the three processor versions as the size of the input data grids 

increased: from 1 degree latitude by 1 degree longitude to two and then to three.  

Imagining that the resolutions of OLCI and TROPOMI are equal in both latitude and 

longitude, and are, respectively, 0.01 degrees and 0.05 degrees, six square data grids 

were created, three with a number of pixels congruent with the resolution of TROPOMI, 

three with a number of pixels congruent with the resolution of OLCI, and all filled with 

random real numbers. To give an idea of the size of these grids, figures 30, 31, and 32, 

shown below, were created, in which the matrices are placed with their center in the 

point (20 °E, 35 °N). For convenience, only the three matrices with a number of pixels 

congruent to the resolution of OLCI are shown: the others would have had identical 

shape, and they would be placed at the same position: the only difference would have 

been in the number of pixels. 
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Figure 30 | 1° × 1° matrix size, compared to the Mediterranean Sea.

Figure 31 | 2° × 2° matrix size, compared to the Mediterranean Sea.

 

Figure 32 | 3° × 3° matrix size, compared to the Mediterranean Sea. 

At this point, the six grids were fed to the three processor versions, distinguished 

by the labels P0 (indicating the quadruple for loop), P1 (representing the double for 

loop in conjunction with the masks), and P2 (indicating the version with a single for 

loop used in combination with the masks). The resulting running times are shown in 

Figure 33 below. As can be seen, at the slightest increase in the size of the arrays on 

which to iterate, the performance of P0 deteriorates dramatically, while that of P1 and 

P2 does not seem to change too much, remaining around 0 seconds. It is thus understood 

that P0 is not a viable option for processing large masses of data, but there seems to be 

no difference between P1 and P2. Which one to choose?  
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Figure 33 | Running times of the three versions of processor at the increasing of the input data grids’ size. 

The running time values were interpolated using a Piecewise Cubic Hermite Interpolating Polynomial offered by 

the interpolate function of the SciPy library. (SciPy v1.12.0 Manual, n.d.) 

To figure out which processor to choose between P1 and P2, another square matrix 

was created, this time of 5 degrees × 5 degrees, and the differences between the 

execution times presented by the two versions of processors when employed in 

operations on matrices of 1 degree × 1 degree, 2 degrees × 2 degrees, 3 degrees × 3 

degrees, and 5 degrees × 5 degrees were calculated. A graphical representation of these 

differences is shown in Figure 34 below. As can be seen, it seemed evident that as the 

amount of data to be processed increases, P2 is faster than P1. Hence, P2 was thought 

to be the version of processor that would have been maintained in the code.  

 

Figure 34 | Difference between P1 and P2 performances at the increase of the volume of input data. The 

results of these comparisons were interpolated using a cubic polynomial offered by the interpolate function of 

the SciPy library. (SciPy v1.12.0 Manual, n.d.) 

• optimal_interpolation  

Once processor offers a value of TROPOMI, and the corresponding values of OLCI, 

optimal_interpolation takes care of conducting the assimilation operations, 

according to the equations described in Chapter 2.3. To do this, 

optimal_interpolation takes advantage of several functions in the NumPy library 
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that allow to vectorize operations between arrays, making them much faster than they 

would be if done otherwise (for example, if done by looping over the arrays).  

Moreover, among the input data it needs, optimal_interpolation requests a 

matrix full of zeros, of number of elements equal to the general OLCI matrix. In fact, 

once the process of interpolation between a subset of the OLCI matrix and a subset of 

the TROPOMI matrix is completed, optimal_interpolation takes care of inserting 

the result into the above matrix, substituting the zeros with the appropriate values. The 

insertion is done by respecting the coordinates of the subsets that were used during the 

assimilation process; in this way, the matrix full of zeros updates from interpolation to 

interpolation, becoming the synergistic matrix that was being sought.  

optimal_interpolation does not work sequentially with processor but is called 

within processor. Precisely, each time processor detects a TROPOMI pixel-OLCI pixels 

pair, it calls optimal_interpolation on this element: at the end of the cycle that 

processor operates, the matrix that was full of zeros at the beginning of that cycle will be 

loaded with the values that are the result of assimilation. processor takes care of loading that 

matrix inside a DataArray, ready to be passed to the rest of the functions contained in in the 

main script. 

 

3.3.3 Main script   

The last script that characterizes the assimilation algorithm is the main script, defined by a 

single function: main. This function is responsible for orchestrating the work of all those 

previously described in the following way: 

1. Having defined a period of interest for the assimilation process, the paths to the two 

folders in which the netCDF4 OLCI files and the netCDF4 TROPOMI files are located 

must be given. In case it is desired to proceed in chronological order, main takes care of 

sorting the files according to the date they refer to and placing them in two lists using 

the list_files function: one list will contain all files containing data from 

TROPOMI, and the other list will contain all files with data collected from OLCI.  

2. For each pair of files from the lists, main extracts the datasets of interest through the use 

of load_dataset, and passes them to processor, which returns a result DataArray.  
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3. The result is then passed to output_saving and loaded into an appropriate directory, 

which plotter simultaneously accesses to produce a graphical representation of it.     

With the main script, the structure of the assimilation algorithm was complete. It was now 

necessary to test its functioning.  
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4. Results and outlook  

To make an initial verification of the algorithm’s functioning, synthetic data were used: two-

dimensional arrays containing concentration values related to different PFTs were thought to 

be simulated using two-dimensional arrays filled with randomly generated real numbers. To 

give greater realism to such data sets, the values within them were thought to oscillate between 

0.0 mg/m3 and 3.0 mg/m3. These numbers were then associated with errors of different types, 

chosen arbitrarily to be quite similar to those found in satellite datasets. In the case of the arrays 

that simulated arrays of data from TROPOMI, each value was associated with an error equal 

to half of the value itself, while the synthetic data representing the values obtainable from OLCI 

were randomly associated with errors between 0% and 50% of the values themselves. It was 

also planned that the ratio of the resolution of the simulated TROPOMI data to that of the 

simulated OLCI data would be equal to 5 in both latitude and longitude: the pixels created 

would thus be square, and in the area covered by one TROPOMI pixel there would be 25 OLCI 

pixels. 

The first version of the algorithm that was subjected to square matrices filled with this type 

of data was the one containing the first version of the processor function, named previously as 

P0. An example of the results obtained is shown in the figure below:  
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Figure 35 | Results obtained by input of synthetic data in the first version of the algorithm. Each of the 

matrices shown in the figure represents fictitious cyanobacteria concentration values at a specific location whose 

latitude and longitude are represented by the row and column indices corresponding to the value. The matrices are 

named “DOAS CYA synthetic data” and “OC-PFT CYA synthetic data” to indicate the fact that the data within 

them simulate what would be obtained at the end of applying the DOAS technique and the OC-PFT algorithm. 

Also shown in the figure is a small diagram that reassumes the steps in the optimal interpolation process. 

As can be seen, the first tests were not satisfactory, given the appearance of the matrix 

resulting from the assimilation process: the values reported within it are different from those 

within the matrix simulating an OLCI data set, but not in the right direction. In fact, one of the 

aspects that should become apparent after the optimal interpolation operations is the influence 

of the synthetic TROPOMI data on the synergistic grid. For example, if a pixel simulating a 

TROPOMI pixel contains a value of 0 mg/m3 chlorophyll, the success of the assimilation 

process will be qualitatively evident if the resulting matrix reports, at the same coordinates, 

values that are significantly lower than those in the OLCI grid. In other words, the contribution 

of the TROPOMI synthetic data during the assimilation process must be evident, and the results 

of the first tests did not go in this direction: when represented graphically, the resulting matrices 

looked like jumbles of randomly generated numbers similar to those used as input data.  

After careful investigation of the first version of the algorithm, the catch turned out to lie in 

the mechanisms that should have ensured the formation of the Pb covariance matrices described 

in Chapter 2.3. Instead of creating covariance matrices representing an entire set of OLCI 

pixels, the optimal_interpolation function employed only 1/5 of that set in the formation 

of the Pb matrices. Solving this problem involved several changes in the 

optimal_interpolation function, which were made in parallel with the upgrade of the 

processor function from version P0 to version P2.  

By subjecting the new version of the algorithm to data identical to those described above – 

except for the values contained in the matrices, which, as before, were randomly picked from 

the range of real numbers between 0.0 mg/m3 and 3.0 mg/m3 – the results proved to be much 

more promising. As can be seen from figures 36 and 37, below, for example, the influence of 

TROPOMI pixels in the calculation of the synergistic product is much improved over what was 

shown in the previous figure.   

The idea of evaluating the quality of the algorithm’s performance based on the influence of 

TROPOMI pixels on the results of the assimilation process came from observing the operation 

diagram of the SynSenPFT algorithm (Losa et al., 2017), shown in Figure 38. To be precise, 

Figure 38 – and the equations described in Chapter 2.3 – shows that a good assimilation process 

takes into account both model and observation inputs, however, given the characteristics of the 
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synthetic data on which the algorithm was tested, checking the influence of TROPOMI data on 

the final result seemed a good strategy to make a quick qualitative assessment of how the 

system works. In fact, as can be seen in Figures 35, 36, 37 and 39, the matrices simulating grids 

of TROPOMI data are full of zero values (the purple squares, to be clear). Figure 38 shows 

that, if a pixel contains a value equal to zero, that value will be maintained throughout the 

assimilation process: in fact, the value of some pixels in the upper left corner of the OC-CCI 

data matrix, close to or equal to zero, was also maintained as such in the results matrix. Since 

in the synthetic data matrices used to test the algorithm OLCI pixels are many and difficult to 

distinguish, and since, on the other hand, there is ample provision of larger TROPOMI pixels 

containing zero values, it seemed a good strategy for evaluating the operation of the algorithm 

to see whether, in the areas of the results matrix corresponding to such TROPOMI pixels, 

values of pixels close to zero, or at least smaller than those detectable in the starting OLCI 

matrix (in case these were very positive), were concentrated.  

Another aspect that Figure 38 suggests is that a process of data assimilation by optimal 

interpolation may result in slightly higher values being present in the results matrix than the 

maximum values contained in the source matrices: if one looks closely, the last row of the 

SynSenPFT results matrix has two more positive pixels than the corresponding ones in the 

model matrix. As can be seen, while this aspect is missing in Figure 35, it is present in Figures 

36 and 37.  

So, the greater similarity between the results that the algorithm was producing and those 

produced by SynSenPFT made it possible to decree that the system was working well.  

The implementation of the P2 version of the processor function involved also another testing 

phase in which matrices were used that, from the point of view of the characteristics of the data 

within them, were identical to those just mentioned, but it was decided to vary their shape in 

order to test the algorithm’s ability to handle rectangular-shaped matrices as well (recall that 

the area chosen for the interpolation operations spans the Atlantic Ocean as a large rectangular 

polygon). The results of this testing phase were positive: as shown in Figure 39, the algorithm 

confirmed the performance of which it had been capable previously, and also demonstrated its 

ability to handle rectangular-shaped matrices.  
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Figure 36 | Testing of the new version of the algorithm. processor was updated from P0 to P2, 

optimal_interpolation was fixed, and the testing procedure was repeated. As can be seen, the influence of 

TROPOMI pixels in the interpolation process is much more evident than in Figure 35. Again, a small diagram 

recalling the passages of the interpolation process is shown. 

 

Figure 37 | Further results obtained through the algorithm containing the P2 version of processor. In this 

case, only the two input matrices and the output matrix of the interpolation process are shown. 
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Figure 38 | Diagram illustrating the operation of the SynSenPFT algorithm. The algorithm was developed to 

fuse data from the SCIAMACHY hyperspectral instrument and OC-CCI, multispectral instrument. Data from 

SCIAMACHY are brought to level 2A using the DOAS technique (reported here as PhytoDOAS), while data from 

the OC-CCI detections are brought to the same level using the Polymer and OC-PFT algorithms. Thus, the 

rectangles on the left represent two matrices containing the diatom PFT concentration values to be used as 

observations (y) and models (xb). (Losa et al., 2017) 

 

Figure 39 | Results obtained by using the latest version of the algorithm (P2 version processor) on 

rectangular input matrices. As in Figure 37, only the two input matrices and the synergistic output are reported 

in the image.  

A new version of the processor function is currently being tested, exploiting the same 

strategies employed in the development of P2, but freeing itself from the indices of the data 

matrix it is to analyze. In fact, as can be read in Section 3.3.2, the P2 version of the processor 

function selects OLCI values to be assimilated to a TROPOMI value based on the indices at 

which they are placed within their respective matrices. In absolute terms, this is not a problem, 

since the two grids of data to be assimilated span the same area; simply, they have a different 

number of values within them. However, one can imagine that referring to the latitude and 

longitude values associated with the individual concentration values could make the job easier 

in case the assimilation process fits within a larger data manipulation sequence. To implement 

this idea, it was considered that the DataArrays subject to the assimilation process of our 

interest contain not only the array with the concentration values of the various PFTs, but also 

arrays of equal size representing the latitude and longitude coordinates of the pixel center point 

to which the concentration values refer.  

Imagine we consider two DataArrays OLCI and TROPOMI that we wish to assimilate, 

and represent the information within them with the help of arrays of arrays with the following 

structure:  
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[[latTROP, lonTROP, valTROP]]  

[[latOLCI, lonOLCI, valOLCI]] 

where: 

• latTROP and lonTROP represent two generic values taken from the latitude and longitude 

arrays of the TROPOMI DataArray referenced to the coordinates of the center point 

of the generic pixel containing the generic concentration value valTROP. 

• latOLCI, lonOLCI and valOLCI are the equivalents of the values above but referred to the 

OLCI DataArray.  

In this case, one could operate a loop over the array of arrays representing the TROPOMI 

DataArray and exploit a set of conditions like those shown in Section 3.3.2 to verify that the 

latitude and longitude extent of a single OLCI pixel are within the latitude and longitude extents 

of the TROPOMI pixel selected by the loop. Unfortunately, for the time being, the practical 

implementation of this idea in the processor function (called P3 in this version) is presenting 

some difficulties: P3 fails to select the right number of OLCI pixels corresponding to a given 

TROPOMI pixel, and this prevents the success of the entire interpolation process. Future work 

could be continued in this direction so that a working version of P3 could be developed.  

This is not the only prospect of improvement for the algorithm, which could be enriched 

and worked on in several ways, some of which are suggested in the following paragraphs.  

 

Input error handling and output error calculation 

In the current version of the algorithm, input values are associated with automatically 

generated uncertainties within the optimal_interpolation function, however, arrays 

containing real data would arrive in the input along with arrays containing the errors associated 

with them. In order to be able to apply the algorithm on real data, it is necessary, in the future, 

to have the processor function take care of not only selecting the value of a certain TROPOMI 

pixel and those of certain OLCI pixels, but also of selecting the errors assigned to them, and 

then passing them to the optimal_interpolation function.  

In addition, one aspect that has not yet been implemented in the code concerns the 

calculation of errors associated with the results: further efforts must be channeled in this 

direction in the near future.  

 

Continuation of the testing phase and application on real data 
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At the current state of the work, the algorithm has been tested on both square and rectangular 

matrices, in both cases divided into square pixels, all “filled” with real numbers. The testing 

phase could continue through the creation of synthetic data that more closely reflects the 

features of real data: in fact, after gridding operations one often finds oneself with grids filled 

with rectangular pixels, some of which do not contain any real numbers, but NaN, i.e., non-

numeric values.  

Before continuing with the application of the algorithm to the actual data for the May-June 

2018 period, it might be useful to test its performance on data that have a similar appearance 

to the latter, and then continue with gridding operations on the data for that bimonthly period. 

Once this phase is completed, we would proceed to choose a random day from the 61 available 

to test the algorithm’s performance on the actual data for that date.  

Should the outcome of this process be positive, the assimilation process would be applied 

to the data for each individual day of the time frame of interest. The results would be validated 

by comparison with values measured in situ during the same time frame. 

 

Development of strategies for the validation of in situ measurements 

Just as the correctness of the results of the algorithm must be determined by comparison 

with measurements conducted in the field, it would be interesting to develop strategies to 

validate measurements conducted in situ using the algorithm. To give a very simple example, 

imagine we want to measure the concentration of cyanobacteria in a lake from an initial 

estimate and two sets of in situ measurements: on the first day we use the algorithm on the 

estimate and the first set of observations, thus producing an estimate called A1, which is 

validated using the second set of observations. Assuming that the validation went well, new 

measurements are made the following day and A1 is merged with part of these, becoming A2, 

and being validated on the remaining observations. Again, the validation confirms the good 

performance of the algorithm. The following day, new observations are collected, with part of 

these and with the algorithm a new concentration estimate (A3) is created and validated on the 

remaining part of the observations. In this case, the operation does not go as hoped, because 

the set of measurements used for the validation operations deviates greatly from the A3 

estimates. Should one necessarily assume that the algorithm does not work, or, since it worked 

the previous two times, can one assume that something went wrong during the collection of the 

observations used for A3 validation?  
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It would be interesting to develop strategies to propose such a hypothesis and test it, so that 

we get an instrument whose functioning is indeed verified through in situ measurements, but 

which, through its operation, also allows us to screen the quality of those measurements. 

 

New mapping functions in optimal_interpolation 

Currently, optimal_interpolation operates the data assimilation process through the 

use of a mapping function, H(xb), that arithmetically averages over the values of xb; however, 

averaging is only one of many functions that can be employed for the purpose of mapping the 

values of xb to the space of observations (y).  

Over the course of this work, attempts were made to explore the possibility of using other 

functions in place of the mean; for example, a parameter was added to the 

optimal_interpolation function so that users could specify the mapping function of their 

interest, being able to choose between the arithmetic mean and the median. The idea of offering 

this choice arose after realizing that the median function might have better enabled a handling 

of outliers within xb. Unfortunately, the derivability characteristics of this function prevented 

keeping it as a viable choice for users of the algorithm: since the first derivative of the mapping 

function is essential to the process of optimal interpolation, and since the median function has 

an undefined derivative, we were forced to the sole use of the mean function.  

The exclusion of the median function from the range of possible options for mapping 

functions does not prevent, but rather, spurs, the conduct of further research in this area: having 

implemented the possibility of choosing among different mapping functions, it will be possible 

to make comparisons between the results obtained by the optimal interpolation algorithm 

through the use of the different functions, and to estimate which ones are best suited for 

different situations.   

 

Other methods of assimilation 

Just as with the mapping functions, it would be interesting to implement in the algorithm 

the possibility for users to choose different methods of assimilating data. This would allow 

both to have a more versatile algorithm and to conduct comparisons between different methods 

of assimilating data from OLCI and TROPOMI.  

Last March 11, a study was published (Reyes-Muñoz et al., 2024) in which information 

from OLCI and TROPOMI is combined to build a model to estimate gross primary productivity 

(GPP) and net primary productivity (NPP) on the land surface. It would be interesting to further 
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investigate the methods of this study to see if the data assimilation strategies that were used 

could be implemented in the synergistic algorithm developed over the course of this thesis 

period. In this way, they could be applied to the dataset of our interest and their performance 

compared with the one of the optimal interpolation procedure by comparing the validations of 

the results performed on the in situ datasets held by the staff of the PHYTOOPTICS group.  

In addition, optimal interpolation is a technique that has long been used in meteorology, now 

often replaced by data assimilation techniques such as 4DVar methods. In the future, these 

meteorological methods could also be investigated to evaluate whether they could be 

implemented in the algorithm and their performance compared with that of optimal 

interpolation.  

 

Command line interface 

With a view to making the algorithm more easily usable by people who did not contribute 

to its development, it might make sense to develop an interface that facilitates both the setting 

of the parameters the algorithm requires to function and its launch on a couple of datasets. An 

approach similar to what was used during the creation of the CLIs applied to Polymer and OC-

PFT might be a good option. In a configuration file would be stowed the information necessary 

for the algorithm to work such as, for example:  

• Type of assimilation desired.  

• Type of mapping function desired (imagining the case in which more assimilation 

strategies are available, and it is chosen to proceed by optimal interpolation).  

• Folders in which to retrieve datasets for assimilation. 

• Folder in which to save the results of the assimilation process. 

• Period of interest.  

Once a configuration file with these characteristics has been created, the entire assimilation 

process would be initiated through a simple command line consisting of a command that, for 

convenience, could be called synergy, referring to a path leading to the configuration file 

mentioned above.  

synergy   path-to-config_file 

 

Kalman gain  
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The initial idea that was conceived regarding the data for the May-June 2018 period was to 

operate 61 interpolation processes: one per day. This would have provided a time series of 61 

results on which to conduct studies to better understand some of the ecological characteristics 

of the PFTs of our interest. If, during the process of validating the results, it was to be seen that 

the concentration estimates for some days deviate greatly from the in situ measurements, it 

would be interesting to exploit the so-called Kalman gain, employing other data from the days 

of interest, to measure the improvement in the estimate that the algorithm proposes of PFT 

concentrations. In other words, the results of the interpolation process of the OLCI and 

TROPOMI data for May-June 2018 could in turn be interpolated with data from other satellites 

for the same period: the results would then be validated on the same in situ data on which the 

results of the first assimilation process were validated, so that the improvement in the estimates 

could be measured.  

 

Further insight in the application of optimal interpolation for the interest of biologists  

The system of equations describing the process of optimal interpolation has been applied to 

satellite data, but this does not exclude that it can also be employed to data of different types. 

After all, as reported in Chapter 2.3, what optimal interpolation allows you to do is to assimilate 

information from models with information from observations. It follows that any type of 

observation and any type of model can be employed in an optimal interpolation process.  

One example might involve data from various microscopy techniques, such as atomic force 

microscopy (AFM), which, through the sliding and subsequent deformation of a probe over 

several bodies, measures their conformation at the nanoscale. Some studies have already 

demonstrated the advantage of assimilating data from molecular dynamics simulations with 

data from AFM microscopy: in the case of (Kato et al., 2023) a Bayesian data assimilation 

method, known as sequential Monte Carlo method, was used, which is different than the 

optimal interpolation used to shape the algorithm that is the subject of this thesis work, 

however, of extreme interest both because it offers an additional perspective on how to 

assimilate data (to be considered for future developments of the algorithm), and because this 

perspective involves biological data of a different type than satellite data (to be considered for 

future applications of the algorithm).  

The potential applications of a data assimilation algorithm to biological data do not end at 

the example given above. In fact, in order to use the algorithm developed during this thesis 

work, it is sufficient for the input data to be organized into arrays, which means that, for 
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example, some digital images from microscopy experiments could be used as input data. In 

fact, digital color images defined as “rasters” are nothing more than the union of three 

overlapping matrices containing the amounts of red, green, and blue corresponding to each 

pixel. Such matrices could be used as inputs to the data assimilation algorithm. Imagining 

having raster images portraying the same sample from two different microscopy instruments 

(which would therefore play a similar role as OLCI and TROPOMI), the synergistic product of 

them could be created. Or, to cite another very simple example, if one had an initial estimate 

of the distribution of certain molecules in a sample, one could create a more accurate estimate 

of that phenomenon through the assimilation of different types of measurements made on the 

same sample. In short, the possibilities of using a data assimilation algorithm in the biological 

field are innumerable.  

In conclusion, the question raised during this thesis work was on how to assimilate data 

from the OLCI and TROPOMI instruments aboard the Sentinel-3 and Sentinel-5P satellites of 

the European Space Agency's Copernicus system, with a view to using the results of this 

assimilation process for improved estimation of the spatiotemporal distributions of two PFTs 

in the Atlantic Ocean. To meet this need, it was decided to use a data assimilation method called 

optimal intepolation, and to create an algorithm that would be able to apply it to two different 

input datasets. The structure of such an algorithm was defined and tested on synthetic data: it 

provided very encouraging first results.  

Given that during the course of the work efforts were made to bring the OLCI data for the 

May-June 2018 period from level 1B to level 2A, and given that the TROPOMI level 2A data 

for the same period are already in the possession of the PHYTOOPTICS group staff, it is 

necessary in the immediate future to finalize the gridding procedures on both types of data, 

and, once the testing phase of the algorithm is completed, to put it to the test on any pair of 

gridded datasets from that period.  

In the event that the outcome of this is positive, all gridded dataset pairs would be 

assimilated and the results validated using the set of in situ measurements conducted in the 

Atlantic Ocean during May-June 2018.  

At the end of these operations, one could consider the idea of implementing in the algorithm 

both the possibility of conducting the optimal interpolation processes through the use of 

different mapping functions and, more generally, the possibility of conducting the assimilation 
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processes according to different methods, and, in case one decides to go down these paths, 

compare the performances of the different methods.  

Finally, it is emphasized that the development of such an algorithm offers many perspectives 

both in terms of the analysis of satellite data and of the many interesting applications of data 

assimilation methods to data derived from the most widely used techniques in the biological 

field.   
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Appendix  

Downloaded OLCI data 

The data chosen for download were defined by the following quartet of variables:  

• contain = "%27OL_1_ERR%27", representing a string contained in all OLCI data at 

reduced resolution (in fact, RR is an acronym for “Reduced Resolution”).  

• start_time = "2018-05-01T00:00:00.000Z", i.e., the initial time of the interest 

period, expressed according to the scheme yyyy-mm-ddThh:mm.sssZ.  

• end_time = "2018-06-30T23:59:59.000Z", that is, the final moment of the 

period of interest. 

• loc = f"POLYGON(({-75} {89}, {11} {89}, {11} {-90}, {-75} {-90}, 

{-75} {89}))", that is, the area the data should refer to. In this case it is a polygon 

(as the function POLYGON suggests), a rectangle, extended between the four points 

marked in parentheses, defined by their latitude and longitude coordinates: {lat} 

{lon}. 

 

OLCI compressed files sorting function 

OLCI_zip_sorting, the code in charge of ordering the downloaded OLCI files, is based on 

a function that requires four input data (the path to the folder in which the files are stowed in 

random order, the path to the folder in which it’s wanted to stow them neatly, the start date of 

the period to be considered, and the end date of the same period), and the following logic:  

1. Using the datetime library, the function transforms the start and end dates of the 

period under consideration into datetime objects with the form “%Y-%m-%d” and 

assigns them to two variables called sdate and edate.  

2. With the help of the os library (Python Documentation, n.d.), which provides an 

interface to the operating system of the machine in use, the function produces a list of 

the files contained in the starting folder, the one in which the files are in no particular 

order.  

3. It then creates a variable called cdate, that is used to operate a while loop in that list, 

and assign it the value of sdate, the starting date of the period under consideration: 

until cdate is equal to edate, the reference date of the last files we want, the loop 

continues.  
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4. During the cycle, the function checks which files are marked with a date equal to 

cdate, collects them in a list, and, again using os, checks if the destination folder 

contains a sequence of folders corresponding to the criteria imposed by cdate. In other 

words, if cdate refers to the day 2018/05/02, it is necessary that the destination folder 

contains the folder 2018, which should contain the folder 05, that in turn must contain 

the folder 02. If this sequence of folders does not exist, the function provides for their 

creation via os.makedirs command.  

Once it is determined that the saving path exists, the files stowed in the list just above are 

copied to it and a day is added to cdate, which it is checked to see if the while condition is 

still met. If yes, the loop iterates again, otherwise it aborts. 

 

new_polymer_submission request creation and submission 

The part of  new_polymer_submission devoted to the creation and submission of the request 

files can be roughly summarized along the following points: 

1. In order to create a while loop very similar to the one in OLCI_zip_sorting, 

three variables are initialized, sdate, cdate, and edate, which represent, 

respectively, the start date of the period of interest, the date that is used during the 

loop, and the end date of the period of interest. The cycle begins by assigning cdate 

the same value as sdate and continues until the value of cdate is equal to that of 

edate.  

2. During the cycle, using the os library introduced above, 

new_polymer_submission moves to the directory in which it is desired to store 

the configuration files for polymer_run, and checks for the existence of a 

configuration file related to the date indicated by cdate. If the file does not exist, 

new_polymer_submission proceeds to create it using the subprocess library 

(Python Documentation, n.d.) and the functionality of the command line 

polymer_run.  

3. Once the configuration file has been created, the information within it must be 

modified to ensure that Polymer is applied to the correct data set. To do this, 

new_polymer_submission makes use of the configparser library (Python 

Documentation, n.d.), which provides access to different parts of a configuration 

file via the simple structure:  
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configparser_object[“section”][“key”] = value 

In fact, as stated in Python’s documentation, a typical configuration file is organized 

into sections and keys: in the configuration file example below, Figure 28, an 

example of a section is represented by [DEFAULT], while an example of a key is 

Compression.  

 

Figure 28 | Example of a simple configuration file. (Python Documentation, n.d.) 

The configparser library allows nimbly editing of the values characterizing a 

configuration file by turning the file itself into a configparser object, and using 

the structure shown above. For example, imagine that the configuration file shown 

above was transformed in a configparser object named A, and that it was desired 

to modify the value of the key Compression from yes to no: it would be sufficient 

to use a structure like  

A[“DEFAULT”][“Compression”] = no 

4. After customizing the configuration file, new_polymer_submission moves to 

the folder designated to contain the Bash scripts that will be used as an interface to 

Albedo’s request handling system. Here, it creates a Bash script with all the 

necessary context information (account of the user submitting the request, time to 

work, request name, etc...) to which it adds two lines of code:  

source   activate   venv 

polymer_run   path-to-config_file 

where  
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a. source   activate   venv is a command that is used to activate the 

virtual environment in which Polymer and the polymer_run command line 

are installed. 

b. polymer_run   path-to-config_file is the command used to apply 

Polymer to the data set specified in the configuration file created in step 2 

and customized in step 3.   

5. Through the subprocess library, Albedo is ordered to execute the requests marked 

in the .sh3 script just created.  

This cycle is repeated for all dates between sdate and edate, resulting in an equal number of 

requests being submitted to the HPC, which it will conduct in parallel.  

 
3 Bash files are characterized by .sh extension.  
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