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A B S T R A C T

Environmental decision-making is inherently subject to uncertainty. However, decisions are often urgent, and
whether to take direct action or invest in collecting additional data beforehand is pervasive. To make this
trade-off explicit, the value of information (VoI) theory offers a powerful decision analytic tool to quantify
the expected benefit of resolving uncertainty in a decision context. Although it is mainly used in economic
contexts, it can be applied to biodiversity conservation and management.

In our approach, we evaluate the expected surplus in resolving uncertainty about the occurrence of harmful
algal blooms (HABs) in the German North Sea coastal waters and the effect on decision-making. We use
an established dynamic foodweb model (NPPZ) with two competing phytoplankton consortia (harmful, non-
harmful) and regional monitoring data to analyse the prediction accuracy of different indicators. Our analysis
revealed a prediction accuracy of a HAB occurrence of 0.65 % if additional information on zooplankton is
included. We then evaluate the effect of reducing uncertainty about these indicators (e.g., through extended
monitoring) on management decisions employing a VoI analysis. We find that additional information may
lead to an expected welfare gain of up to 2.67 million Euro in our decision context. Our results highlight
the significant potential for VoI analysis to enhance decision-making in fishery and ecosystem management
and provide insights for future monitoring strategies to mitigate the adverse effects of HABs. This approach
contributes valuable methodological insights for optimising management strategies and further emphasises the
importance of considering uncertainty in decision-making processes.
1. Introduction

A feature associated with many phytoplankton species is their abil-
ity to rapidly increase in concentration, resulting in substantial plank-
ton blooms. Some algal species bloom regularly during the season and
thus produce spring blooms, which is beneficial for the ecosystem since
they establish the base of the aquatic food web (Anderson, 2009). By
contrast, other algal species bloom only sporadically but can have detri-
mental effects on the ecosystem. For instance, some of these species
release toxins, which can cause substantial mortality of fish, can result
in paralysis and death in sea birds and lead to negative health effects
for humans and other organisms (Anderson et al., 2000). These harmful
algal blooms (HABs) can negatively affect water quality and pose severe
economic losses for fisheries, tourism and recreation (Carias et al.,
2024), and may also impair value chains in the long-term (Hoagland
et al., 2002; Adams et al., 2018).

∗ Corresponding author at: Bielefeld University, Faculty of Business Administration and Economics, Universitätsstraße 25, 33615 Bielefeld, Germany.
E-mail address: amelie.luhede@hifmb.de (A. Luhede).

In recent years, a notable rise in the frequency of severe and unpre-
dictable HABs has been observed in coastal waters (Anderson, 2007;
Anderson et al., 2012; Gobler, 2020). Despite the significant damage
caused by HABs, the mechanisms driving their sudden occurrence
remain poorly understood. Accurate prediction of HABs is critical for
effective management and intervention, but current understanding is
limited (Lee and Lee, 2018). Therefore, enhancing predictive capa-
bilities through advanced modelling and data collection methods is
essential to mitigate the economic, environmental, and health impacts
of HABs.

Various modelling approaches have been developed to better under-
stand the dynamics of HABs and improve their prediction, leading to
more effective precautionary management strategies (Chakraborty and
Feudel, 2014). Alongside these efforts, continuous monitoring activities
provide valuable data that contribute to a deeper understanding of
https://doi.org/10.1016/j.jenvman.2024.123288
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HAB dynamics (Anderson et al., 2001). However, such monitoring is
resource-intensive, involving frequent observations, water sampling,
and laboratory testing (Lomax et al., 2005). Given the substantial
ost of data collection, decision-makers must evaluate whether the
enefits of additional information outweigh the associated costs, es-
ecially since delays in decision-making can reduce the effectiveness
f management interventions. This challenge is addressed by the value
f information (VoI) analysis, a decision-analytic tool that quantifies
he net benefit of information gathered at a specific cost. Originating
rom information theory and statistical decision theory (Hirshleifer and
iley, 1979), VoI has recently been applied to areas such as conserva-

ion management (Bennett et al., 2018; Canessa et al., 2020), fisheries
anagement (Prellezo, 2017; Haag et al., 2022), and water quality

monitoring (Nygård et al., 2016; Koski et al., 2020; Luhede et al.,
2024). Calculating VoI generally involves using decision-analytic meth-
ods, for example, decision trees or Bayesian networks, to model the
expected outcomes of different monitoring and information-collection
activities (Yokota and Thompson, 2004). Methods to estimate param-
eters for the decision context include modelling approaches (e.g. Jin
et al., 2020) to expert elicitation and surveys (e.g. Nicol et al., 2018);
see Bolam et al. (2019) for a literature overview of VoI in biodi-
ersity conservation. VoI offers a quantitative method for assessing
he expected improvement in decision-making outcomes as a result of
ollecting additional data, relative to the cost of that data acquisition.

This study seeks to evaluate the effect of reducing uncertainty
regarding the occurrence of HABs in the German North Sea by ex-
tending monitoring efforts. Specifically, we evaluate the value of ad-
ditional time-resolved data on zooplankton, a top-down control factor,
to improve predictions of HABs and enable timely management inter-
ventions. Current legislation focuses primarily on nutrient reduction,
particularly nitrogen, to mitigate eutrophication and HABs (Rönn et al.,
2023). However, the role of zooplankton in regulating HABs is often
overlooked in policy frameworks. Therefore, the objective of this study
is to assess the potential improvement in management decisions by
ncorporating zooplankton data alongside nutrient data to enhance
AB prediction.

To do so, we develop a methodological framework to quantify
the expected value of HAB predictions. We perform a VoI analysis
based on numerical simulations and monitoring data from a HAB
model (Chakraborty and Feudel, 2014). Our analysis quantifies the
economic value of collecting additional zooplankton data and assess
how reducing uncertainty impacts fishery management decisions. The
esults show that additional information has a positive value and imply
hat investing in improved predictions as an early warning system for
anagement decisions might be worthwhile. However, the outcomes

re sensitive to information quality, cost parameters and the perceived
rior belief of a HAB occurrence. Ultimately, this study contributes
ethodologically to the VoI literature in environmental management

nd offers practical guidance for decision-makers in addressing HABs.

2. Methods

2.1. Value of information

Making a decision implies that the decision-maker chooses (at least)
one of a set of candidate actions to achieve one or more specified
bjectives. The decision problem is more complex when the outcome
s determined not only by the action but also by the yet unknown state
f the system (or, more broadly, the world). In such a situation, the
ecision maker has to find a suitable way to cope with uncertainty, as
n action has to be chosen before uncertainty resolves. This uncertainty
an be represented as different beliefs about the (future) state of the
ystem, each with a probability of being true (prior belief). In our set-
ing, the objective is to prevent or at least mitigate the consequences of
he occurrence of a HAB by taking precautionary actions. We consider
 simple decision problem with two actions 𝑎 ∈  ∶= {𝑎 , 𝑎 } designed
0 1

2 
Table 1
Matrix summarising the HAB decision problem.

State of the world 𝑋 Management action 𝑎 Prior belief 𝑝𝑋
𝑎0 𝑎1

𝑋 = 𝑥0: no event 𝑣(𝑎0 , 𝑥0) = 0 𝑣(𝑎1 , 𝑥0) = −𝑐(𝑎1) 𝑝𝑋 (𝑥0) = (1 − 𝑝)
𝑋 = 𝑥1: HAB occurs 𝑣(𝑎0 , 𝑥1) = −𝑑 𝑣(𝑎1 , 𝑥1) = −𝑐(𝑎1) 𝑝𝑋 (𝑥1) = 𝑝

to control two states 𝑥 ∈ 𝛺 ∶= {𝑥0, 𝑥1}.1 Since the state is not known to
the decision maker in advance, it may be seen as a random variable 𝑋
with possible outcomes in 𝛺, where each state is believed to be the true
state with a given prior probability 𝑝𝑋 (𝑥). In our case, state 𝑥1 refers
to the occurrence of a HAB, and 𝑥0 to the occurrence of no HAB. The
decision maker can choose between two management actions: action 𝑎0,

hich is to do nothing, and action 𝑎1, which is to take a precautionary
easure.

As a baseline value for economic activity, a benefit 𝑏 accrues,
rrespective of the action taken. While inactivity is costless, 𝑐(𝑎0) = 0,
aking the precautionary management action is associated with some
ost 𝑐(𝑎1) > 0. In case of a HAB, i.e. if 𝑥1 is realised, a damage of an
mount 𝑑 occurs if no precautionary action is taken, while this damage
an be avoided if such an action is undertaken. To reduce parameters in
ur model, we can subtract the constant 𝑏 from the matrix without loss
f generality (see also Eq. (17) in the Appendix). This has the advantage
hat we only need two parameters (𝑑 and 𝑐). We can interpret the
ecision maker’s payoff 𝑣(𝑎, 𝑥) as the avoidance of a loss aimed to be
aximised (see Table 1).

More formally, the state, together with the action, determines the
tility (or the payoff) of the decision maker; that is, utility is a function

𝑣 ∶  × 𝛺 → R ∶ (𝑎, 𝑥) ↦ 𝑣(𝑎, 𝑥). Given that the system resides
in state 𝑥, an optimal decision is to pick the action that maximises
utility: 𝑎∗(𝑥) ∶= ar g max𝑎 𝑣(𝑎, 𝑥). Since the system visits different states
n accordance with 𝑝 = 𝑝𝑋 , the average value of optimal decisions is
E𝑋

[

𝑣(𝑎∗(𝑋), 𝑋)
]

= E𝑋

[

max
𝑎

𝑣(𝑎, 𝑋)
]

=
∑

𝑥
𝑝𝑋 (𝑥) max

𝑎
𝑣(𝑎, 𝑥) . (1)

Choosing an optimal action 𝑎∗(𝑥) requires perfect information about
the realised state. Therefore, this term represents the expected value
when the decision maker is informed about the realisation of the state
𝑋 before making a decision. In this case, the decision can be made
contingent on the state (of the world) 𝑋 = 𝑥 ∈ 𝛺. For this reason,
Eq. (1) represents the expected payoff under perfect information.

There are several variants of VoI. One of the most prominent is the
xpected value of perfect information (𝐸 𝑉 𝑃 𝐼). By acquiring additional

information, the decision maker obtains perfect information on the
true state of the world. Under perfect information, the decision can
be tailored to the actual state so that the decision can be made state-
dependent, yet if a decision maker lacks this clairvoyance (perfect
information), the decision has to compromise on all possible realisa-
tions of 𝑋 ∈ 𝛺, viz. to find a ‘‘one size fits all’’ action. In this case,
the decision maker can only use the information carried by the prior
distribution and select the action that maximises the expected value,
i.e., the expected value if the decision is made subject to prior (or
present) information. We refer to this value as the expected payoff under
rior information:

max
𝑎

E𝑋 [𝑣(𝑎, 𝑋)] = max
𝑎

∑

𝑥
𝑣(𝑎, 𝑥)𝑝𝑋 (𝑥). (2)

It is easy to see that ∀ 𝑎 ∈  ∶
∑

𝑥
max
𝑎

𝑣(𝑎, 𝑥)𝑝𝑋 (𝑥) ≥
∑

𝑥
𝑣(𝑎, 𝑥)𝑝𝑋 (𝑥)

hence

1 Binary decision problems are frequently considered in VoI analysis, as
they allow for an intuitive understanding of the problem (Giordano et al.,
2022; Luhede et al., 2024).
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∑

𝑥
max
𝑎

𝑣(𝑎, 𝑥)𝑝𝑋 (𝑥) ≥ max
𝑎

∑

𝑥
𝑣(𝑎, 𝑥)𝑝𝑋 (𝑥) .

Therefore, the difference between the expected utility under perfect
information and under prior (or current) information yields the expected
value of perfect information:

𝐸 𝑉 𝑃 𝐼 ∶=
∑

𝑥
𝑝𝑋 (𝑥)max

𝑎
𝑣(𝑎, 𝑥) − max

𝑎

[

∑

𝑥
𝑣(𝑎, 𝑥)𝑝𝑋 (𝑥)

]

= E𝑋

[

max
𝑎

𝑣(𝑎, 𝑥)
]

− max
𝑎

E𝑋 [𝑣(𝑎, 𝑥)] ≥ 0 . (3)

Hence, the value added by perfect information beyond the value
reached by using only the prior information is always non-negative,
nd it may be interpreted as the willingness of the decision-maker to
ay for perfect information. Since perfect information allows for the

best decisions to be made, 𝐸 𝑉 𝑃 𝐼 serves as an upper bound for any
investment in information acquisition.

However, only rarely can uncertainty be resolved entirely by infor-
mation (or data) acquisition. Typically, the arrival of new information
reduces the extent of uncertainty but does not eliminate it. The arrival
f new information may be seen as a measurement or a message
eceived, providing a better indication of the actual state (of the world)
ased on which a decision can be made. From an ex-ante point of
iew, the message received, 𝑀 , is not known in advance but is a
andom variable by itself with possible values in  with probability
istribution 𝑝𝑀 . Even though the message does not reveal the actual
tate, it provides an indication of the probability distribution of 𝑋. That
s, upon receipt of the message 𝑀 = 𝑚 ∈ , the decision maker updates
heir belief on the probability distribution of 𝑋, yielding the posterior
robabilities. In this case, the prior distribution 𝑝𝑋 should be replaced by
he more informative posterior distribution 𝑝𝑋|𝑀 and the excess value
eyond the reference set by the prior distribution, termed expected value
f imperfect information or expected value of sample information (𝐸 𝑉 𝑆 𝐼),
hould be calculated as2

𝐸 𝑉 𝑆 𝐼 ∶=
∑

𝑚

[

max
𝑎

∑

𝑥
𝑣(𝑎, 𝑥)𝑝𝑋|𝑀 (𝑥|𝑚)

]

𝑝𝑀 (𝑚) − max
𝑎

∑

𝑥
𝑣(𝑎, 𝑥)𝑝𝑋 (𝑥) (4)

= E𝑀

[

max
𝑎

E𝑥|𝑚 [𝑣(𝑎, 𝑋)]
]

− max
𝑎

E𝑋 [𝑣(𝑎, 𝑋)] .

The transition from 𝐸 𝑉 𝑆 𝐼 to 𝐸 𝑉 𝑃 𝐼 is made by enriching the informa-
ion contained in 𝑝𝑋|𝑀 until, eventually, there is a surjective function
 → 𝛺 which means that 𝑝𝑋|𝑀 (𝑥|𝑚) = 𝛿(𝑥 − 𝑥(𝑚)) and also 𝑝𝑀 = 𝑝𝑋
almost everywhere. In this limit case, we find

𝐸 𝑉 𝑆 𝐼 =
∑

𝑚
max
𝑎

𝑣(𝑎, 𝑥(𝑚))𝑝𝑀 (𝑚) − max
𝑎

∑

𝑥
𝑣(𝑎, 𝑥)𝑝𝑋 (𝑥)

=
∑

𝑥
max
𝑎

𝑣(𝑎, 𝑥)𝑝𝑋 (𝑥) − max
𝑎

∑

𝑥
𝑣(𝑎, 𝑥)𝑝𝑋 (𝑥)

= 𝐸 𝑉 𝑃 𝐼

By applying Bayes’ theorem, the conditional probability of 𝑋 on
, viz the posterior probability of 𝑋, denoted by 𝑝𝑋|𝑀 (𝑥|𝑚) can be

alculated by

𝑝𝑋|𝑀 (𝑥|𝑚) = 𝑝𝑀|𝑋 (𝑚|𝑥) 𝑝𝑋 (𝑥)
𝑝𝑀 (𝑚)

, (5)

here 𝑝𝑀 (𝑚) =
∑

𝑥
𝑝𝑀|𝑋 (𝑚|𝑥)𝑝𝑋 (𝑥). (6)

In this way, we can also compute the 𝐸 𝑉 𝑆 𝐼 via
∑

𝑚
max
𝑎

∑

𝑥
𝑣(𝑎, 𝑥)𝑝𝑀|𝑋 (𝑚|𝑥)𝑝𝑋 (𝑥) − max

𝑎

∑

𝑥
𝑣(𝑎, 𝑥)𝑝𝑋 (𝑥)

which shows that the additional information introduced via 𝑝𝑀|𝑋 by
acts by contracting the prior distribution. 𝐸 𝑉 𝑆 𝐼 can be posi-

tive, negative or zero depending on whether signal 𝑀 is ‘‘more, less
or equally informative’’ than the prior information. However, even

2 For measurements/messages belonging to a continuum  the sum

∑

𝑚 … 𝑝𝑀 (𝑚) should be replaced by the integral ∫ … 𝑝𝑀 (𝑚)𝑑 𝑚.

3 
though mathematically possible, the value of a message is necessarily
on-negative, as an information service can never lower the decision
aker’s utility (Hirshleifer and Riley, 1979, p.1395)

2.2. A conceptual dynamical NPPZ model for a HAB

The term HAB refers to a broad class of sporadic bloom events
in which a harmful algal species reaches extraordinary abundance,
dversely affecting water quality or causing problems for other species
f the food web that are relevant to ecological functions or services.
hese harmful effects can be quite diverse and depend crucially on the
pecific HAB species, mostly belonging to the groups of dinoflagellates

or raphidophytes (e.g. Smayda and Reynolds, 2003); related harmful
mechanisms encompass excretion of toxins (e.g. Tillmann and John,
2002; Ma et al., 2011), or allelopathic substances (e.g. Bagoien et al.,
1996; Tian et al., 2009), anoxic conditions (e.g. Lemley et al., 2019), or
the production of mucus and clogging of gills hampering moving and
breathing of target species (e.g. van der Lingen et al., 2016; Bornman
et al., 2022).

Plausible explanations for sporadic HAB outbreaks involve abi-
tic bottom-up factors, eutrophication and global warming, or biotic
actors, e.g., a failure of top-down control by reduced grazing pres-
ure. The latter mechanism was investigated early on in a theoreti-
al approach via formulation of process-oriented excitable dynamical
ystems (Truscott and Brindley, 1994). The occurrence of rapid and

massive bloom formations in an excitable bottom-up model dynamics
was reported by Huppert et al. (2004). In our paradigmatic approach,

e follow a specific model considered by Chakraborty and Feudel
(2014). A harmful algal species is modelled as a separate phytoplankton
compartment that complements the regular phytoplankton consortium,
forming the basis of the marine food web. In a biomass balance ap-
proach, the relevant quantities that enter a system of ordinary differen-
tial equations (ODEs) are the time-variant concentrations 𝑃1(𝑡) and 𝑃2(𝑡)
for non-harmful and harmful phytoplankton, respectively. The growth
of both algal species is controlled bottom-up by the availability of a
nutrient component (nitrogen) expressed by concentration 𝑁(𝑡), and
top-down by grazers (zooplankton), quantified by concentration 𝑍(𝑡).

The dynamical system is formulated as the following system of cou-
pled ODEs. The first equation (Eq. (7a)) shows the change in nitrogen
𝑁) over time, which is described by external nutrient inflow 𝑁𝑒𝑥𝑡,

nutrients uptake, respiration and nutrient recycling. The dynamics of
non-harmful and harmful phytoplankton, 𝑃1 and 𝑃2, are described by
growth, respiration, sinking and grazing (Eqs. (7b) and (7c)). Eq. (7d)
describes the change in zooplankton, which is influenced by growth
and linear mortality (starvation).

�̇� = 𝑘(𝑁𝑒𝑥𝑡 −𝑁) − 𝑔(𝑓1𝑃1 + 𝑓2𝑃2) + 𝑟(𝑃1 + 𝑃2) + 𝛽(ℎ1 + ℎ2)𝑍 + 𝛾 𝛿 𝑍 (7a)
�̇�1 = 𝑞 𝜗1 𝑔 𝑓1𝑃1 − 𝑟𝑃1 − 𝜎1𝑃1 − ℎ1𝑍 (7b)
�̇�2 = 𝑞 𝜗2 𝑔 𝑓2𝑃2 − 𝑟𝑃2 − 𝜎2𝑃2 − ℎ2𝑍 (7c)
�̇� = 𝛼1 ℎ1𝑍 + 𝛼2 ℎ2𝑍 − 𝛿 𝑍 . (7d)

This minimal HAB model is convenient for our approach as it is a
well-established process-oriented model developed for the study area,
nabling us to explore the effect of adding information on one so far

unexplored variable and the added value to the decision maker. It is
suitable as it clearly explains the causal interaction of an additional con-
trol (zooplankton) on the development of a HAB. The model is carefully
calibrated with regional monitoring data on zooplankton, nitrogen,
and harmful and non-harmful phytoplankton (years 2015–2020) (see
Fig. 1) provided by the Lower Saxony environmental agency NLWKN
(Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und
Naturschutz), following the criteria for ecological status assessments
based on the EU Water Framework Directive. A detailed description
of the NPPZ model, its assumptions and a list of all parameters is given
in Appendix A.1.
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Fig. 1. Flow chart describing the methodological approach to generate the inputs for the VoI analysis. The light grey rounded shapes represent model inputs: either monitoring
data or inputs retrieved from analysis or the literature. The dark grey boxes with rounded edges represent the models used. The medium grey rectangles each present a process
or step.
To solve the ODE system (7), we numerically integrate it over a
time range of hundred years (100 × 365 day s); a typical result is shown
in Fig. 2. Based on empirically reported HAB rates of approximately
10 per 100 years, we assume a concentration of 0.1 mg/m3 as fixed
threshold separating non-HAB years from years with a HAB event (see
Section 3 for a more detailed explanation).

2.3. Predicted probabilities and warning likelihood

To improve the available information, the decision maker may in-
vest in an information service providing a valuable message (or signal)
on the distribution of 𝑋. The message received, 𝑀 , is a random variable
with possible values in  and probability distribution 𝑝𝑀 . Upon receipt
of the message 𝑀 = 𝑚, the decision maker updates their belief on
the probability distribution of 𝑋, yielding the posterior distribution
𝑝𝑋|𝑀 , which replaces the prior distribution 𝑝𝑋 . In order to estimate the
value of an information system—here interpreted as an early warning
system for a HAB—the conditional probabilities 𝑝𝑋|𝑀 , and specifically
the conditional probability 𝑝𝑋|𝑀 (𝑥1|⋅), need to be calculated, i.e. the
posterior probabilities (Eq. (5)). To do so, we need, in the first step,
to obtain the conditional probability 𝑝𝑀|𝑋 (𝑚|𝑥), i.e., the likelihood
of receiving message 𝑚 given state 𝑥. To do so, we use observed
concentrations of zooplankton and nitrogen.

Based on the peaks seen in the time series, we define the occurrence
of a HAB as a concentration of 0.1 mg/m3 of toxic phytoplankton.
Closer inspection of the time series shows that HABs only occur be-
tween April and the end of September (weeks 17–39), which is in line
with the usual occurrence of HABs in the North Sea in spring to late
summer (Richardson, 1989). Hence, we focus on the data from the
corresponding weeks. We only consider persistent threshold transgres-
sions that last four days as HAB events to exclude a short flickering
event that could also be a measurement error. Varying the length of
this time interval by a couple of days did not affect our results. This is
because, in our simulated data, the HAB threshold was mostly crossed
4 
for consecutive days and lasted for a while. Some exceptions did not
affect the results due to taking averages over long time series. However,
this may be different if real monitoring data is considered and when
only shorter time series are available. To predict the occurrence of a
HAB and obtain probabilities of an event, i.e. to deploy our ‘‘warning
system’’, we fit a probit regression model to the data. A probit model
is typically used to estimate the probability of an event when the
dependent variable is binary, as in our case 𝑋 ∈ {𝑥0, 𝑥1} (Butryn and
Fura, 2005).

To allow the decision manager to take precautionary measures in
good time, we are interested in the predictive capacity of the infor-
mation signal of the warning system. We consider two versions of a
warning system: (i) Either the message received only consists of the
nutrient data 𝑁(𝑡 − 𝜏) as a predictor; (ii) or the message consists of
the data of the two covariates nutrient and zooplankton, 𝑁(𝑡 − 𝜏) and
𝑍(𝑡 − 𝜏), respectively:

𝑝(𝑥1|𝑁) = 𝜙(𝛽0 + 𝛽1𝑁) (8a)
𝑝(𝑥1|𝑁 , 𝑍) = 𝜙(𝛽0 + 𝛽1𝑁 + 𝛽2𝑍), (8b)

where 𝜙(⋅) is the cumulative standard normal distribution function.
Both systems provide a warning signal at a certain time in advance
of the HAB event (occurring at time 𝑡). Accordingly, we run a probit
regression for the selected weeks and with covariates advanced by 𝜏 =
15,… , 90 days prior to the average HAB event. We select the optimal
time lag for the model based on Bayesian Information Criterion (BIC)
and Akaike Information Criterion (AIC). We compute the predictions
for a HAB by fitting the probit model to a collection of 100 independent
100–year time series as realisations of the NPPZ model dynamics
(similar to the one depicted in Fig. 2). To reflect the expected likelihood
that the system correctly predicts the occurrence of a HAB, we quantify
the possibility of ‘‘false warning’’ and ‘‘missed warning’’ by calculating
Type I and Type II errors. To obtain binary signals (‘‘warning’’ and ‘‘no
warning’’) we set a threshold to divide the continuous probabilities,
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Fig. 2. Simulated time series of the NPPZ system (panels top to bottom): 1. nutrients 𝑁(𝑡) (blue) and 𝑁𝑒𝑥𝑡(𝑡) (cyan); 2. non-harmful species 𝑃1(𝑡); 3. harmful species 𝑃2(𝑡) (black)
together with the threshold 0.1 mg/m3 (orange) the transgression of which defines the occurrence of a HAB; 4. zooplankton 𝑍(𝑡). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
indicating at which level of probability a positive (warning) signal will
be issued. We set the threshold to 0.8, indicating that at a predicted
probability of 80% for the occurrence of a HAB, the system would give
out a warning signal. We varied the threshold level but could not see
any change in the error statistic unless the threshold was set close to 0
or 1; an effect that is arguably due to the steepness of the probit model
(see Fig. 6). The results of the error statistics of the NZ-model serve
as ‘‘message likelihoods’’ 𝑝𝑀|𝑋 (𝑚|𝑥) for 𝑚1 (‘‘warning’’) and 𝑚0 (‘‘no
warning’’) for our analysis, see Table 2.3

3. The value of information for shellfish management

3.1. Model specification

HABs can have severe economic impacts on fishery and aquacul-
ture (Anderson et al., 2001). While several reports and estimates about
the economic consequences of HABs exist, mainly for the US (e.g.
Hoagland et al., 2002), there are only limited studies for Europe
(Mardones et al., 2020); see Adams et al. (2018) for an overview. For
example, Karlson et al. (2021) examine the effects of HABs for Northern
Europe with a primary focus on Scandinavian countries, but we did
not find any estimates specifically for the German North Sea coast. We,
therefore, derive estimates for expected costs from a documented severe
HAB event in the Netherlands in 2001. The economic damage to the
shellfish industry caused by the event was estimated to be 20 million
EUR, whereas mitigation measures could have been implemented at
10% of that cost (van der Woerd et al., 2005). In current terms (year
2024), this amounts to a damage of approximately 30 million EUR,

3 The ODE system was implemented in MATLAB [version 9.14.0.2206163
(R2023a)]. The calculations for the probit regression model and the predictions
were implemented in RStudio [version 2023.06.2] (R Core Team, 2023).
5 
and the associated cost of mitigation measures equals 3 million EUR.
Economic losses could be avoided by specific management alternatives
such as relocating fishing nets or pre-emptive harvesting and marketing
prior to an expected event (Anderson et al., 2001; van der Woerd et al.,
2005; Alves de Souza et al., 2022). With early warning, mussel farmers
can avoid almost all damage (Konstantinou et al., 2012). Therefore,
only the cost for precautionary management 𝑐 will be accounted for in
case of a HAB event.

Our simulated time series (see example in Fig. 2) shows 11 harmful
algae peaks over a period of 100 years, which translates to a probability
of 0.11 for the occurrence of a HAB. Based on reports of HAB events in
Germany to the IOC-ICES-PICES Harmful Algae Event Database, HAE-
DAT (http://haedat.iode.org/), 7 out of 86 HAB events were reported
as severe and required management, which suggests an occurrence
probability of 0.08 for a HAB event. Using expert elicitation, Bouma
et al. (2009) estimate the occurrence of one HAB within a period of
five years, hence a HAB probability of 0.2. Accordingly, the estimate
of the prior probability for our case study seems to be in the right
order of magnitude. Nevertheless, we are aware that our estimates for
costs and probabilities are themselves subject to uncertainty; we will
consider this by testing different scenarios and conducting a sensitivity
analysis later in this article.

As described in Section 2.1, the decision maker considers two
possible states: 𝑥0 and 𝑥1; in state 𝑥0 no HAB occurs, while in state
𝑥1 a HAB occurs. The respective prior probabilities are given by 𝑝𝑋 (𝑥0)
and 𝑝𝑋 (𝑥1). The decision maker will choose one of two management
options: to proceed with ‘‘business as usual’’, action 𝑎0; or to take a
preventive management action to avoid damage to the fishery, action
𝑎1. The first action involves no cost, while the latter involves cost 𝑐,
interpreted as the relocation cost of fishing efforts. If no preventive
action is undertaken, the damage resulting from a HAB amounts to 𝑑,
while this damage can be avoided if action 𝑎 is chosen. We estimate the
1

http://haedat.iode.org/
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Table 2
Payoff matrix for the HAB decision problem.

State Action Prior belief Message likelihood 𝑝𝑀|𝑋

𝑋 𝑎0 𝑎1 𝑝𝑋 𝑚0 𝑚1

𝑥0 0 −3 0.89 0.70 0.30
𝑥1 −30 −3 0.11 0.35 0.65

relocation cost to equal 𝑐 = 3 (million EUR) and the damage of a HAB to
qual 𝑑 = 30 (million EUR). The prior probabilities are estimated from
he simulated time series and given by 𝑝𝑋 (𝑥0) = 0.89 and 𝑝𝑋 (𝑥1) = 0.11.

The likelihoods of receiving a warning message (𝑚1) and not receiving
 warning message (𝑚0) are calculated by means of error statistics. The
ccuracy of the information system is reflected by Type I and Type

II errors resulting from the predictions of a HAB occurrence by the
probit model (see Section 2.3). In our case study, the likelihood that the
ystem, based on information about nitrogen and zooplankton (𝑁(𝑡−𝜏)
nd 𝑍(𝑡 − 𝜏) as covariates), predicts the occurrence of a HAB correctly
s 0.65. The likelihood that the system will give out a warning even
hough there is no threat of a HAB is 0.3. The data of the decision
roblem is summarised in Table 2.

3.2. Results

We next calculate 𝐸 𝑉 𝑃 𝐼 and 𝐸 𝑉 𝑆 𝐼 for the problem under consider-
ation. Under uncertainty, the decision maker chooses the management
action that results in the highest expected utility. Specifically, under
prior information, a single action that compromises all possible states
has to be chosen. Applying the data from Table 2 we obtain from
q. (2):

max
𝑎

E𝑋 [𝑣(𝑎, 𝑋)] = max
𝑎𝑖𝑛

[

𝑣(𝑎, 𝑥0)𝑝𝑋 (𝑥0) + 𝑣(𝑎, 𝑥1)𝑝𝑋 (𝑥1)
]

= max
[

𝑣(𝑎0, 𝑥0)𝑝𝑋 (𝑥0) + 𝑣(𝑎0, 𝑥1)𝑝𝑋 (𝑥1), 𝑣(𝑎1, 𝑥0)𝑝𝑋 (𝑥0)
+𝑣(𝑎1, 𝑥1)𝑝𝑋 (𝑥1)

]

= max [0 × 0.89 + (−30) × 0.11, (−3) × 0.89 + (−3) × 0.11]
= max[(−3.3), (−3)]

Under prior information, the best decision is therefore action 𝑎∗ = 𝑎1,
i.e., to undertake the precautionary measure, yielding E[𝑣(𝑎∗, 𝑋)] = −3.

Under perfect information, the decision maker is informed about the
future) occurrence of a HAB before a decision is made. If a HAB does
ot occur, the decision maker continues with ‘‘business as usual’’; that

is, 𝑎0 is the best choice for 𝑋 = 𝑥0, i.e. 𝑎∗(𝑥0) = 𝑎0, yielding 𝑣(𝑥0, 𝑎0) = 0.
If, however, a HAB occurs, the best choice is to limit the damage by
active management and thus to choose action 𝑎∗(𝑥1) = 𝑎1, yielding
𝑣(𝑥1, 𝑎1) = −3. Specifically, for the prior belief 𝑝𝑋 =

(

𝑝𝑋 (𝑥0), 𝑝𝑋 (𝑥1)
)

=
(0.89, 0.11), the expected payoff under perfect information (see Eq. (1))
equals E [𝑣(𝑎∗(𝑋), 𝑋)] = 0 × 0.89 + (−3) × 0.11 = −0.33. Comparing
the expected payoff under perfect information and the expected payoff
under prior information, the benefit from perfect information, viz. the
expected value of perfect information (see Eq. (3)) equals 𝐸 𝑉 𝑃 𝐼 = 2.67;
that is, the decision maker is willing to spend up to 2.67 million EUR
for being informed about the state of the world in advance of the
management decision.

To calculate 𝐸 𝑉 𝑆 𝐼 , we first calculate the updated belief after
eceiving each possible message or warning. To this end, we plug in

the data from Table 2 into Eqs. (4)–(6). A corresponding step-by-step
calculation of 𝐸 𝑉 𝑆 𝐼 is displayed in . Firstly, the marginal probability
for each possible message 𝑝𝑀 (𝑚0) and 𝑝𝑀 (𝑚1) is calculated,

These values are then used to update the expected payoff after
eceiving a message, yielding −2.17. Comparing this posterior value
ith the expected payoff under prior information yields in the expected
alue of imperfect information: 𝐸 𝑉 𝑆 𝐼 = 0.83.

This indicates that it is worth investing up to 0.83 (million Euro) in
he collection of additional data.
 s

6 
For comparison, we calculated the value of information for an
information system based on information about nitrogen only (𝑁(𝑡−𝜏))
s an indicator. Here, the marginal probability of the system giving out
 warning message is very close to zero (0.0001). This indicates that
his system is not suitable as a warning system. Accordingly, 𝐸 𝑉 𝑆 𝐼
ields a negative expected payoff of this system: 𝐸 𝑉 𝑆 𝐼 = −0.3, which
ould lead to the decision not to consider investing in the information

ystem. The following sensitivity analyses, therefore, only consider the
ore informative NZ-model of our case study.

As no estimates on financial losses are available for the German
coast, we conduct a sensitivity analysis of 𝐸 𝑉 𝑆 𝐼 with respect to 𝑑. To
do so, we start with varying damage 𝑑, and then proceed with varying
the prior probability 𝑝𝑋 and the management cost 𝑐.

We calculate 𝐸 𝑉 𝑆 𝐼 for different scenarios: Fig. 3 shows the be-
haviour of 𝐸 𝑉 𝑆 𝐼 for a range of values of damage 𝑑 ∈ [0, 600] (in

illion EUR) and the prior probability of a HAB 𝑝 ∶= 𝑝𝑋 (𝑥1) ∈ [0, 1]
hile the cost for management 𝑐 stays fixed.

In the case of low expected damage and low risk of a HAB (lower
left corner in Fig. 3), 𝐸 𝑉 𝑆 𝐼 is zero (or negative), and the decision

aker would continue with ‘‘business as usual’’ and does not invest in
nformation acquisition. In cases of a sufficiently high prior probability
or a HAB, the decision maker would decide on precautionary measures
o prevent any large damage, and new information will likely not
everse the decision. In cases where any additional information may
hange the decision, VoI is positive. This is the case for large expected

damages of HAB events and low values of 𝑝. Here, 𝐸 𝑉 𝑆 𝐼 is high in
scenarios where the decision maker is a priori quite confident that there
is little risk of a HAB, but the damage might be enormous. Therefore,
it is worthwhile to invest in additional information before deciding
on a management action. The same is true for low values of 𝑑 and
low to medium values of 𝑝. In cases of this high uncertainty about a
HAB occurrence but low expected damages, additional information may
change the decision maker’s decision.

Fig. 4, shows iso-level curves of 𝐸 𝑉 𝑆 𝐼 with a fixed 𝑑 = 30 for
𝑝 ∈ [0, 1] and 𝑐 ∈ [0, 30]. When, under prior information, the decision
maker is sufficiently confident about the upcoming occurrence of a
HAB (when 𝑝 is close to 1), acquiring additional information is only
valuable if management costs are high. On the contrary, for low values
of 𝑐, 𝐸 𝑉 𝑆 𝐼 is low: When there is a high probability of a HAB and
management costs are low (lower right corner in 4), the decision maker
will mostly likely perform precautionary management after the receipt
of new information; but if the receipt of new information is unlikely to
affect the decision, the expected value of this information is marginal,
hence 𝐸 𝑉 𝑆 𝐼 is low. Reversely, if the probability of the unfavourable
state is low while management costs are high, the decision maker will
continue with ‘‘business as usual’’ without undertaking any expensive
recautionary management. As additional information is unlikely to

reverse this decision, 𝐸 𝑉 𝑆 𝐼 is again low. 𝐸 𝑉 𝑆 𝐼 is high, though, when
the decision maker is highly uncertain about the best management
policy to be chosen, and this happens if both the probability of the
occurrence of a HAB and the management cost are moderate. In this
case, additional information is most valuable as any indication about
the HAB event might flip the decision. (This strong dependence of
𝐸 𝑉 𝑆 𝐼 on management costs and prior probabilities has previously been
emphasised by Giordano et al., 2022 and Luhede et al., 2024.)

We calculated the analytic expressions on how 𝐸 𝑉 𝑆 𝐼 and the
ubsequent management decisions depend on the cost for management
nd the expected damage of a HAB. Table 4 shows the cases in which

𝐸 𝑉 𝑆 𝐼 is positive and in which scenarios it is not worthwhile to invest
n information but in management actions directly. See Appendix A.3

for the detailed calculation.
To address the dependency on the accuracy of the information

ystem, we calculate 𝐸 𝑉 𝑆 𝐼 for different combinations of Type I (‘false
warning’) and Type II (‘missed warning’) errors with our initial case
tudy values in Table 2. We display VoI in relative terms to obtain more
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Table 3
Updating prior belief and consequences after receipt of message 𝑀 = 𝑚.

Updated probabilities

𝑚0 𝑚1

𝑝𝑀 𝑝𝑀 (𝑚0) = 𝑝𝑀|𝑋 (𝑚0|𝑥0)𝑝𝑋 (𝑥0) + 𝑝𝑀|𝑋 (𝑚0|𝑥1)𝑝𝑋 (𝑥1)
= 0.7 × 0.89 + 0.35 × 0.11 = 0.66

𝑝𝑀 (𝑚1) = 𝑝𝑀|𝑋 (𝑚1|𝑥0)𝑝𝑋 (𝑥0) + 𝑝𝑀|𝑋 (𝑚1|𝑥1)𝑝𝑋 (𝑥1)
= 0.3 × 0.89 + 0.65 × 0.11 = 0.34

𝑥0 𝑝𝑋|𝑀 (𝑥0|𝑚0) = 𝑝𝑀|𝑋 (𝑚0|𝑥0)𝑝𝑋 (𝑥0)∕𝑝𝑀 (𝑚0)
= 0.7 × 0.89∕0.66 = 0.94

𝑝𝑋|𝑀 (𝑥0|𝑚1) = 𝑝𝑀|𝑋 (𝑚1|𝑥0)𝑝𝑋 (𝑥0)∕𝑝𝑀 (𝑚1)
= 0.3 × 0.89∕0.34 = 0.79

𝑥1 𝑝𝑋|𝑀 (𝑥1|𝑚0) = 𝑝𝑀|𝑋 (𝑚0|𝑥1)𝑝𝑋 (𝑥1)∕𝑝𝑀 (𝑚0)
= 0.35 × 0.11∕0.66 = 0.06

𝑝𝑋|𝑀 (𝑥1|𝑚1) = 𝑝𝑀|𝑋 (𝑚1|𝑥1)𝑝𝑋 (𝑥1)∕𝑝𝑀 (𝑚1)
= 0.65 × 0.11∕0.34 = 0.21

Updating expected payoff

𝑥0 𝑥1 Expected payoff

𝑝𝑋 (⋅|𝑚0) 0.94 0.06
action 𝑎0 0 −30 0 × 0.94 + (−30 × 0.06) = −1.75

𝑎1 −3 −3 −3 × 0.94 + (−3) × 0.06 = −3
𝑝𝑋 (⋅|𝑚1) 0.79 0.21
action 𝑎0 0 −30 0 × 0.79 + (−30) × 0.21 = −6.34

𝑎1 −3 −3 −3 × 0.79 + (−3) × 0.21 = −3
𝑀 𝑚0 𝑚1
𝑝𝑀 (⋅) 0.66 0.34
E𝑀

[

E𝑋|𝑀 [𝑣(𝑎∗(𝑀), 𝑋)]
]

−1.75 −3 −1.75 × 0.66 + (−3) × 0.34 = −2.17
𝐸 𝑉 𝑆 𝐼 −2.17 − (−3) = 0.83
Fig. 3. VoI as a function of prior probability 𝑝 of the occurrence of a HAB (𝑥1) and of the fixed cost of management (𝑐 = 3) and damage 𝑑 ∈ [0, 600].
Table 4
Summary of case distinctions. Substituting the terms of Table 2 into Eq. (4) yields: 𝐸 𝑉 𝑆 𝐼 = 𝑚𝑖𝑛

{

𝑑 𝑝(𝑥1), 𝑐} − 𝑚𝑖𝑛
{

𝑑 𝑝(𝑥1 , 𝑚0)
}

− 𝑚𝑖𝑛
{

𝑑[𝑝(𝑥1) − 𝑝(𝑥1 , 𝑚0)], 𝑐(1 − 𝑝(𝑚0))
}

Due to the
three min operators we have to consider eight different cases. Details can be found in the Appendix, Appendix A.3.

Case Findings

(a) 𝑐 < 𝑑 𝑝(𝑥1)
(𝛼) 𝑐 < 𝑑 𝑝(𝑥1 , 𝑚0)

(i) 𝑐 < 𝑑 𝑝(𝑥1 , 𝑚1) 𝐸 𝑉 𝑆 𝐼 = 0 𝑎1 is chosen without information acquisition
(ii) 𝑑 𝑝(𝑥1 , 𝑚1) < 𝑐 𝐸 𝑉 𝑆 𝐼 > 0 𝑀 is a contra-indicator.

(𝛽) 𝑑 𝑝(𝑥1 , 𝑚0) < 𝑐 (i) 𝑐 < 𝑑 𝑝(𝑥1 , 𝑚1) 𝐸 𝑉 𝑆 𝐼 > 0 Additional information may be worthwhile.
(ii) 𝑑 𝑝(𝑥1 , 𝑚1) < 𝑐 Contradiction.

(b) 𝑑 𝑝(𝑥1) < 𝑐
(𝛼) 𝑐 < 𝑑 𝑝(𝑥1 , 𝑚0)

(i) 𝑐 < 𝑑 𝑝(𝑥1 , 𝑚1) Contradiction.
(ii) 𝑑 𝑝(𝑚1 , 𝑚1) < 𝑐 𝐸 𝑉 𝑆 𝐼 > 0 𝑀 is a contra-indicator.

(𝛽) 𝑑 𝑝(𝑥1 , 𝑚0) < 𝑐 (i) 𝑐 < 𝑑 𝑝(𝑥1 , 𝑚1) 𝐸 𝑉 𝑆 𝐼 > 0 Additional information may be worthwhile.
(ii) 𝑑 𝑝(𝑥1 , 𝑚1) < 𝑐 𝐸 𝑉 𝑆 𝐼 = 0 𝑎0 is chosen without information acquisition.
generic results and to shift the focus on the dependencies instead of
absolute values. Fig. 5 shows the 3D plot of 𝐸 𝑉 𝑆 𝐼 (vertical axis) as
a function of Type I and Type II errors. If both error terms are high,
7 
𝐸 𝑉 𝑆 𝐼 is zero, as a highly flawed indication system does not provide
valuable information. 𝐸 𝑉 𝑆 𝐼 reaches its maximum if the errors are zero,
and hence, the information system is perfect. The value of information
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Fig. 4. 𝐸 𝑉 𝑆 𝐼 as a function of 𝑝 ∈ [0, 1] and 𝑐 ∈ [0, 30]. Damage 𝑑 stays fixed at 30.
Fig. 5. The effect of the prediction accuracy on 𝐸 𝑉 𝑆 𝐼 . 𝐸 𝑉 𝑆 𝐼 is calculated with the initial values, see Table 2, and the prediction accuracy is described by Type I error (‘false
warning’) and Type II error (‘missed warning’). The error terms are varied and range from 0 to 1, 𝐸 𝑉 𝑆 𝐼 is displayed in relative values.
decreases drastically as the Type II error increases. It decreases slightly
less sharply as the Type I error increases.

4. Discussion

The objective of this study was to evaluate the effect of reducing
uncertainty regarding the occurrence of HABs in the German North
Sea by extending monitoring efforts. We evaluate the expected benefit
of predicting HABs to improve shellfish management using value of
information (VoI) analysis. Specifically, we focus on the expected bene-
fits of acquiring additional information on zooplankton and nitrogen in
predicting HABs before the event. The economic implications of HABs
on shellfish fisheries underscore the importance of effective decision-
making to prevent substantial damages. The results show that the value
of including information on nitrogen and zooplankton yields positive
8 
values of up to 2.67 (in million Euros per year), implying that the
acquisition of this information is ex ante worthwhile if the cost of
data acquisition does not exceed that amount. We compare different
models, specifically contrasting the impact of nitrogen-only (the N-
model) and the comprehensive model incorporating zooplankton (the
NZ-model). This is particularly relevant given the common strategy in
Germany that predominantly focuses on nitrogen reduction to reach
a good ecological status and reduce severe HABs (Rönn et al., 2023).
This comparison reveals that in our model scenario, relying solely
on nutrient indicators may not adequately predict HAB occurrences.
Calculating 𝐸 𝑉 𝑃 𝐼 and 𝐸 𝑉 𝑆 𝐼 based on the N-model results in zero
additional value, suggesting that information on nitrogen only has no
benefit for basing precautionary management actions on it.

This shows that in our decision context, a multivariate approach,
considering multiple indicators, is essential for accurate assessments,
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and spending resources on collecting these data might be worthwhile.
Comparing the results of the VoI analysis to the actual cost of mon-
toring, which is around 85 000 Euros per year,4 makes the value of
dditional data in our case study explicit.

Several considerations may limit the conclusions that can be drawn
from this analysis. First, certain assumptions were necessitated during
the modelling process. We made careful adjustments to better align
the model with available data (see Appendix A.1). By carefully cali-
rating the model using monitoring data from the case study area, we

improve its reliability. The data used for the calibration is collected
following the criteria of the EU Water Framework Directive, ensuring
 high-quality standard. We considered simplifications in the model

to enable us to explore the effect of information and its value for
the decision maker by considering an additional source of information
(i.e. information on zooplankton). First, we distinguished between
harmful and non-harmful phytoplankton species. In reality, the system
is more complex and considering ecological communities and func-
tional groups with more interactions would be more realistic. Second,
our model only considers seasonal variability. The effect of climate
variability is not included but might have an effect on the development
of HABs. For example, prolonged ocean warming, marine heatwaves
or changes in wind directions and precipitation patterns might alter
HAB outbreaks (Gobler, 2020; Raine et al., 2010; Sinha et al., 2017;
Glibert, 2020). Third, we did not include additional external environ-

ental parameters such as salinity or pH. More comprehensive models
hat include the effects of plankton communities or climate variability
ould allow for a more realistic description and may provide more

nformation about the state of the system (Wells et al., 2015; Ralston
nd Moore, 2020; Nguyen and Huynh, 2023). The simplifications to the

model may influence the exact numerical value of the result and may
slightly under or over-represent the actual value. However, it would not
hange the mechanisms of VoI and the methodological approach. If the
odel allows for better predictions, VoI would be higher. In comparison

o the effort and cost of collecting the data for validating the model and
he continuous monitoring, the value for the decision maker might not
hange as VoI needs to be compared to the actual cost of information
cquisition. This effect could be further explored in future research.

Further, as a crucial part of our methodological approach, we set
hresholds for HAB events based on peaks in the simulated time series
nd a literature review. These may pose limitations to the application.
astly, one of the major challenges is finding suitable estimates for
inancial values. While there were no estimates on financial values
vailable for our case study area, we obtained those values from a
eported case in a neighbouring country. Although not a perfect match,
he values still provide a meaningful interpretation of the scale and
rder of magnitude of VoI. If more local data becomes available in
he future, an adjustment of the input variables could lead to more
recise analysis results. We believe that despite some assumptions, our
ethods are valuable for gaining insights into the value of additional

nformation for the considered decision problem. We are confident that
he structure of the results as well as the order of magnitude of the
esulting values provide valuable insights. We test different param-
ter scenarios, the results offer insights into the potential economic
mplications of decision-making strategies.

To account for some of the uncertainties in our decision model,
e explore scenarios in which the expected damage of a HAB or

he cost for management varies under a range of prior probabilities.
arying the expected damage demonstrates that additional informa-

ion becomes particularly valuable when the anticipated damage is
arge while the probability of a HAB is low; and conversely when
he damage is low but the decision maker is uncertain about the

4 Personal communication with a colleague involved in the monitoring
program at Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und
Naturschutz (NLWKN) in Northern Germany.
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HAB occurrence. Additional information is worthwhile in these cases
and may flip the management decision. For higher expected damages,
the decision maker is inclined to consider preventive measures and
the decision to implement precautionary measures remains unaffected
by additional information. The opposite is true for low probabilities
of a HAB occurrence and low expected damages: Here, the decision
maker will not implement management and continue business as usual;
only if the expected damage is substantially greater than the cost for
management, additional information becomes valuable as it may affect
he decision. By analysing the interplay between 𝐸 𝑉 𝑆 𝐼 and the cost of

management, we see that when decision makers are highly confident
about HAB occurrence, additional information proves valuable mainly
in cases of high management costs coupled with high probabilities of a
HAB event or for low management costs coupled with low probabilities
of an occurrence. 𝐸 𝑉 𝑆 𝐼 is maximum when uncertainty is highest, and
the cost is medium. This dependence dependency of 𝐸 𝑉 𝑆 𝐼 on prior
probability and management costs is in line with findings discussed
in Giordano et al. (2022) and Luhede et al. (2024).

Our analysis shows that nitrogen alone as an indicator is not suit-
able as to predict HAB events, as the prediction accuracy is close to
zero. However, by adding data on zooplankton the prediction accuracy
increases to 65%. Even though this number may not seem especially
high, the calculation of the value of this information reveals that it
is still worthwhile investing up to 830k EUR in this information. We
account for measuring errors or short flickering of enhanced harm-
ul phytoplankton by varying the threshold of consecutive days of
nhanced phytoplankton concentrations that are treated as a HAB

event. By this, we ensured that a short exceeding of our (arbitrarily)
et threshold for phytoplankton concentrations has an impact on the
rediction accuracy. The accuracy of the warning system has a strong

influence on VoI, as shown in the second part of the sensitivity analysis
and Fig. 5, emphasising that the benefits of additional information are
ubject to the reliability of the information system. While sensitivity
nalyses in general have become more common in VoI analyses (Keisler

et al., 2014), only a few studies consider the quality of information (e.g.
Bouma et al., 2009; Costello et al., 2010; Jin et al., 2020). Considering
error statistics and the sensitivity to errors represents a methodological
strength, highlighting the importance of the quality of information for
VoI.

The high values in our analysis are not consistent with the previous
literature in conservation or fisheries management, which often favours
direct management over collecting additional information (e.g. Bal
et al., 2018; Hanson et al., 2023; Xia et al., 2021) and VoI is relatively
low. However, other cases exist where information drastically improves
management outcomes (e.g Bouma et al., 2011; Costello et al., 2010;
Koski et al., 2020). The exact values of VoI depend on the study’s input
alues and are highly context-sensitive; and comparisons of values of
oI across the literature are difficult, as reporting and objectives often
iffer. Due to this challenge in synthesising results, to our knowledge,
here has been no attempt to generalise results (Bolam et al., 2019;

Holden et al., 2024). VoI analysis provides an individual assessment
of the benefit of resolving uncertainty for a specific decision context,
so that the results are highly sensitive to the context. The presence of
uncertainty can have differing effects on management decisions and
achieving objectives.

We contribute to a better understanding of VoI applications in
managing HAB, which can be adjusted to other decision contexts.
This study highlights the value of monitoring information to predict

AB events and provides valuable guidance for decision-making for
under which circumstances investing in additional data is worthwhile
o act and decide on mitigation interventions on time. From a policy
aker’s perspective, we can see that in our case, there is much value

n considering monitoring data to improve predictions: We show that
nvestments in monitoring multiple indicators may be welfare enhanc-
ng, which is in line with results by Dajka et al. (2022), showing that
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multivariate assessments in local and regional ecosystem management
are required for effective management concepts. Carefully selecting
ndicators is vital for water quality assessments (Nguyen and Huynh,

2023). The method outlined in this study provides a pathway to expand
the use of VoI analyses for HAB management. The simulation of a
time series combined with a probit model is a suitable technique for
deriving conditional probabilities in a VoI analysis. This method is
relevant in addition to the more conventional sets of techniques, such
as expert elicitation, providing a simulation data-driven way to assess
uncertainty. Further, our approach can be easily adjusted to other
applications and case studies.

In our study, we propose an indirect management, which does not
directly manage or prevent HAB outbreaks but aims to mitigate the
onsequences for fisheries. Some more direct policy interventions exist,
uch as the prevention of HABs (Carias et al., 2024). For example, by

mitigating pollutants that impact the mortality of zooplankton, which
in turn may increase the probability of a HAB. However, different types
of models, such as system dynamic modelling, might be needed to
understand the complex interactions in water pollution (Mousavi et al.,
2023). Introducing the control of pollutants as a management strategy
changes the decision context and needs careful adjustments to calculate
VoI.

Our study serves as a promising starting point for future research.
his research could explore more scenarios, and different combina-
ions of indicators or policy instruments, offering further guidance to
ecision-making and the indicator selection process. The potential for
uture research to make significant strides in this field is indeed hopeful
nd optimistic.

5. Conclusion

This article contributes to the understanding of decision-making
processes and the effect of uncertainty about the occurrence of HABs
in fishery management. VoI analysis offers insights into when and how
additional information on indicators of a HAB occurrence can enhance
decision outcomes. While acknowledging some simplifications in our
model, we derive interesting insights into the behaviour of VoI, which
can be useful for decision-makers and practitioners to understand the
role of (resolving) uncertainty in decisions. We show that collecting
information about top-down (zooplankton) and bottom-up (nitrogen)
control provides an early warning indication of the occurrence of a

AB. However, in our model, information on nitrogen alone does not
provide additional value. Our results suggest an added value of ex-
tended monitoring of multiple indicators at a specific seasonal period.
Even though the exact values in the results are specific to our decision
context, our findings can serve as guidance for policy development and
resource allocation in mitigating the economic impacts of HAB events.
The approach can be easily modified and adjusted to different cases
and scenarios.
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Appendix

A.1. Detailed description of the conceptual NPPZ model

The state variables 𝑁 = 𝑁(𝑡), 𝑃1 = 𝑃1(𝑡), 𝑃2 = 𝑃2(𝑡), 𝑍 = 𝑍(𝑡), time
dependent quantities 𝑁𝑒𝑥𝑡 = 𝑁𝑒𝑥𝑡(𝑡), 𝛿 = 𝛿(𝑡) (detailed below) and

𝑔(𝑡) = 𝑔
[

𝑃1(𝑡), 𝑃2(𝑡)
]

= 𝑎
1 + 𝑐

[

𝑃1(𝑡) + 𝑃2(𝑡)
] (9)

𝑞(𝑡) = 𝑞 [𝑇 (𝑡)] = 𝑄
𝑇 (𝑡)−�̄�

10
10 with 𝑇 (𝑡) = �̄� + 𝛥𝑇 cos

[

2𝜋(𝑡 − 𝑡0)
365

]

(10)

𝑓𝑖(𝑡) = 𝑓𝑖 [𝑁(𝑡)] =
𝑁(𝑡)

𝑒𝑖 +𝑁(𝑡)
for 𝑖 = 1, 2 (11)

ℎ𝑖(𝑡) = ℎ𝑖
[

𝑃𝑖(𝑡)
]

=
𝜆𝑖𝑃 2

𝑖 (𝑡)

𝜇2
𝑖 + 𝑃 2

𝑖 (𝑡)
for 𝑖 = 1, 2 . (12)

By contrast, 𝑘, 𝑟, 𝛽 , 𝛾 , 𝑞 , 𝜗𝑖, 𝜎𝑖, 𝛼𝑖 (𝑖 = 1, 2) are constant parameters (values
listed below).

The different terms on the right hand side of the ODE system
(7a)–(7d) reflect the following processes:

• The term 𝑘(𝑁 − 𝑁𝑒𝑥𝑡) in (7a) describes an exponential approach
(with constant rate 𝑘) of the nutrient concentration 𝑁(𝑡) to an ex-
ternal nutrient concentration 𝑁𝑒𝑥𝑡(𝑡) that reflects nutrient inflow
by rivers and surface water following precipitation.

• The term −𝑔(𝑓1𝑃1 + 𝑓2𝑃2) in (7a) models the nutrient uptake
that, via photosynthesis, is converted with factors 𝑞 𝜗1 and 𝑞 𝜗2 to
biomass of primary producers (non-harmful and harmful) enter-
ing (7b) and (7c).

• The terms −𝑟𝑃1 and −𝑟𝑃2 in (7b)–(7c) resp. account for respira-
tion (with constant rate 𝑟) and replenish the nutrient pool with
the term 𝑟(𝑃1 + 𝑃2) reflecting recycling by bacteria.

• The terms −𝜎1𝑃1 and −𝜎2𝑃2 in (7b)–(7c) account for the loss of
phytoplankton due to sinking with specific sinking rates 𝜎1 and
𝜎2 resp.

• the terms ℎ1𝑍 and ℎ2𝑍 in (7b)–(7c) model the grazing of phyto-
plankton by zooplankton which are converted with efficiency 𝛼1
and 𝛼2 resp. into zooplankton biomass in (7d).

• Growth of zooplankton following grazing is balancing the linear
zooplankton mortality 𝛿 𝑍 in (7d).

• Through bacterial recycling a fraction 𝛾 of dead zooplankton is
fed back to nutrients in (7a).

This ODE system combines four state variables with several constant
arameters and three time variant parameters as external drives:

• A deterministic process in the form of a 𝑄10-law (Mundim et al.,
2020) with a temperature that is seasonally modulated as a
harmonic signal (cf. Eq. (10) in Appendix A.1).

• A stochastic process modelling riverine import of an essential
nutrient concentration 𝑁 (𝑡) (cf. Eq. (13) in Appendix A.1).
𝑒𝑥𝑡
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• A stochastic process modelling slow variations of the per capita
mortality rate 𝛿𝑡 (cf. Eq. (15) in Appendix A.1) of zooplankton
reflecting slowly fluctuating environmental conditions thus intro-
ducing inter-annual variability of top-down control of the harmful
species.

The functions defined in (9)–(12) have the following meaning:

• The function 𝑔[𝑃1(𝑡), 𝑃2(𝑡)] in (9) describes growth limitation of
both phytoplankton species due to light limitation caused by self-
shading, where it is assumed that cells of both phytoplankton
species contribute equally to the shading effect.

• The function 𝑞[𝑇 (𝑡)] modulates the conversion of assimilated nu-
trients into phytoplankton biomass in the form of a temperature-
dependent 𝑄10-law. The average seasonal temperature profile is
modelled as a harmonic oscillation around mean temperature �̄�
with amplitude 𝛥𝑇 and seasonal maxima at 𝑡0 + 365𝑘 and minima
at 𝑡0 + 365∕2 + 365𝑘, 𝑘 ∈ Z, (we have assumed an integer year
length of 365 days instead of a more realistic fractional astro-
nomical year). Since 𝑞(�̄� ) = 1 the constant parameters 𝜗1 and 𝜗2
constitute respective translation factors 𝑞 𝜗𝑖 at mean temperature.

• The functions 𝑓𝑖[𝑁(𝑡)] models the nutrient uptake via a Monod
kinetics, i.e. initial linear increase leading into saturation (at
unity), with phytoplankton specific half-saturation constants 𝑒𝑖.

• The functions ℎ𝑖[𝑃𝑖(𝑡)] describe the grazer’s functional response to
varying prey concentration and is here modelled as a Holling-type
III, i.e. starting as a parabola before saturating at maximal inges-
tion rate 𝜆𝑖, with phytoplankton specific half-saturation constants
𝜇𝑖. Differences between maximal ingestion rates 𝜆1 and 𝜆2 can be
interpreted as split preferences of zooplankton for non-harmful vs
harmful phytoplankton species.

Aside from the seasonal drive via 𝑞[𝑇 (𝑡)] the deterministic ODE
system is driven by two stochastic processes:

• The external nutrient inflow 𝑁𝑒𝑥𝑡(𝑡) is modelled as a harmonic
with red noise added to it, i.e.

𝑁𝑒𝑥𝑡(𝑡) =
(

0.9 + 0.1 cos
[

2𝜋(𝑡 − 92)
365

]

+ 𝜁 (𝑡)
)

g m−3 (13)

where all parameters were fitted to measured time series from the
coastal region of the German bight. The anomalies 𝜁 (𝑡) (red noise)
are obtained via interpolation from uniformly sampled (sampling
rate 𝑓𝑠 = 1∕day) values 𝜁𝑡 resulting from an auto-regressive
process of order 1 (AR[1])
𝜁𝑡 = 𝛼 𝜁𝑡−1 + 𝜖𝑡 (𝑡 = 2, 3,… , day s) (14)

with 𝛼 = e−1∕(𝑓𝑠𝜏𝑐 ) to match the empirical correlation time 𝜏𝑐 =
280 day s and zero-mean Gaussian white noise 𝜖𝑡 of intensity 𝜎2𝜖 =
10−4.

• The per capita mortality rate of zooplankton 𝛿(𝑡) is modelled as a
slowly varying random process created through interpolating the
following uniformly sampled (sampling rate 𝑓𝑠 = 1∕day) values 𝛿𝑡
resulting from the recursion
𝛿𝑡 =

(

0.02 + 0.3 𝜂2𝑡
)

day−1 (15)

with random terms 𝜂𝑡 again following from an AR[1]
𝜂𝑡 = 𝛽 𝜂𝑡−1 + 𝜖𝑡 (𝑡 = 2, 3,… , day s) (16)

with 𝛽 = e−1∕(𝑓𝑠𝜏𝑐 ) tuning the correlation time of 𝜂𝑡 to 𝜏𝑐 = 365 day s
and zero-mean Gaussian white noise 𝜖𝑡 of intensity 𝜎2𝜖 = 5.5 × 10−4.

Numerical integration was applied to the system of ODEs (7a)–(7d)
with initial values: 𝑁(0) = 1

4𝑁𝑒𝑥𝑡(0), 𝑃1(0) = 0.025 g m−3, 𝑃2(0) =
0.005 g m−3, 𝑍(0) = 2 g m−3 and using the following list of parameters:
11 
Fig. 6. Probit regression: comparison of N-model and NZ-model. The grey dots show
the predicted probabilities for the occurrence of a HAB. The green dots show the actual
values for a HAB (0 = no HAB, 1 = HAB). The blue line shows the trend line. We can
see that for low values of Zooplankton (Z) HABs are more likely to occur based on the
model.

Parameter Value Unit
𝑎 1.5 day−1
𝑐 0.05 [g m−3]−1

𝑒1 0.1 g m−3

𝑒2 0.1 g m−3

𝑘 0.25 day−1
𝑟 0.01 day−1
𝛼1 0.25 dimensionless
𝛼2 0.1 dimensionless
𝛽 0.03 dimensionless
𝛾 0.5 dimensionless
𝜆1 2 day−1
𝜆2 4 day−1
𝜇1 1 g m−3

𝜇2 1 g m−3

𝜎1 0.5 day−1
𝜎2 0.5 day−1
𝜃1 2 dimensionless
𝜃2 1 dimensionless
𝑄10 3 dimensionless
�̄� 11 ◦C
𝛥𝑇 8 ◦C
𝑡0 212 July 31st

A.2. Figures

See Fig. 6.

A.3. Case distinction

To recapitulate, we have:

𝛺 =
{

𝑥0, 𝑥1
}

, 𝑀 =
{

𝑚0, 𝑚1
}

,  =
{

𝑎0, 𝑎1
}

,

𝑣(𝑎 , 𝑥 ) = 𝑏, 𝑣(𝑎 , 𝑥 ) = 𝑣(𝑎 , 𝑥 ) = 𝑏 − 𝑐 , 𝑣(𝑎 , 𝑥 ) = 𝑏 − 𝑑 .
0 0 1 0 1 1 0 1
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Substituting these terms into Eq. (4) yields

𝐸 𝑉 𝑆 𝐼 =
∑

𝑚
max
𝑎

∑

𝑥
𝑣(𝑎, 𝑥)𝑝(𝑥, 𝑚) − max

𝑎

∑

𝑥
𝑣(𝑎, 𝑥)𝑝(𝑥)

= max
{

𝑣(𝑎0, 𝑥0)𝑝(𝑥0, 𝑚0) + 𝑣(𝑎0, 𝑥1)𝑝(𝑥1, 𝑚0), 𝑣(𝑎1, 𝑥0)𝑝(𝑥0, 𝑚0)

+ +𝑣(𝑎1, 𝑥1)𝑝(𝑥1, 𝑚0)
}

+ max
{

𝑣(𝑎0, 𝑥0)𝑝(𝑥0, 𝑚1) + 𝑣(𝑎0, 𝑥1)𝑝(𝑥1, 𝑚1), 𝑣(𝑎1, 𝑥0)𝑝(𝑥0, 𝑚1)

+ 𝑣(𝑎1, 𝑥1)𝑝(𝑥1, 𝑚1)
}

− max
{

𝑝(𝑥0)𝑣(𝑎0, 𝑥0) + 𝑝(𝑥1)𝑣(𝑎0, 𝑥1), 𝑝(𝑥0)𝑣(𝑎1, 𝑥0)
+ 𝑝(𝑥1)𝑣(𝑎1, 𝑥1)

}

= max
{

(𝑏 − 𝑐)𝑝(𝑥0, 𝑚0) + (𝑏 − 𝑐)𝑝(𝑥1, 𝑚0), (𝑏 − 𝑑)𝑝(𝑥1, 𝑚0)

+ 𝑏𝑝(𝑥0, 𝑚0)
}

+ max
{

(𝑏 − 𝑐)𝑝(𝑥0, 𝑚1) + (𝑏 − 𝑐)𝑝(𝑥1, 𝑚1), (𝑏 − 𝑑)𝑝(𝑥1, 𝑚1)

+ 𝑏𝑝(𝑥0, 𝑚1)
}

− max
{

(𝑏 − 𝑐)𝑝(𝑥0) + (𝑏 − 𝑐)𝑝(𝑥1), (𝑏 − 𝑑)𝑝(𝑥1)

+ 𝑏𝑝(𝑥0)
}

= max
{

(𝑏 − 𝑐)𝑝(𝑚0), 𝑏𝑝(𝑚0) − 𝑑 𝑝(𝑥1, 𝑚0)
}

+ max
{

(𝑏 − 𝑐)𝑝(𝑚1), 𝑏𝑝(𝑚1) − 𝑑 𝑝(𝑥1, 𝑚1)
}

− max
{

𝑏 − 𝑐 , 𝑏 − 𝑑 𝑝(𝑥1)
}

= 𝑏𝑝(𝑚0) − min
{

𝑑 𝑝(𝑥1, 𝑚0), 𝑐 𝑝(𝑚0)
}

+ 𝑏𝑝(𝑚1)

− min
{

𝑑 𝑝(𝑥1, 𝑚1), 𝑐 𝑝(𝑚1)
}

− 𝑏 + min
{

𝑑 𝑝(𝑥1), 𝑐
}

= min
{

𝑑 𝑝(𝑥1), 𝑐
}

− min
{

𝑑 𝑝(𝑥1, 𝑚0), 𝑐 𝑝(𝑚0)
}

− min
{

𝑑 𝑝(𝑥1, 𝑚1), 𝑐 𝑝(𝑚1)
}

(17)

Due to the three min operators, we have to consider eight different
ases:

Case (a) 𝑐 < 𝑑 𝑝(𝑥1): The management cost is lower than the expected
damage.

(𝛼)

𝑐 𝑝(𝑚0) < 𝑑 𝑝(𝑥1, 𝑚0) ⇔ 𝑐 < 𝑑 𝑝(𝑥1|𝑚0) (18a)

Management cost is lower than the expected damage in case of a
negative signal.

(i) 𝑐 𝑝(𝑚1) < 𝑑 𝑝(𝑥1, 𝑚1) ⇔ 𝑐 < 𝑑 𝑝(𝑥1|𝑚1) (18b)

Management cost is lower than the expected damage in
case of a positive signal. In this case, we have 𝐸 𝑉 𝑆 𝐼 =
𝑐 − 𝑐 𝑝(𝑚0) − 𝑐 𝑝(𝑚1) = 0. It follows from (18a) and (18b)
that management cost is lower than the expected damage
irrespective of the signal. In view of this, information ac-
quisition is not economic (unless it is costless), so that
precautionary management, action 𝑎1, is undertake without
information acquisition.

(ii) 𝑑 𝑝(𝑥1, 𝑚1) < 𝑐 𝑝(𝑚1) ⇔ 𝑑 𝑝(𝑥1|𝑚1) < 𝑐 (18c)

Management cost is higher than the expected damage in
case of a positive signal. It follows from (18c) that 𝐸 𝑉 𝑆 𝐼 =
𝑐 − 𝑐 𝑝(𝑚0) − 𝑑 𝑝(𝑥1, 𝑚1) = 𝑐 𝑝(𝑚1) − 𝑑 𝑝(𝑥1, 𝑚1) > 0. However,
combining (18a) and (18b) we have 𝑑 𝑝(𝑥1|𝑚1) < 𝑐 <
𝑑 𝑝(𝑥1|𝑚0), which can only be true if 𝑝(𝑥1|𝑚1) < 𝑝(𝑥1|𝑚0).
But this means that the signal 𝑀 is a contra-indicator for the
occurrence of a HAB. Hence, information acquisition may be
economic, but the signal should be interpreted in a reverse
way.
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(𝛽) 𝑑 𝑝(𝑥1, 𝑚0) < 𝑐 𝑝(𝑚0) ⇔ 𝑑 𝑝(𝑥1|𝑚0) < 𝑐 (18d)

Management cost is higher than the expected damage in case of
a negative signal.

(i) Eq. (18b) holds so that management cost is lower than the
expected damage in case of a positive signal. In this case, we
have 𝐸 𝑉 𝑆 𝐼 = 𝑐 − 𝑑 𝑝(𝑥1, 𝑚0) − 𝑐 𝑝(𝑚1) = 𝑐 𝑝(𝑚0) − 𝑑 𝑝(𝑥1, 𝑚0),
which is positive by assumption (18d). Hence, depending
on the cost of information acquisition, it may, or may not
be beneficial to do so.

(ii) Eq. (18c) holds, so that management cost is higher than the
expected damage in case of a positive signal. In this case, we
have 𝐸 𝑉 𝑆 𝐼 = 𝑐 − 𝑑 𝑝(𝑥1, 𝑚0) − 𝑑 𝑝(𝑥1, 𝑚1) = 𝑐 − 𝑑 𝑝(𝑥1), which
is negative by assumption, as Case (a) specifies 𝑐 < 𝑑 𝑝(𝑥1).
Moreover, Eqs (18c) and (18d) together imply 𝑑 𝑝(𝑥1) < 𝑐,
contradicting the assumption of Case (a). Hence, this case
does not exist.

Case (b) 𝑑 𝑝(𝑥1) < 𝑐: The management cost is higher than the expected
damage. It immediately follow that it does not pay to perform man-
agement action 𝑎1 without getting a signal indicating that the expected
damage will be higher.

(𝛼) Eq. (18a) holds, implying that the management cost is lower than
the expected damage in case of a negative signal.

(i) Eq. (18b) holds, so that the management cost is lower than
the expected damage in case of a positive signal. In this case,
we have 𝐸 𝑉 𝑆 𝐼 = 𝑑 𝑝(𝑥1) − 𝑐 𝑝(𝑚0) − 𝑐 𝑝(𝑚1) = 𝑑 𝑝(𝑥1) − 𝑐 < 0,
because 𝑑 𝑝(𝑥1) < 𝑐 due to Case (b). However, Eqs (18a)
and (18b) together imply 𝑐 < 𝑑 𝑝(𝑥1), contradicting the
assumption of Case (b). Hence, this case does not exist.

(ii) Eq. (18c) holds, so that management cost is higher than the
expected damage in case of a positive signal. In this case,
we have 𝐸 𝑉 𝑆 𝐼 = 𝑑 𝑝(𝑥1) − 𝑐 𝑝(𝑚0) − 𝑑 𝑝(𝑥1, 𝑚1) = 𝑑 𝑝(𝑥1, 𝑚0) −
𝑐 𝑝(𝑚0) > 0, due to Eq. (18a). Hence, information acquisition
may be economic. However, Eqs (18a) and (18c) imply
𝑑 𝑝(𝑥1|𝑚1) < 𝑐 < 𝑑 𝑝(𝑥1|𝑚0) and thus 𝑝(𝑥1|𝑚1) < 𝑝(𝑥1|𝑚0).
But this means that the signal 𝑀 is a contra-indicator for the
occurrence of a HAB. Hence, information acquisition may be
economic, but the signal should be interpreted in a reverse
way.

(𝛽) Eq. (18d) holds, i.e., management cost is higher than the expected
damage in case of a negative signal.

(i) Eq. (18b) holds, so that the management cost is lower than
the expected damage in case of a positive signal. In this case,
we have 𝐸 𝑉 𝑆 𝐼 = 𝑑 𝑝(𝑥1) − 𝑑 𝑝(𝑥1, 𝑚0) − 𝑐 𝑝(𝑚1) = 𝑑 𝑝(𝑥1, 𝑚1) −
𝑐 𝑝(𝑚1) > 0 by assumption. Hence, depending on the cost of
information acquisition, it may, or may not be beneficial to
acquire information.

(ii) Eq. (18c) holds, so that management cost is higher than the
expected damage in case of a positive signal. In this case, we
have 𝐸 𝑉 𝑆 𝐼 = 𝑑 𝑝(𝑥1) −𝑑 𝑝(𝑥1, 𝑚0) −𝑑 𝑝(𝑥1, 𝑚1) = 𝑐−𝑑 𝑝(𝑥1) = 0.
Hence, information acquisition is not economic (unless it
is costless). Moreover, we have from Eqs (18c) and (18d)
that the management cost exceeds the expected damage
irrespective of the signal received, i.e., 𝑑 𝑝(𝑥1|𝑚0) < 𝑐 and
𝑑 𝑝(𝑥1|𝑚1) < 𝑐. It follows that precautionary management,
action 𝑎1, is never performed, neither on an ex-ante nor on
an ex-post basis.
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