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ABSTRACT
Arctic and subarctic landscapes have unique hydrological and limnological features and are now 
experiencing rapid change due to climate warming and permafrost thaw. The highly abundant lakes, 
ponds, and rivers across these landscapes play an increasingly important role in global biogeochemical 
cycles and are sentinels of environmental changes. However, studying these remote waters poses 
challenges for both in situ sampling and remote-sensing analysis. Here we developed a synergistic 
remote-sensing strategy that combined PlanetScope and Sentinel-2 satellite data to estimate limnicity 
(water fraction per land surface), limnodensity (density of water bodies), and limnodiversity (optical 
diversity of water bodies) along a boreal forest-tundra transect, from the non-permafrost to the 
continuous permafrost zones of western Nunavik (Subarctic Canada). Our analyses show that this region 
hosts 335,281 water bodies, around 90% in the 0.0001 to 0.01 km2 size range. In bedrock outcrops, large 
water bodies were mostly associated with glacially carved depressions (higher limnicity). In contrast, 
small water bodies were predominately found in sedimentary infills along valleys (higher limnodensity). 
The discontinuous permafrost zone had the highest limnodensity and limnodiversity. This was likely due 
to permafrost thaw (thermokarst), particularly the collapse, subsidence, and erosion of palsas (organic 
permafrost mounds), resulting in ponds with black- and brown-colored waters, and lithalsas (mineral 
permafrost mounds), resulting in ponds with brown, light-brown, and sometimes white-colored waters. 
Some of these limnodense and limnodiverse landscapes, although covering only 2 to 7% of the total 
area of the study region, contained over one-third (34%) of the total number of water bodies, 97% of 
which were <0.01 km2; they accounted for a small proportion of the total black-colored water bodies 
(23%), but a high proportion of the total brown- (60%) and light brown-colored water bodies (92%) 
throughout the region. This research underscores the utility of optical satellite remote sensing for 
assessing water body types and for evaluating their individual and distinct aquatic responses to climate 
change. The dataset may be used to improve the modeling of carbon fluxes by better categorizing small 
water bodies affected by organic or mineral soil type settings. This is an important factor dictating 
biogeochemical responses, with effects on albedo, climate feedbacks, and ecosystem dynamics in the 
boreal forest-tundra region. The framework developed here may be applied to landscapes elsewhere in 
the world that have high densities of water bodies of variable size and optical properties.
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1. Introduction

The Arctic and subarctic have distinctive hydrological 
and limnological settings due to the ice-sheet dynamics 
of the Pleistocene, which gave rise to a postglacial land-
scape of wetlands, widespread water bodies, and exten-
sive permafrost (Lehner and Döll 2004; Smith, Sheng, 
and Macdonald 2007; Verpoorter et al. 2014; Webb et al.  
2022). These landscapes are undergoing marked 
changes due to climate warming, at a faster and 

stronger pace than any other region, with local and 
global consequences (Biskaborn et al. 2019; Rantanen 
et al. 2022; Schuur et al. 2015).

High-latitude water bodies are sentinels of land-
scape change and environmental state shifts linked 
to climate warming, permafrost thaw, and changes in 
precipitation and snow regimes (Magnuson et al.  
1997; Saros et al. 2023; Webb et al. 2022). These 
climate impacts affect aquatic ecosystems and their 
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catchments, resulting in autochthonous modifica-
tions such as shifts in primary production, nutrient 
cycling, and microbial activity, as well as allochtho-
nous modifications such as inputs of organic matter 
and contaminants from the surrounding landscape. 
These water quality modifications further affect eco-
system services, biodiversity, and the climate system 
(Vincent et al. 2012). In the northern circumpolar 
region, rocky highlands typically support large water 
bodies (>0.01 km2) associated with glacially carved 
depressions and tectonic processes, while lowlands 
often sustain wetlands able to support an enormous 
variety of ponds (<0.01 km2), which are known to be 
biogeochemically more active (Holgerson and 
Raymond 2016; Muster et al. 2017; Vincent and 
Laybourn-Parry 2008).

Permafrost covers 15% of the exposed land surface 
in the Northern Hemisphere and hosts a large portion 
of the world’s wetlands (5–25%) (Gorham 1991; 
Olefeldt et al. 2016; Treat et al. 2024). Within these, 
peatlands are biogeochemically distinct ecosystems 
(Gorham 1991). These water-saturated environments 
can act as carbon sinks (Harris et al. 2021; Zhang and 
Väliranta 2024) but also include shallow and morpho-
logically and optically diverse lakes and ponds that 
are intense carbon sources (Arsenault et al. 2022; 
Hassan et al. 2023; Kuhn et al. 2021; Taillardat et al.  
2024). The formation and development of wetlands 
depend on various factors, including climate (moist-
ure, temperature, and precipitation), soils (organic or 
mineral), topography, and vegetation structure (fen, 
bog, shrublands, and forest) (Gorham 1991). These 
factors also influence the genesis, role, evolution, 
and limnological characteristics of the water bodies 
(Arsenault et al. 2022; Bouchard et al. 2014). However, 
studying landscapes replete with biogeochemically 
diverse water bodies poses specific challenges not 
only for traditional methods focused on in situ sam-
pling but also for remote-sensing analysis.

Disturbances in permafrost wetlands are often due to 
abrupt permafrost thaw processes, such as the forma-
tion of thermokarst water bodies (permafrost thaw lakes 
and ponds). These can lead to increased soil carbon 
emissions, more than doubling those from gradual 
thaw (≈125 to 190%) (Walter Anthony et al. 2018). 
However, they are not accurately depicted in Earth- 
System models (Kuhn et al. 2018; Turetsky et al. 2020; 
Vonk, Tank, and Walvoord 2019; Walter Anthony et al.  

2018). Diverse types of thermokarst water bodies occur 
in different permafrost zones, primarily linked to distinct 
geomorphological processes, namely polygonal tundra 
degradation in the continuous permafrost zone and 
degradation of cryogenic mounds (organic-rich palsa 
and mineral-rich lithalsa) in the discontinuous and 
sporadic permafrost zones (Bouchard et al. 2017; 
Grosse, Jones, and Arp 2013).

As wetlands and peatlands expand, permafrost 
thermokarst water bodies are predicted to increase 
in number and size, covering 545,000 km2 by 2100 
and 1,048,000 km2 by 2300, potentially doubling car-
bon emissions to 72 ± 60 Pg (Heslop et al. 2020; 
Turetsky et al. 2020). Initially small (<0.01 km2) and 
shallow (<5 m), these water bodies play dispropor-
tionate biogeochemical roles in the landscape by 
processing large amounts of carbon and nutrients, 
caused by frequent water column mixing, shoreline 
erosion processes, high terrestrial inputs per water 
volume, and other interactions with the surrounding 
landscape (Arsenault et al. 2022; Bégin and Vincent  
2017; Heslop et al. 2020; Holgerson and Raymond  
2016; Kuhn et al. 2018; Zandt, Liebner, and Welte  
2020). They are especially strong emitters of the 
potent greenhouse gas methane, as well as carbon 
dioxide (Abnizova et al. 2012; Negandhi et al. 2013; 
Wik et al. 2016; Zandt, Liebner, and Welte 2020). These 
conditions lead to distinct aquatic ecosystem 
responses, challenging the effectiveness of current 
models based on existing lentic ecosystem data 
(Arsenault et al. 2022; Taillardat et al. 2024).

Recent studies have focused on the biogeochemical 
distinctiveness of various lentic systems, ranging from 
large lakes to small water bodies, including peatland and 
thermokarst ponds (Arsenault et al. 2022; Hassan et al.  
2023; Taillardat et al. 2024). In particular, Arsenault et al. 
(2022) and Taillardat et al. (2024) found that while small 
water bodies, such as non-peatland and peatland ponds, 
generally represented a specific and well-defined cate-
gory within lentic systems due to the more significant 
role of the organic matter inputs compared to large 
water bodies, modeling the behavior of small thermo-
karst water bodies proved challenging, with bimodal pH 
distributions and distinct patterns in nutrients and dis-
solved organic carbon. This strong thermokarst biogeo-
chemical variability can be attributed in part to their 
diverse origins, from organic-rich (peat) or mineral-rich 
(marine silt, clay, and sand deposits) soils (Arsenault et al.  
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2022; Heslop et al. 2020). These preconditions affect 
aquatic ecosystem structure and functioning, including 
dissolved oxygen availability, turbidity, underwater light, 
redox potential, primary production, and microbial com-
munity structure (Arsenault et al. 2022; Bouchard et al.  
2011; Deshpande et al. 2017).

Optical remote sensing offers a promising 
approach for assessing and monitoring small water 
bodies, including thermokarst, at the regional or even 
global scale, and also allows the upscaling of in situ 
observations of water properties. However, the suc-
cess of this approach is often constrained by persis-
tent cloud cover and resultant limited optical data, 
challenges on precise automatic delineation of small 
water bodies (<0.01 km2), as well as on retrieving their 
morphometrical and optical characteristics at native 
sensor resolution (Freitas et al. 2024; Mullen et al.  
2023; Muster et al. 2017; Olefeldt et al. 2021; Pekel 
et al. 2016). Remote sensing workflows for overcom-
ing these problems are currently lacking.

Advances and continuous acquisitions of satellite 
imagery and its distribution are not only allowing 
consistent and improved water body delineations 
(Cooley et al. 2017; Freitas et al. 2024; Mullen et al.  
2023) but also spatial assessments of water transpar-
ency and color, as well as the monitoring of optically 
active constituents such as algal populations, colored 
dissolved organic matter, and suspended particulate 
matter (Juhls et al. 2022; Pahlevan et al. 2022; Shang 
et al. 2021; Toming et al. 2016). These technologies 
provide insights into the role and evolution of high- 
latitude water bodies, supporting regional and global 
monitoring and modeling efforts (Arsenault et al.  
2022; Hassan et al. 2023; Kokelj and Jorgenson 2013).

Here, we developed a synergistic optical remote- 
sensing strategy combining PlanetScope-Dove (PS-D) 
and Sentinel-2 (S2) imagery for assessing the distribu-
tion and diversity of water bodies along a latitudinal 
gradient across the tundra forest zone of western 
Nunavik (Subarctic Canada) from non-permafrost to 
continuous permafrost. This region provided the ideal 
pond-rich and lake-rich landscapes (limnoscapes) to 
develop and apply this approach that will likely be of 
application in similar regions of the circumpolar North. 
In particular, we hypothesized that thermokarst land-
scapes, resulting from contemporary permafrost degra-
dation along the forest-tundra ecozone, may contain 
not only high densities of small water bodies (<0.01  

km2) due to patterned ground, ice segregation, and 
cryoturbation processes occurring under suitable cli-
matic cold conditions but also high optical diversity of 
waters depending on the geomorphological setting, 
namely following mineral-rich lithalsa or organic-rich 
palsa degradation.

Our approach involved deriving a Very-High 
Resolution (VHR) water body delineation database 
using a trained Mask R-CNN deep learning model 
(HLWATER) over PS-D data (Freitas et al. 2024) and 
then retrieving their optical properties using S2 data 
(HLWATER-Optical). This combined data analysis 
allowed the estimation of the water fraction per land 
surface (limnicity), the density of water bodies (limno-
density), and the optical diversity of water bodies 
(limnodiversity). The analyses covered a broad range 
of water body sizes, from small (10−4−10−2 km2) to 
large (>0.01 km2), thereby allowing an overall evalua-
tion of waters across subarctic forest-tundra land-
scapes, including permafrost thaw (thermokarst) 
environments.

2. Study area

The study region was located in western Nunavik, on 
the eastern side of Hudson Bay, Canada, and covered 
a total area of 41,832 km2 within the latitudes 54° to 
58° N and the longitudes 74° to 78° W. This region lies 
in the subarctic forest-tundra transition region, from 
non-permafrost to continuous permafrost zones 
(Figure 1). The region is part of the Precambrian 
Canadian Shield, characterized by granitic-gneissic 
formations (Bhiry et al. 2011). It has undergone multi-
ple glacial cycles, with the most recent being the 
Wisconsin glaciation, which ended with the north-
ward and eastward retreat of the Laurentide Ice 
Sheet at 8 ka (Harden et al. 1992). Consequently, this 
region exhibits one of the fastest glacial-isostatic 
uplifts in the world of about 1.3–1.5 cm per year 
(Andrews 1968; Bhiry et al. 2011).

Following the glacial retreat, the transgression of the 
Tyrrell Sea at ≈7.9 ka filled large glacial valleys and struc-
tural depressions with marine clay, silt, and sand deposits 
(Bhiry et al. 2011). These deposits are currently found 
along coastal valleys at elevations between 150 and 300  
m (Allard and Seguin 1987; Veilleux, Bhiry, and Decaulne  
2020). The marine regression favored vegetation coloni-
zation, peatland accumulation (≈6–4.7 ka), periglacial 

GISCIENCE & REMOTE SENSING 3



processes with permafrost aggradation (≈1.9–1.2 ka), 
and the formation of cryogenic mounds such as lithalsas 
and palsas (Allard and Seguin 1987; Bhiry et al. 2011). As 
a result, this region contains some of the most pristine 
wetlands and peatlands in the world (Darnajoux et al.  
2015).

Since the end of the Little Ice Age (≈0.3 ka) and 
especially in recent decades, the region has experi-
enced accelerated permafrost degradation due to 
increasing air temperatures (0.4°C per decade) and 
precipitation, particularly during the summer (Beck 
et al. 2015; Bhiry et al. 2011; Fortier et al. 2023; 
Owczarek et al. 2020; Payette et al. 2004; Vallée and 
Payette 2007). This degradation has led to the forma-
tion and proliferation of widespread thermokarst 
water bodies, with diverse limnological, optical, and 
morphometrical characteristics, as well as greenhouse 
gas emission potential (Bouchard et al. 2014; Folhas 
et al. 2020; Freitas et al. 2019, 2022; Laurion et al. 2010; 
Matveev, Laurion, and Vincent 2019; Wang et al. 2018; 
Watanabe et al. 2011). These thermokarst water 
bodies, until recently unaccounted for geographically, 
vary in color from black/brown to light-brown/whit-
ish, depending on the properties of the soil, genesis, 
and age, specifically following the degradation of 
organic-rich palsas or mineral-rich lithalsas, 

respectively (Bégin and Vincent 2017; Bouchard et al.  
2011, 2014; Watanabe et al. 2011) (Figure 2).

3. Material and methods

3.1. General workflow

Beginning with a PS-D mosaic for the regional study 
sector, we used the HLWATER trained deep learning 
Mask R-CNN model from Freitas et al. (2024) to 
derive a Very-High Resolution (VHR) database with 
335,281 automatically delineated water bodies, set-
ting the basis for their optical characterization. This 
dataset was used as a reference for zonal (for water 
bodies >0.01 km2) and pixel-targeted (for water 
bodies <0.01 km2) water body reflectance retrievals 
using S2 satellite data, generating the HLWATER- 
Optical database. The PS-D and S2 imagery were 
combined through local co-registration using the 
AROSICS Python package developed by Scheffler 
et al. (2017). To mitigate the impacts of outliers on 
the subsequent clustering results, we first imple-
mented a multivariate unsupervised k-Nearest 
Neighbors (kNN) algorithm using the PyOD Python 
library of Zhao, Nasrullah, and Li (2019). Finally, for 
automatically establishing the main water body 

Figure 1. Regional study site location in Canada and western Nunavik (eastern Hudson Bay), extending across the boreal forest-tundra 
transition zone, and from the non-permafrost to continuous permafrost zones. The permafrost boundaries (displayed in red) represent 
the southern limit of each zone. The base information is from the Government of Canada (CanVec, permafrost atlas and biogeoclimatic 
regions).
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optical clusters, we used K-Means as unsupervised 
clustering method (Ahmed, Seraj, and Mohammed  
2020) (Figure 3).

The HLWATER model resultant database was ana-
lyzed at the regional scale to evaluate limnicity (water 
fraction per land surface) and limnodensity (number 

Figure 2. Oblique aerial photographs of thermokarst landscapes with palsa-formed (organic soil) and lithalsa-formed (mineral soil) 
ponds in the wetlands of BGR (56°36’34.84“N; 76°12’58.55“W) in the Sheldrake River basin and in the bog peatland of SAS (55° 
13’6.84“N; 77°42’26.95“W) close to Sasapimakwananisikw River. The former have whitish/light brown colored waters (light scattering 
by mineral particulates), and the latter have dark brown or black colored waters (absorption due to high concentrations of particulate 
and dissolved organic matter from peat).

Figure 3. General methodological workflow showing the combination of materials, methods, and outputs for achieving Very-High 
Resolution (VHR) water delineation (HLWATER) and optical assessment (HLWATER-Optical) products at the regional scale.
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of individual centroids per land surface). In addition, 
the HLWATER-Optical database enabled the analysis 
of the optical properties (notably color) of the water 
bodies, resulting in the evaluation of their optical 
limnodiversity (diversity of optical groups per land 
surface), highlighting its significance as a key hydro-
logical and biogeochemical component of the rapidly 
changing northern-landscapes.

3.2. HLWATER

We employed the HLWATER model to classify a PS-D 
mosaic with approximately 3-m spatial resolution and 
4-band spectral resolution (blue, green, red, and NIR). 
This mosaic comprised 339 scenes acquired from 
2017 to 2019 during the ice and snow-free period 
between July and September. The implementation 
of HLWATER allowed the automatic delineation of 
335,281 water bodies in the regional sector, covering 
lakes (>0.01 km2), ponds (<0.01 km2), rivers, streams, 
and creeks.

As noted in Freitas et al. (2024), the fully autono-
mous performance of HLWATER varied across differ-
ent landscape units, achieving mean Intersection over 
Union (IoU) 0.5 F1 scores between 0.53 and 0.71 and 
mean F1 scores between 0.62 and 0.95. The model 
demonstrated an optimal minimum detection water 
body size threshold of 166 m2 for western Nunavik 
(eastern Hudson Bay). Consequently, delineations 
below this threshold were automatically removed.

For feature tile classification, the confidence of the 
HLWATER was set to 50%, the best alternative to 
maximize true positive and minimize false positive 
and false negative classifications (e.g. highest F1 
score) (Freitas et al. 2024). To ensure data quality, all 
false positives were reviewed and removed as neces-
sary. This procedure was conducted by a single opera-
tor through visual inspection of the PS-D mosaic as 
a near-infrared false color composite (R – near- 
infrared, G – green, B – blue), aided by available VHR 
satellite imagery (e.g. ESRI World Imagery, BingMaps, 
Google Earth) following Qayyum et al. (2020), Nitze 
et al. (2021) and Mullen et al. (2023).

3.3. HLWATER-Optical

Using the PS-D mosaic for a homogeneous optical 
assessment of the water bodies at the regional scale 
was impractical due to the numerous scenes acquired 

on different dates. Consequently, using this mosaic 
would lead to the properties of the water bodies 
being determined by temporal variations instead of 
spatial distributions. In addition, PS-D data is known 
to suffer from geometric, radiometric, and calibration 
issues (e.g. low signal-to-noise ratio), which particu-
larly affects its sensitivity for water applications (Dash 
and Ogutu 2016; Frazier and Hemingway 2021; Maciel 
et al. 2020; Mullen et al. 2023). In contrast, S2 has 
demonstrated proven capabilities for inland and 
coastal water quality monitoring over wide regional 
sectors and timeframes (Zeng et al. 2023), including 
small water bodies (Freitas et al. 2019). As a result, this 
assessment was conducted using S2 10-m data (visi-
ble and NIR range). S2 provided high-quality spectral 
information, enabling the retrieval of optical proper-
ties for the maximum possible number of water 
bodies from the HLWATER database, thus forming 
the HLWATER-Optical dataset.

Based on the analysis of the S2 granules extent and 
metadata downloaded from Google Earth Engine, 
a total of 14 granules were required to cover the 
entire regional sector, each comprehending an 
approximate area of 110 × 110 km (Gorelick et al.  
2017). To minimize the impact of cloud cover across 
the region, we selected data from 23 August 2019 
under predominantly cloud-free conditions. 
Specifically, 13 out of 14 granules exhibited less than 
10% of cloud cover, with one granule showing less 
than 20%. In addition, this date ensured mid warm 
season conditions, which were important for asses-
sing the optical properties of the water bodies.

The S2 data were screened for no cloud coverage and 
downloaded as Level-1C (L1C) from the Copernicus Data 
Space Ecosystem. The water bodies that clouds and 
shadows could still impact were automatically removed 
from this assessment by considering the S2 L2A Sen2Cor 
Scene Classification Map (SCL) corresponding classes. 
The SCL product is automatically generated during the 
execution of the Sen2Cor standard atmospheric correc-
tion model and in this case was downloaded from 
Google Earth Engine for the matching imagery sets 
(Gorelick et al. 2017). We based our analysis on Top-of- 
the-Atmosphere (TOA) reflectance to retrieve the optical 
properties of the water bodies since the Bottom-of-the- 
Atmosphere (BOA) S2 Level-2A atmospherically cor-
rected data results from Sen2Cor, which is designed for 
the land surface (Warren et al. 2019). Due to the strong 
atmospheric scattering affecting the TOA blue spectral 
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reflectance, which is known to be particularly pro-
nounced over water bodies, we excluded the S2 blue 
band (490 nm) from our assessment (Kutser et al. 2004; 
Soriano-González et al. 2022). As a result, we supported 
our optical assessment focusing on the S2 green (560  
nm) and red (665 nm) bands. Toming et al. (2016) 
demonstrated that S2 green and red TOA reflectance 
can be successfully used for retrieving inland water body 
optical properties (color) and colored dissolved organic 
matter. Additionally, we utilized the S2 NIR band (842  
nm) to identify outliers.

3.4. Satellite imagery combination

To ensure consistency between the water body 
boundaries derived from the deep learning model 
over the PS-D mosaic (HLWATER) and the S2 acquisi-
tions (HLWATER-Optical), we developed a framework 
to mitigate co-registration incompatibilities, as well as 
avoid sub-pixel errors on reflectance due to water 
body size and morphometric complexity and also 
considering potential adjacency effects, such as sur-
rounding vegetation scattering and cast shadows 
impacts (Freitas et al. 2022; Paulino et al. 2022). 
Given the extensive area of the study region and the 
large number of water bodies in the HLWATER data-
base, these were critical steps for obtaining accurate 
reflectance measurements and ensuring the robust-
ness of the HLWATER-Optical database.

3.4.1. Local co-registration
The PS-D and S2 satellites exhibit differences in data 
acquisition conditions, including viewing geometry, 

sensor characteristics, and in-product consistency. 
Consequently, all S2 scenes were co-registered to 
the PS-D mosaic using the COREG_LOCAL function 
from AROSICS (Scheffler et al. 2017). We used cubic 
resampling, a grid resolution of 50 pixels and 
a window size of 64 × 64 pixels. The tie point filter 
level was set to 2 out of 3 (e.g. Reliability, MSSIM, but 
RANSAC), which was found to enhance the algo-
rithm’s ability to perform higher absolute shift adjust-
ments using more tie points in challenging and 
significantly displaced sectors.

Analyzing the AROSICS outputs per S2 granule, 
the mean number of valid True Positive (TP) tie 
points ranged from 399 to 31,602, depending on 
the extent of the S2 scene over our PS-D mosaic, 
with a global mean and standard deviation of 
11,950 and 13,480 tie points, respectively 
(Table 1). Per granule, the RMSE absolute shift 
vector length ranged from 5 to 8 m, as the mean 
absolute computed shifts, showing a global mean 
of 4.6 m and standard deviation of 0.8 m. 
Typically, the necessary resolved absolute mean 
shifts were less than 1/2 S2 pixel (Table 1).

Locally, the computed and corrected absolute mean 
shifts (m) were dependent on the different PS-D indivi-
dual scenes used to produce our mosaic dataset 
(Figure 4). Scenes acquired on the same day usually 
showed similar and uniform adjustment patterns, includ-
ing mean shift directions. General adjustments of less 
than 1/2 S2 pixels were necessary, with the greatest 
adjustments reaching up to 5 pixels (e.g. 56 m) in specific 
sectors, underscoring the importance of performing this 

Table 1. S2 to PS-D co-registration statistics. Valid True Positive (TP) tie points, Root Mean Squared Error (RMSE) of absolute 
shift vector length, Mean Squared Error (MSE) of absolute shift vector length, Mean Absolute Error (MAE) of absolute shift 
vector length, absolute shift, and angle per S2 granule adjustment to the PS-D mosaic and overall statistics (Mean, Median 
and Standard Deviation). Each granule's geographic extension is shown in Figure 4.

Granule Valid TP RMSE (m) MSE (m) MAE (m) Absolute Shift (m) Angle (°)

UPA 463 4.9 23.7 4.7 4.7 129.5
UPB 2917 5.5 30.8 5.4 5.4 143.7
UUF 12658 4.3 18.8 4.1 4.1 92.2
UUG 29917 4.6 21.3 4.4 4.4 118.5
UVF 2404 5.2 27.3 5.0 5.0 96.4
UVG 25695 4.5 20.3 4.2 4.2 116.8
VUH 4696 4.9 24.2 4.7 4.7 133.2
VUJ 4637 3.6 12.7 3.5 3.5 111.8
VUK 2449 3.6 12.8 3.5 3.5 112.9
VVH 36297 4.5 20.1 4.1 4.1 162.2
VVJ 34393 5.9 34.2 5.0 5.0 126.1
VVK 8945 5.5 30.8 4.6 4.6 112.4
VWH 831 3.5 12.3 3.4 3.4 145.6
VWJ 997 3.4 11.3 3.3 3.3 154.4
�X 11,950 4.6 21.5 4.3 4.3 125.4
Md 6,821 4.5 20.8 4.2 4.2 122.0
σ 13,480 0.8 7.5 0.7 0.7 20.7
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co-registration. Small deviations could result in signifi-
cant errors in assessing water signals, particularly for 
small (<0.01 km2) and elongated water bodies.

In some cases, AROSICS was unable to fully resolve 
the necessary adjustments. Visual inspections revealed 
that some problems persisted in areas requiring higher 
mean absolute shifts, showing that polynomial adjust-
ments were sometimes insufficient. AROSICS assumed 
that large deformations between the image sets did 
not exist, but such deformations can indeed occur 
between some sensors (Scheffler et al. 2017). 
Consequently, we excluded all water bodies showing 

inconsistent co-registration in those sectors from sub-
sequent steps. In addition, for water bodies smaller 
than 0.01 km2, only the farthest pixel from the shore-
lines was targeted as representative of its optical prop-
erties, mitigating other localized problems.

3.4.2. Zonal and pixel-targeted reflectance retrievals
Reflectance retrieval is a challenge in irregular and 
especially in small water bodies. To avoid adjacency 
and water level change effects, we employed two 
strategies for retrieving reflectance from the S2 

Figure 4. S2 to PS-D local co-registration: a) computed and corrected absolute mean shifts (m) between S2 (outlined black granules) 
and PS-D scenes (small black seamlines) and mean shift direction (black arrow); b) detail of sector A and c) sector B, showing the water 
surface extent output from HLWATER (white boundaries) and absolute mean shifts (m) over the S2 true color composite. The base data 
information is from the Government of Canada (CanVec).
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imagery using the HLWATER product as reference. For 
larger water bodies, we collected zonal statistics con-
sidering several pixels, but for smaller water bodies, 
we selected single pixels (Figure 5).

For water bodies larger than 0.01 km2, we first calcu-
lated the Euclidian distance from the shoreline to the 
center of each water body to identify the farthest point 
possible from the shore (e.g. maximum Euclidian dis-
tance within water body margins). These points served 
as the basis for calculating a circular buffer with 20% of 
the area of the respective water body (Freitas et al.  
2019). Whenever the circular buffer extended beyond 
the water body boundaries, it was clipped to its extent. 
These buffers were then used to compute zonal statis-
tics, namely, to obtain the median value of all pixels, 
based on the S2 imagery for each water body (Figure 5).

For water bodies smaller than 0.01 km2, we imple-
mented a more robust strategy due to the challenges 
posed by their size for reflectance retrievals at the S2 
spatial resolution, particularly for those smaller than 
350 m2 (Freitas et al. 2019). This strategy considered 
the morphometric complexity of the water bodies, as 

well as the positioning of the S2 pixels in relation to 
the shorelines, as follows:

(1) HLWATER water fraction calculation at S2 10-m 
grid resolution (sub-pixel classification).

(2) Assessment of the S2 pixels fully within 
HLWATER water body boundaries.

(3) Calculation of the Euclidian distance of each 
pixel center to the shorelines.

(4) Selection of the farthest pixel from the shore-
line to represent the optical properties of the 
water body (Figure 5).

Steps 3 and 4 were implemented to accommodate 
and avoid adjacency impacts. For the small water 
bodies, the distance of the farthest pixel from the 
shoreline ranged from a minimum of 2 m to 
a maximum of 46 m, with a mean, median, and 
standard deviation of 11, 8, and 7 m, respectively.

Due to the high abundance of water bodies smaller 
than 0.01 km2 and the Pareto-like frequency distribution 
observed for western Nunavik (Freitas et al. 2024), some 

Figure 5. Automated selection of HLWATER water body areas for reflectance retrieval over the S2 scene (false color composite: R – NIR; 
G – Green; B – blue). In water bodies larger than 0.01 km2, reflectance was calculated (median values) from within a circle 
encompassing 20% of the lake area (yellow polygons). In water bodies smaller than 0.01 km2, reflectance was obtained from 
a single pixel (green squares). The small blue polygons without green pixels inside were excluded from the analysis (inability to 
accommodate full S2 pixels).
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water bodies did not meet the size and shape criteria to 
accommodate at least one full S2 pixel within their 
boundaries and were excluded from further analysis 
(Figure 5). Additionally, impacts from cloud cover and 
punctual co-registration incompatibilities prevented the 
integration of all 335,281 water bodies in our HLWATER 
database. Ultimately, a total of 167,755 (50%) were 
selected. The S2 10-m pixel size, within the presented 
workflow, allowed us to acquire information on water 
bodies ranging from 0.000166 km2 (166 m2) to 160,244  
km2. The mean, median, and standard deviation of 
water body sizes were 0.035 km2, 0.00147 km2, and 
0.700 km2, respectively.

3.4.3. Outlier detection algorithm implementation
The use of the PS-D mosaic comprehending summer 
scenes between 2017 and 2019 for water body delinea-
tion (HLWATER) and the S2 from 23 August 2019 for 
reflectance retrieval (HLWATER-Optical) could locally 
create inconsistencies, for example, associated with 
modifications in the vegetation close to the shorelines 
or even drainage or drying events. To mitigate such 
inconsistencies, which would impact reflectance with-
out relation to water properties, we implemented 
a data-driven, unsupervised kNN multivariate outlier 
detection algorithm, using the NIR band and the red/ 
green ratio as references in the PyOD Python library 
developed by Zhao, Nasrullah, and Li (2019). The red/ 
green ratio is commonly used for colored dissolved 
organic matter and water color analysis in organic- 
rich water bodies (Kutser et al. 2004; Toming et al.  
2016), while the NIR band is used for removing or 
correcting sun-glint (Kay et al., 2009) and land- 

adjacency impacts (Paulino et al. 2022). The removal 
of outliers also allowed to further analyze the whole 
dataset focusing on the prevailing optical groups.

Although simple, kNN demonstrates state-of-the-art 
performance for detecting both global and dependency 
anomalies in data (Han et al. 2022). During the imple-
mentation, we used an outlier fraction of 0.01 (Figure 6). 
Increasing this threshold did not significantly alter the 
general band reflectance statistics and led to the 
removal of very turbid water bodies (e.g. whitish), limit-
ing the accurate assessment of their optical representa-
tivity at the regional scale.

Notably, the kNN algorithm caused minor changes in 
mean, median, standard deviations, Interquartile Range 
(IQR), first and third quartiles, as well as coefficient of 
variations TOA reflectance across all bands, indicating 
that outliers were isolated cases and did not affect the 
main data distribution (Table 2). At the end, the kNN 
implementation identified 1,314 outliers, which were 
excluded from further analysis. This resulted in a total of 
166,441 water bodies being used for the optical assess-
ment and included in the HLWATER-Optical product.

3.5. Regional analysis

The regional analysis was conducted using 1 km2 hex-
agonal grids as geographical units over the HLWATER 
and the HLWATER-Optical datasets. HLWATER cover-
ing 335,281 water bodies was used for the calculation 
of the limnicity and limnodensity. The analysis of the 
limnicity or the distribution of the water fraction of 
land surface per km2 provided insight into the spatial 
extent of the main water bodies within the landscape. 

Figure 6. Identification of the outliers and inliers according to the multivariate combination of the S2 red/green ratio and NIR using 
the kNN outlier detection algorithm.
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The limnodensity, here defined as the density of 
inland water bodies per km2, allowed us to determine 
the concentration of small lentic water systems across 
the region. For this calculation, each water body was 
considered as an individual entity, and their centroids 
were computed and used as geographic references.

The HLWATER-Optical dataset allowed the color analy-
sis of 166,441 water bodies and estimates of “limnodiver-
sity” as the total number of optical clusters computed by 
the centroid of each water body per km2. The optical 
clusters were defined using K-Means clustering with opti-
mized seed locations in ArcGIS Pro 3.2, based on the green 
and red bands from S2 (Khan 2012). The number of optical 
water body groups was set to 11, automatically deter-
mined by the optimal K based on Pseudo-F Statistics 
scores (e.g. similar to the Calinski and Harabasz score – 
ratio between-cluster dispersion and within-cluster dis-
persion). Thus, a 1 km2 hexagon showing 11 different 
cluster members would indicate the maximum possible 
scale of limnodiversity of our regional sector. Finally, we 
graphically combined limnodensity with limnodiversity 
through a bivariate classification. This analysis allowed 
us to better analyze how small water bodies were respon-
sible for sustaining contrasting limnodense and limnodi-
verse landscapes in the regional sector.

4. Results

4.1. Limnicity

The implementation of the HLWATER model allowed 
the classification of a total of 335,281 water bodies 

over the PS-D mosaic. Of these, 90% (303,049) were 
smaller than 0.01 km2 and covered a total area of 
313 km2. The remaining 10% (32,232) were larger 
than 0.01 km2 and covered a total area of 5,583  
km2 (Table 3).

Analyzing the limnicity at the regional scale, 
the majority of the 1 km2 hexagonal grids 
revealed small water fractions. About 86% of the 
grids showed water fractions smaller than 32.1% 
(<6.8 = 36%; 6.8–17.4 = 30%; 17.4–32.1 = 20%). The 
remaining 14% had water fractions greater than 
this threshold (32.1–56.9 = 10%; >56.9 = 4%). 
Higher water fractions were observed toward the 
northern latitudes and farther from the coast, 
especially above the 56.5° N parallel and from 
the boundary of the sporadic permafrost zone 
toward the continuous permafrost zone (Figure 7).

High water fractions were usually indicative of large 
rivers and large lakes. An example was the Great Whale 
River, the largest river in eastern Hudson Bay, which has 
its mouth near the village of the Inuit and Cree commu-
nity of Kuujjuarapik-Whapmagoostui (Bhiry et al. 2011; 
Owczarek et al. 2020). Cases of large hydrologically inter-
connected lakes included Lake Tikirartuuq and Lake 
Kakiattualuk, located in glacially carved granitic depres-
sions that are typical of the vast highlands of the 
Canadian Shield (Leboeuf and Fournier 2015; 
Magnuson et al. 1997; Nitze et al. 2018).

Conversely, smaller water fractions were observed 
along the coast and in the lowlands of more or less 
open U-shaped valleys, typically filled with Quaternary 

Table 2. S2 TOA reflectance (unitless, 0–1) band statistics considering all water bodies before and after implementing the kNN outlier 
detection algorithm.

Date S2 band Min Max �X σ Md IQR 1st Q 3rd Q CV

Before kNN Blue 0.071 0.199 0.080 0.009 0.078 0.006 0.076 0.081 0.110
Green 0.044 0.219 0.056 0.013 0.053 0.010 0.049 0.059 0.237
Red 0.023 0.224 0.040 0.015 0.036 0.013 0.031 0.044 0.381
NIR 0.015 0.342 0.062 0.036 0.048 0.048 0.034 0.082 0.582
Red/Green 0.528 1.026 0.709 1.137 0.683 1.267 0.631 0.740 1.604

After kNN Blue 0.071 0.197 0.080 0.008 0.078 0.006 0.076 0.081 0.102
Green 0.044 0.219 0.056 0.013 0.053 0.010 0.049 0.059 0.223
Red 0.026 0.224 0.040 0.014 0.036 0.013 0.031 0.044 0.354
NIR 0.017 0.213 0.061 0.035 0.048 0.048 0.034 0.082 0.569
Red/Green 0.595 1.026 0.706 1.121 0.683 1.271 0.631 0.739 1.587

Table 3. HLWATER database summary statistics on the total water bodies of the regional sector, split by 0.01 km2 size 
threshold and considering a minimum detection size threshold of 166 m2..

Features n �X σ Md Total area

Water bodies > 0.01 km2 32,232 0.17 km2 1.59 km2 0.03 km2 5,582 km2

Water bodies < 0.01 km2 303,049 0.001 km2 0.002 km2 0.0004 km2 313 km2
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marine surficial deposits left by the transgression of the 
Tyrrell Sea at ≈7.9 ka (Bhiry et al. 2011; Leboeuf and 
Fournier 2015). These low water fraction grids were 
especially prevalent below the 56.5° N parallel, in non- 
permafrost sectors as well as between the discontinu-
ous and sporadic permafrost zones.

4.2. Limnodensity

While the limnicity analysis illustrated the geographical 
distribution of large water bodies in the regional sector, 

the calculation of the limnodensity (number of water 
body centroids per 1 km2) provided a different perspec-
tive by highlighting the representativity of small water 
bodies in certain valleys (Figure 8). Although 63% of the 
area revealed the existence of up to 8 water bodies 
per km2, some valleys exhibited exceptionally high lim-
nodensities, up to 229 water bodies per km2 (Figure 8).

Along the coast and on islands, small water bodies 
were mainly associated with outcrops, specifically rock 
concavities filled with water. Further inland, often along 
valley lineaments perpendicular to the coast, and 

Figure 7. Limnicity (water fraction of land surface per 1 km2) for western Nunavik: a) regional map of limnicity with permafrost zones 
and treeline limits, b) detail of sector A and c) sector B, showing the water surface extent output from HLWATER (white boundaries) 
over the PS-D mosaic (true color composite) and the hexagons with the limnicity classification. Classes were defined using the natural 
breaks method. The base information is from the Government of Canada (CanVec and permafrost atlas).
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especially in the discontinuous permafrost zone, small 
water bodies extended into glacial valleys filled with 
Quaternary deposits (Leboeuf and Fournier 2015). In 
some valleys, such as those of the Sheldrake River basin, 
these water bodies extended up to 45 km far from the 
coast. These limnodense landscapes in the discontinuous 
permafrost zone, or near this zone, were linked to 
advanced stages of permafrost degradation, character-
ized by the collapse, erosion, and subsidence of perma-
frost mounds such as palsas and lithalsas (e.g. BGR) (Allard 
and Seguin 1987; Coulombe, Bouchard, and Pienitz 2016; 

Matveev et al. 2016). In this zone, high limnodensities 
were observed not only perpendicular to the coast but 
also parallel, depending on the direction of the axis of the 
main valleys (Figure 8b). In the sporadic permafrost zone, 
high-density small water body hotspots became isolated, 
such as near KWAK and the Lac Trégnier.

4.3. Limnodiversity

For evaluating the limnodiversity of the regional sec-
tor, namely the existence, representativity and 

Figure 8. Limnodensity (number of water body centroids per 1 km2) for western Nunavik: a) regional map of limnodensity with 
permafrost zones and treeline limits b) detail of sector A and c) sector B, showing the water surface extent output from HLWATER 
(white boundaries) over the PS-D mosaic (true color composite) and the hexagons with the limnodensity classification. Classes were 
defined using the natural breaks method. The base information is from the Government of Canada (CanVec and permafrost atlas).
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geographical distribution of the different optical 
(color) groups, we used K-Means clustering, which 
automatically identified a total of 11 clusters, based 
on the green and red TOA reflectance of the 
HLWATER-Optical database (Figure 9). Generally, clus-
ters 1 through 5 showed TOA reflectance (0–1 unit-
less) ranging from minimum median values of 0.048 
in the green and 0.029 in the red to maximum median 
values of 0.063 in the green and 0.049 in the red. The 
IQR ranged from a minimum of 0.0015 in the green 
and 0.0018 in the red in cluster 1 to a maximum of 
0.0033 in the green and 0.0038 in the red in cluster 5. 
Visual inspection indicated that these clusters predo-
minantly referred to black (e.g. apparent dark condi-
tions) colored water bodies (Figure 10).

From cluster 5 to cluster 6, the IQR in the green 
changed from 0.0033 to 0.0046 and in the red from 
0.0038 to 0.0048, potentially indicating an important 
shift in the optical properties of the water bodies 
integrated in subsequent clusters. In cluster 7, the 
IQR continued to increase to 0.0072 in the green 
and 0.0074 in the red, and in cluster 8, from 0.0093 
in the green to 0.0103 in the red. Visual inspections of 
these clusters revealed brownish colors (Figure 10). 
Finally, clusters 9 to 11 exhibited IQR values over 0.01 
in both the green and red bands, with cluster 11 
reaching a maximum IQR value of 0.02 in the red 
band. Visual inspection of these clusters indicated 
light brown (clusters 9 and 10) to white (cluster 11) 
colored waters (Figure 10).

In terms of regional representativeness, there was 
a clear predominance of black-colored water clusters 
(Figure 10). Specifically, cluster 1 (52,021 water bodies  
= 31%) and cluster 2 (34,035 water bodies = 20%) 

represented over half of the total water body occur-
rences. Combined, the black color clusters (1, 2, 4 
and 5) accounted for 91% of the water bodies, fol-
lowed by the brownish clusters (6, 7 and 8) with 8%, 
and the light brownish/whitish water bodies (9, 10 
and 11) representing 1.3%. This highlighted that the 
latter were rare and special cases within the predomi-
nantly black-colored water body landscape.

The distribution of cluster types showed clear 
geographical controls and regional gradual 
changes. Specifically, there was a noticeable transi-
tion from widespread regional distribution domi-
nated by black colored water bodies to clusters of 
brown and light-brown colored water bodies con-
centrated in small areas, which typically coincided 
with high limnodensity hotspots (Figure 11). In 
black-colored clusters, while cluster 1 (lowest TOA 
reflectance) corresponded to large water bodies 
located in bedrock sectors, clusters 2 through 5 
corresponded to smaller water bodies moving 
from widespread distributions to progressive con-
finements to the main limnodensity hotspots. The 
brown (clusters 6 to 8) and light brown (clusters 9 
to 11) clusters were concentrated in the high lim-
nodensity hotspots within the sporadic to discon-
tinuous, but mainly in the discontinuous 
permafrost zone. In particular, the light-brownish 
water bodies were primarily observed in the high 
limnodensity hotspots of the northern valleys 
within the discontinuous permafrost zone, with 
some isolated cases occurring in the sporadic and 
continuous permafrost zones.

In general, the coexistence of small water bodies 
with black, brown, and light-brown colors in spe-
cific glacial valleys within the discontinuous 

Figure 9. Green and red TOA reflectance (0–1 unitless) statistics per clusters of water bodies grouped by color regimes based on shifts 
in the Interquartile-Range (IQR).
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permafrost zone, characterized by thermokarst pro-
cesses due to their unique climatological, geologi-
cal, and hydrological settings, resulted in the most 
limnodiverse landscapes. In this permafrost zone, 
some thermokarst landscapes revealed 5 to 11 
color clusters, further showcasing their limnological 
singularity in the regional sector (Figure 12).

4.4. Limnodensity, limnodiversity, and the case 
study of the Sheldrake River basin

We graphically combined limnodiversity (total num-
ber of optical clusters computed by the centroid of 
each water body per km2) with limnodensity (total 
number of water body centroids per km2) to evaluate 

Figure 10. Cluster color frequencies in western Nunavik (bottom right) with examples for the dominant color of the water body 
comparison (black, brown and light brown). The S2 scene is a true color composite (RGB).
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Figure 11. Geographical distribution of the water body color clusters in western Nunavik, expressed by density (total number of water 
bodies centroids per 1 km2). Clusters 1, 2 3, 4, and 5 – black water bodies; clusters 6, 7, and 9 – brown water bodies; clusters 9, 10, and 
11 – light brown/whitish water bodies. The base information is from the Government of Canada (CanVec and permafrost atlas).
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how small water bodies were responsible for sustain-
ing high limnodense and limnodiverse landscapes 
(Figure 13).

Most of western Nunavik showed low limnodi-
versity and low limnodensity, representing 63% of 
the classified grids. These landscapes also showed 
higher limnicity. The largest water bodies, such as 
glacial basin lakes, had similar optical properties, 
with low green and red TOA reflectance and were 
classified within this group (Figure 13c). 
The second most common classification was 

moderate limnodiversity and moderate limnoden-
sity, representing 11% of the classified grids. This 
class was typically linked to peatlands (e.g. close to 
SAS, Figure 13). On the opposite side of the spec-
trum, 2% of the grids were classified as having high 
limnodiversity and high limnodensity (Figure 13b). 
These areas were densely packed with small water 
bodies of varied colors. Some of these hotspots 
were well-defined in the landscape. Typically, they 
were surrounded by grids with moderate limnodi-
versity and high limnodensity, representing 7%. 

Figure 12. Limnodiversity (total number of optical clusters computed by the centroid of each water body per km2) for western 
Nunavik: a) regional map of limnodiversity with permafrost zones and treeline limits; b) detail of sector A and c) sector B, showing the 
water surface extent output from HLWATER (white boundaries) over the S2 scene (true color RGB composite). The base information is 
from the Government of Canada (CanVec and permafrost atlas).
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This effect was attributed to the varying optical 
properties of the water bodies along the valleys, 
as observed in the Sheldrake River basin (Figures 
13 and 14).

The Sheldrake River basin exemplified how the 
optical properties of thermokarst ponds varied 
along some valleys according to the characteristics 
and environmental conditions of the landscapes, 
such as the type of peatland and underlying sur-
face deposits, impacting water optical quality 

properties (Figure 14). The valley showed a strong 
variability in green and red reflectance, related to 
different scattering and absorption properties of 
individual lentic systems. A gradient of decreasing 
reflectance was observed from the west, near the 
mouth of the Sheldrake River to the east, with an 
abrupt decrease at 76° 08’ W. This reduction in 
reflectance, along with the change from high lim-
nodiversity and high limnodensity to moderate 
limnodiversity and high limnodensity, coincided 

Figure 13. Bivariate classification of limnodiversity (LDi – total number of optical clusters computed by the centroid of each water 
body per km2; classification intervals: 1–3; 3–6; 6–11) and limnodensity (LDe – total number of water body centroids per km2; 
classification intervals: 1–10; 10–20; 20–229) for western Nunavik: a) regional map with the former bivariate classification, permafrost 
zones and treeline limits, b) detail of sector A and c) sector B, showing the water surface extent output from HLWATER (white 
boundaries) over the S2 scene (true color RGB composite). The base information is from the Government of Canada (CanVec and 
permafrost atlas).
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with the inland limit of Tyrrell Sea paleo-marine 
sediments mapped by Allard and Seguin (1987) in 
this and surrounding basins. Accordingly, the gra-
dient of decreasing reflectance appeared primarily 
controlled by the prevalence of scattering by sus-
pended sediments in lakes with beds in fluviomar-
ine deposits in the downstream sector of the basin 
(from 76° 25’ to 76° 08’ W), which eastwards had 
surficial organic deposits, adding absorption (Allard 
and Seguin 1987). In high limnodensity hotspots, 
small water bodies closer to the coast and along 
the Sheldrake River were predominantly lithalsa- 
formed ponds (Figure 14b) and further inland 

gave rise to palsa-formed ponds, marking the sig-
nificant increase in reflectance and color that we 
found, as also supported by Allard and Seguin 
(1987) (Figure 14d).

5. Discussion

5.1. Synergistic remote sensing assessments of 
small water bodies: potential and uncertainties

We have developed a methodological framework that 
significantly enhanced the retrieval of spatial metrics 
and optical properties, specifically from small water 

Figure 14. Bivariate classification between limnodiversity (LDi) and limnodensity (LDe) of Figure 11 for part of the Sheldrake River 
basin (black grids): a) general map and selected cases of 1 km2 grids (A, B, C and B); b) detail of grid A,B, C and D; c) and d) green and 
red TOA reflectance for the water bodies along the valley. Grid B is the BGR study site of Figure 2. The white boundaries are the surface 
water extent outputs from HLWATER over the S2 scene (true color RGB composite).
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bodies, by integrating data and products from PS-D 
and S2 satellites. This framework was designed to be 
replicable in other regions and may be especially 
useful for studying small water bodies around the 
world. In addition, the new PlanetScope SuperDove 
constellation, with its improved radiometric quality 
(e.g. signal-to-noise ratio), offers more spectral infor-
mation (coastal blue − 443 nm; blue − 490 nm; green 
I − 531 nm; green − 565 nm; red − 665 nm; red edge − 
705 nm; NIR I − 740 nm; NIR II − 865 nm) at the same 
spatial resolution (≈3 m) and is now harmonized to S2 
acquisitions. This enhancement leverages the volume 
of data (e.g. increased revisit time) and maximizes the 
probability of acquiring clear-skies imagery.

The development of our processing and the quality 
of our results were only possible by using the HLWATER 
model over a 3-m PS-D mosaic and further ensuring 
optimal co-registration between that mosaic and 10-m 
S2 tiles through the implementation of AROSICS 
(Scheffler et al. 2017). Although, in general, adjust-
ments of less than 1/2 S2 pixels were done, in some 
sectors these reached up to 5 S2 pixels (e.g. 56 m). In 
those cases, AROSICS was not always able to fully 
resolve the co-registration, which implied the need to 
perform visual inspections along with manual removal 
of some small water bodies from the analyses. In addi-
tion, our reflectance extraction method for small water 
bodies, considering the farthest pixel from the shore-
lines, complemented this innovative approach.

We selected S2 imagery acquired under clear sky 
conditions and for the mid-warm season; therefore, 
the scenes were mostly free from impacts related to 
clouds, cloud shadows, and snow/ice covers. For 
removing specific water bodies impacted by these 
factors, the use of the S2 L2A SCL correspondent 
classes proved efficient. However, further careful ana-
lysis and consideration of the quality of this product is 
advisable when S2 scenes are acquired under varying 
cloud cover conditions due to frequent omission and 
commission errors (Qiu, Zhu, and He 2019).

The use of K-Means based on the highest Pseudo-F 
Statistics score allowed the definition of the number 
of color clusters, setting the limnodiversity scale 
according to the overall water body optics of the 
regional sector. Since K-Means is known to be parti-
cularly sensitive to outliers, implementing the kNN 
outlier detection algorithm beforehand was impor-
tant (Ahmed, Seraj, and Mohammed 2020; Khan  
2012; Zhao, Nasrullah, and Li 2019).

According to assessments using historical data on 
optical and geochemical lake characteristics in this 
region (Bouchard et al. 2011, 2014; Breton et al.  
2009; Laurion et al. 2010; Watanabe et al. 2011), 
along with our own field work surveys (Freitas et al.  
2019, 2022) and visual inspections of the color clus-
tering, the results were not only uniform but also 
consistent with the optical in situ characteristics of 
the water bodies. The spatial validation of the 
HLWATER model presented by Freitas et al. (2024) 
showed that the water body delineation was robust 
even for small lakes and ponds. However, to extend 
the HLWATER-Optical approach to time-series analy-
sis, further exploration of atmospheric correction 
models and their applicability to small and optically 
diverse water bodies is needed (Warren et al. 2019).

Water bodies experience water table oscillations 
through time, making their boundaries shrink or 
expand (Pekel et al. 2016; Pickens et al. 2020). Xu 
et al. (2022) showed that global lakes and reservoirs 
larger than 1 km2 experienced rising water levels 
from 2003 to 2021, while large uncertainties remain 
in the case of small water bodies. Our selection 
procedures for spectral signatures avoided the pro-
blems associated with lake expansion. However, 
especially for small lakes and ponds, applications 
of our method to other periods will result in 
improved results if running again the HLWATER 
model over near-synchronous PS-D and S2 mosaics. 
This will be an important step for time-series analy-
sis. In the current approach, the outlier removal 
technique that was applied guaranteed that water 
bodies drained in the short interval between the 
water body delineation (HLWATER) and the S2 
retrievals (HLWATER-Optical) would not be included 
in the analysis.

5.2. Thermokarst pond genesis, representativity, 
and evolution: the importance of optical remote 
sensing retrievals

In eastern Hudson Bay, thermokarst water bodies are 
no older than 300 years (Bouchard et al. 2011). 
Accordingly, their formation and evolution can be 
attributed not only to the end of the Little Ice Age 
but also to recent climate change, where increasing 
air temperatures and precipitation have accelerated 
permafrost degradation, a trend observed in most 
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boreal regions (Bhiry et al. 2011; Bouchard et al. 2014; 
Mccrystall et al. 2021; Payette et al. 2004; Vallée and 
Payette 2007). As a result, monitoring these small 
lentic systems is essential for assessing how climate 
change has been shaping the hydrology, energy bud-
gets, and biogeochemistry of the Arctic and Subarctic 
lowlands (Arsenault et al. 2022; Hassan et al. 2023; 
Holgerson and Raymond 2016; Muster et al. 2017; 
Taillardat et al. 2024).

Our research identified specific optical groups 
associated with distinct permafrost conditions. 
Brown and light brown water bodies were concen-
trated in limnodensity hotspots in the discontinuous 
and sporadic permafrost zones and appeared to be 
associated with thermokarst landscapes resulting 
from degrading organic-rich palsas (e.g. black to 
brown colored waters) or mineral-rich lithalsas (e.g. 
light brown to whitish colored waters), which are 
typical geomorphological features of these perma-
frost zones (Bouchard et al. 2017).

Comparison of our clustering results with the per-
mafrost probability and the Mean Annual Ground 
Temperature (MAGMT − 2000–2016) map products 
developed by Obu et al. (2019) gave consistent 
results. While black-colored clusters that represent 
the clear water lake-type without scattering particles 
were observed in a wide range of conditions, an 
increasing concentration of brown- and light brown- 
colored clusters that represent water bodies domi-
nated by scattering suspended material was found 
in higher permafrost probability sectors, as well as 

lower MAGTM sectors, supporting their thermokarst 
genesis (Figure 15). Along some valleys, lithalsa- 
formed pond landscapes near the coast gave way to 
palsa-formed pond ones further inland (that was 
more represented by hotspots with high limnoden-
sity, but moderate limnodiversity, characterized by 
lower reflectance clusters). Although light brown 
and white ponds were rare (1.3%), they are known 
to be generally younger and may serve as markers 
and sentinels of change in thermokarst landscapes 
(Bouchard et al. 2014).

Shifts of decreasing reflectance along the valleys 
toward the east appear to be linked to the eastern 
boundary of Tyrrell Sea sedimentary deposits (Allard 
and Seguin 1987). Thus, changes in pond colors can 
primarily be attributed to sedimentological controls 
of the lake bed and lake shores along the valleys, 
namely the clayey silts of the Tyrrell Sea deposition 
near the coast in the west, followed by alluvial plain 
silty and sandy sediments with beds of organic debris 
and then fibrous peat rich in wood materials toward 
the east further inland (Allard and Seguin 1987). These 
diverse ponds in thermokarst landscapes have been 
subject of numerous studies (Bouchard et al. 2011,  
2014; Breton et al. 2009; Folhas et al. 2020; Freitas 
et al. 2019; Laberge-Carignan et al. 2024; Laurion 
et al. 2010; Matveev et al. 2016; Wang et al. 2018; 
Watanabe et al. 2011), but these studies were mainly 
restricted to localized sites or local scales. With the 
spatial upscaling that the HLWATER-Optical remote 
sensing approach provides the data of these studies 

Figure 15. HLWATER-Optical color clusters, permafrost probability (%) and Mean Annual Ground Temperature (MAGMT – C°) from 
2000 to 2016 by Obu et al. (2019). Clusters 1, 2 3, 4, and 5 – black water bodies; clusters 6, 7, and 9 – brown water bodies; clusters 9, 10, 
and 11 – light brown/whitish water bodies.
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can be set in much larger spatial context (Olefeldt 
et al. 2021).

Considering the bivariate classification between 
limnodiversity and limnodensity, some classes were 
likely indicative of thermokarst landscapes (high lim-
nodiversity and high limnodensity, as well as medium 
limnodiversity and high limnodensity). Although 
these represented a relatively small fraction of the 
total area (2% and 7%, respectively), they accounted 
for over a third of the total number of water bodies 
(113,759 n = 34%), 97% of which showed sizes below 
0.01 km2 (110,926 n) (Bégin and Vincent 2017; Laurion 
et al. 2010). In comparison, a smaller fraction of black 
water bodies was set within these landscapes, repre-
senting 23%, while brown and light brown water 
bodies represented 60% and 92%, respectively. 
Certain optical clusters in the study sector included 
only small ponds, showing high optical diversity, 
while glacial erosion water bodies were included in 
the lowest green and red reflectance clusters as black- 
colored water bodies (1–5).

Black-colored water bodies showed a much higher 
green relative to red reflectance (Figure 7), which 
indicates oligotrophic conditions with only minor par-
ticle scattering in the water column. Conversely, the 
significant proportion of the optical signal from 
brown water bodies is indicative of higher particle 
content. For the high-scattering water bodies that all 
do not belong to the black-colored clusters, the 
reduced green relative to red reflectance could be 
indicative of higher colored dissolved organic matter 
absorption due to allochthonous terrestrial input in 
the green wavelength region that was also described 
by Kutser et al. (2004). This supports the idea that 
these limnoscapes that contain water bodies with 
a reduced green relative to red reflectance sustain 
important sources of carbon for greenhouse fluxes, 
with possible regional and global implications 
(Arsenault et al. 2022; Laurion et al. 2010). Light 
brown and white ponds should be recent and con-
strained by high inputs of inorganic particulate matter 
from thawing lithalsas (e.g. silt and clay), leading to 
high green and red reflectance characterized by less 
absorption and by this, revealing a distinct organic 
biogeochemistry (Bouchard et al. 2011; Coulombe, 
Bouchard, and Pienitz 2016).

While large water bodies are influenced by large 
hydrographic basin processes, small thermokarst 
water bodies drain small basins (Arsenault et al.  

2022). These basins or catchments, although small, 
may be dynamic concerning terrestrial inputs into 
the water bodies, due to freeze-thaw cycles and per-
mafrost disturbances, affecting their biogeochemistry 
at different rates in space and time (Coulombe, 
Bouchard, and Pienitz 2016; Grosse, Jones, and Arp  
2013). These variations are not feasible to assess by 
costly and field-demanding in situ observations but 
can be efficiently tracked by an optical remote sen-
sing approach such as HLWATER-Optical.

Wauthy et al. (2018) analyzed in situ datasets of 253 
ponds across 14 regions in the circumpolar north, 
documenting a general “browning” in optical proper-
ties due to an increasing dominance of land-derived 
organic matter from permafrost thaw. In complement 
to that study, our approach can track optical changes 
in small water bodies over time, addressing how var-
ious lentic systems react to terrestrial ecosystem 
changes, such as permafrost thaw, terrestrialization, 
shrubification, and shifts in plant community struc-
ture over large areas. This will allow for an improved 
understanding of the small-scale but biogeochemi-
cally intense processes occurring across the circum-
polar North.

6. Conclusions

We developed a remote-sensing synergistic strategy 
combining PS-D and S2 acquisitions for assessing the 
limnicity, limnodensity, and limnodiversity of a boreal 
forest tundra transect located in Nunavik, Subarctic 
Canada. The proposed indices of limnodensity and 
limnodiversity, together with limnicity, provided an 
unprecedented overview of lake and pond variability 
of this transition zone. Deglaciation history and geo-
morphological controls, together with permafrost 
conditions, marked the regional patterns in limnicity, 
limnodensity, limnodiversity, and lake color domi-
nance that were found.

Our detailed limnological assessment was made 
possible by implementing the HLWATER model, 
which consisted of a trained Mask-RCNN deep learn-
ing model, over a 3-m spatially resolved PS-D mosaic, 
for generating a very high-resolution water body deli-
neation database, and then using this product as 
a reference for water reflectance retrievals from the 
HLWATER-Optical dataset, itself derived from S2 ima-
gery. The satellite scenes were combined through 
local co-registration and outlier filtering, and the 
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HLWATER and HLWATER-Optical datasets are now 
made freely available for other applications.

Our framework allowed the successful delineation 
and investigation of 335,281 water bodies across 
a latitudinal gradient from non-permafrost to the con-
tinuous permafrost zone. Of these, 90% (303,049) 
were smaller than 0.01 km2, highlighting the vast 
number of small water bodies in the region. While 
limnicity largely reflected the distribution of large 
water bodies, limnodensity allowed us to identify 
the significant presence and distribution of small 
lakes and ponds in several glacial valleys. In the dis-
continuous permafrost zone, certain valleys, such as 
the Sheldrake River basin, exhibited a remarkably 
high limnodensity, with up to 229 water bodies 
per km2 extending up to 45 km inland. Although 
small in size, these high-density water bodies are 
likely to play a critical role in key biogeochemical 
processes, such as carbon and nutrient cycling, sup-
porting also a wide variety of benthic communities, 
plankton populations, and microbial activities 
(Abnizova et al. 2012; Bégin and Vincent 2017; Kuhn 
et al. 2018; Laurion et al. 2010; Matveev et al. 2016). 
Such a detailed geographical analysis of these water 
bodies for this region had not been conducted prior 
to this study, underscoring the novelty of our 
approach and the resultant datasets.

According to the HLWATER-Optical dataset of 
166,441 water bodies, large water bodies in glacially 
carved basins generally exhibited the lowest green and 
red reflectance due to high water transparency by low 
content of scattering particles. In contrast, some valleys 
in the discontinuous permafrost zone were character-
ized by a combination of high limnodensity and high 
limnodiversity due to different contributions of scatter-
ing by particles and absorption by organic matter. The 
analyses revealed active thermokarst landscapes that 
are currently experiencing permafrost degradation. 
These are undergoing marked changes and show dif-
ferent stages of mineral-rich lithalsa and organic-rich 
palsa degradation, resulting in the proliferation of 
small thermokarst ponds that have diverse optical 
properties even across small geographic areas.

The optical lake clusters with the highest green and 
red reflectance indicative of white-, light brown-, and 
brown-colored waters due to high scattering on parti-
cles were primarily found near the coast, associated 
with lake beds in lithalsas and the clayey silts of the 
Tyrrell Sea sediment deposition. Further inland, these 

clusters gave way to lower reflectance waters due to 
lower scattering particles, associated with lake beds in 
palsas, alluvial plain silty, and sandy sediments with 
beds of organic debris and peat accumulation with 
fibrous wood pieces (Allard and Seguin 1987). The 
variability in thermokarst water bodies underscores 
the need to differentiate between those over organic 
or mineral deposits to better predict their functioning 
and biogeochemical roles (Arsenault et al. 2022; Kokelj 
and Jorgenson 2013; Taillardat et al. 2024).

The research framework and the remote sensing pro-
cessing tools presented here can be extended to other 
regions and through time, providing insights into the 
genesis, role, and evolution of small water bodies, 
including peatland, thermokarst, and river delta water 
bodies. By integrating in situ observations, our approach 
could further enhance the spatial and temporal under-
standing of aquatic biogeochemical processes. These 
results also draw attention to the importance of contin-
uous monitoring and advanced remote sensing techni-
ques for an improved understanding of climate change 
impacts on northern landscapes and ecosystems.
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