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Abstract

The Arctic Ocean is experiencing rapid and significant changes due to climate warming, profoundly
impacting its physical and biological systems. Phytoplankton, as primary producers, play a crucial
role in marine ecosystems and biogeochemical cycles. Monitoring their distribution and abundance
is essential for understanding the health of the Arctic marine environment. This study focuses on
developing an ensemble machine learning model to predict concentrations of Total Chlorophyll-a
(TChl-a) and various Phytoplankton Functional Types (PFTs) in the Arctic Ocean, leveraging
data from satellite observations and in-situ measurements.

The ensemble model combines Gradient Boosting Machine (GBM), Fully Connected Neural
Network (FCNN), Random Forest Regression (RFR), and Support Vector Machine (SVM) through
a Ridge Regression Ensemble approach. The model was trained by using satellite data and model
simulations outputs from Copernicus Marine Service (CMEMS) that were matched with in situ
data collected during 1997-2020 and validated using in-situ measurements from the PS131 expe-
dition [1]. The model demonstrates strong predictive capabilities, particularly for Diatoms and
TChl-a, which are crucial for understanding primary production and nutrient dynamics in the
Arctic.

Results indicate that the ensemble model performs well in capturing the spatial and temporal
distribution of TChl-a and PFTs. The model’s robust performance during the training phase and
its ability to generalise to the validation dataset, regardless of its higher variability respect to the
training dataset, underscore its potential for large-scale ecological monitoring.

The creation of Arctic maps for PFTs and TChl-a provided valuable insights into the spatial
distribution of these variables. In the maps created, higher concentrations of Diatoms were ob-
served near coastal areas, aligning with known nutrient-rich environments such as river outflows
and upwelling zones, particularly along the coasts of northern Europe and northern Asia. Green
Algae showed a patchy distribution influenced by localised environmental factors, such as varia-
tions in light availability and nutrient inputs from specific sources like the Barents Sea and Laptev
Sea. Haptophytes exhibited specialised niches in cooler waters, reflecting their ecological roles in
regions like the Kara Sea, where lower temperatures and nutrient availability favor their growth.
Dinoflagellates were distributed along various coastal regions in northern Europe and northern
Asia without a specific area of high concentration, suggesting their adaptability to a range of en-
vironmental conditions.

In general, the model effectively identified areas of high phytoplankton activity, which are
essential for understanding the Arctic marine food web and biogeochemical cycles. Hence, this
study demonstrates the potential of using machine learning models for predicting phytoplankton
dynamics in the Arctic, offering a robust tool for monitoring and managing marine ecosystems.
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1. Introduction

The Arctic Ocean is undergoing rapid and significant changes due to climate warming, impacting
its physical and biological systems. Phytoplankton plays different roles in the dynamics of the
ocean systems. They are the primary producers in the marine ecosystem, forming the base of the
food web and supporting a diverse array of marine organisms, from zooplankton to large mammals
and birds [2]. The significant reduction in sea-ice extent and the resulting increase in open-water
habitat have led to changes in phytoplankton bloom dynamics, including earlier blooms and later
termination of it [3]. Phytoplankton dynamics influence the entire marine food web, affecting
species interactions, population structures, and the overall health of marine ecosystems. Changes
in phytoplankton composition and abundance can cascade through the food web, impacting the
productivity and survival of higher trophic levels [4].

Phytoplankton is also responsible of capturing the carbon through the biological pump, trans-
ferring carbon from the surface to the deep ocean and sediments. They absorb carbon dioxide
during photosynthesis, and when they die, they sink to the ocean floor, capturing carbon and
helping to regulate atmospheric CO2 levels. While these processes are common for all phytoplank-
ton, some species have specific chemical requirements due to their distinct physiological functions,
therefore playing different roles in the ocean biogeochemical cycles. Some phytoplankton such as
dinoflagellates and prymnesiophytes (haptophytes) influence the Earth’s climate by affecting ocean
albedo and through the production of dimethyl sulfide (DMS), which impacts cloud formation and
climate regulation. Changes in phytoplankton dynamics can alter these feedback mechanisms, af-
fecting regional and global climate patterns, like a reduction in sea-ice cover increases the amount
of sunlight absorbed by the ocean, potentially enhancing phytoplankton growth and altering the
production of DMS, which in turn influences cloud cover and climate [2]. Other phytoplankton
species as diatoms use Si to form their silica cell walls. Prokaryotes, particularly cyanobacteria, are
important for their role in nitrogen fixation, converting atmospheric nitrogen into forms usable by
other organisms. This process is crucial in oligotrophic (nutrient-poor) regions of the ocean where
nitrogen is a limiting nutrient [5] [6]. These functional differences have led to phytoplankton to be
classified into Phytoplankton Functional Types (PFT) [6]. In order to quantify the contributions
of these PFT, accurate monitoring is crucial for understanding the marine ecosystems and global
biogeochemical cycles. Essential to this monitoring is the measurement of chlorophyll-a, a pigment
found in all phytoplankton that plays a key role in photosynthesis.

The concentration of chlorophyll-a (Chl-a) in the ocean is directly related to the amount of
phytoplankton present, which respond rapidly to changes in environmental conditions. As conse-
quence of the dependency of nutrients and light, the concentration of Chl-a in the Arctic Ocean
is seasonal (Fig. 1.1), since the availability of these are driven by the sea-ice cover dynamics, the
seasonal sun-light and the changes in the mixed layer. It was observed that in the last past two
decades the annual NPP (Net Primary Production) has increased [7]. The NPP is the difference
between the total amount of carbon fixed through photosynthesis and the amount of carbon lost
through plant respiration, which is a crucial measure of ecosystem productivity. This increment
of NPP is linked to the sea-ice decline, and consequently to the emergence of earlier peaks in the
year of Chl-a concentration in the Arctic. Therefore, monitoring spatial-temporal distribution and
variability of Chl-a and PFT in the area has crucial importance in better understanding of marine
ecosystem dynamics and biogeochemical cycles, in order to be able to separate potential long-term
climate signals from natural variability in the short term [2].
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Figure 1.1: Arctic Ocean time series and trend (1997-2021) of satellite chlorophyll, based on
CMEMS product OCEANCOLOUR ARC BGC L3 MY 009 123. The daily regional average
(weighted by pixel area) time series is shown in blue, with the de-seasonalized time series in
green and the linear trend in blue. [7]

Several algorithms have been developed to estimate PFTs from ocean color data, each with
unique strengths and limitations. Traditional bio-optical algorithms, such as abundance-based
models, rely on empirical relationships between Chl-a concentrations and specific pigment markers
to estimate PFTs [6]. However, these models often face challenges in capturing the intricate bio-
optical signals and overlapping spectral signatures of different phytoplankton groups, especially in
regions with complex environmental conditions like the Arctic [8].

Advanced machine learning approaches, such as the Spatial-Temporal-Ecological Ensemble
(STEE) model, have demonstrated improved performance by combining multiple data sources and
leveraging spatio-temporal patterns to predict PFT distributions globally [9]. The STEE model,
for example, integrates diverse ecological, temporal, and spatial data to enhance its predictive
capabilities across various marine environments, providing a useful framework for PFT prediction.
Inspired by such methodologies, this study develops an ensemble machine learning model specif-
ically tailored to the Arctic region, addressing its unique ecological dynamics and the need for
higher-resolution predictions.

An interdisciplinary method that combines the use of machine learning with extensive marine
data from ocean observations and simulation outputs (Figure 1.2), specifically focused on the sub-
arctic and arctic regions (above 50◦ latitude), could provide improved quantification of PFTs and
Chl-a concentrations, thereby compensating for the lack of in-situ data in this region. This study
developed an ensemble machine learning model designed to produce robust predictions for five
distinct PFTs: Diatoms, Dinoflagellates (Dino), Haptophytes (Hapto), Prokaryotic phytoplankton
(Proka), and Green Algae (GA) and Total Chlorophyll-a (TChl-a). The model leverages innova-
tive machine learning techniques adapted to meet the specific requirements of the Arctic’s unique
environmental conditions.
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Figure 1.2: Flowchart - Ensemble Model Developing Steps.
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2. Data and Methods

2.1 In-situ Dataset
The in-situ PFT measurements used in this study were derived using an updated diagnostic pigment
analysis (DPA) method [10] with retuned coefficients [11]. The values of retuned DPA weighting
coefficients for PFT Chla determination are: 1.56 for fucoxanthin, 1.53 for peridinin, 0.89 for 19’-
hexanoyloxyfucoxanthin, 0.44 for 19’-butanoyloxyfucoxanthin, 1.94 for alloxanthin, 2.63 for total
chlorophyll b, and 0.99 for zeaxanthin. The coefficient retuning was based on an updated global
HPLC pigment data base for the open ocean (water depth > 200 m), which was compiled based
on the previously published data sets spanning from 1988 to 2012 [12], with updates [13] [11], by
adding other newly available HPLC pigment data collected between 2012 and 2018 mainly from
SeaBASS, PANGAEA, British Oceanographic Data Centre (BODC), and Australian Open Access
to Ocean Data (AODN). The complete data set composes a large amount of quality controlled in
situ measurements of major pigments based on HPLC collected from various expeditions across
the Atlantic Ocean spanning from 71◦S to 84◦N. This complete global data set where the Arctic
data were extracted, covers the years from 1997 to 2020. The location threshold set for this study
for the in-situ measurements is above 50◦N (Fig. 2.1).

Figure 2.1: In-situ Arctic measurements locations — Total chlorophyll-a (mg/m3).

High-performance liquid chromatography (HPLC) is a widely utilised method for estimating
phytoplankton community structure and obtaining information about PFTs in ocean samples.
HPLC measures the concentrations of various phytoplankton pigments in water samples, with
some pigments serving as chemotaxonomic markers for specific phytoplankton groups. This allows
researchers to revise several major groups of phytoplankton on a global scale, such as cyanobacteria,
diatoms/dinoflagellates, haptophytes, and green algae. Despite its strengths, HPLC has limita-
tions, such as the variable occurrence and plasticity of pigments across species, groups, strains,
and environmental conditions. Nevertheless, HPLC remains a crucial method for characterising

6



phytoplankton community structure, particularly in the context of ocean colour remote sensing
and the long-term monitoring of marine ecosystems [5].

Figure 2.2: Histogram Statistics - Training Target Variables — In-situ measurements.

For this study, a subset of Chl-a concentration of five PFTs and TChl-a of the in-situ measure-
ments was selected to train the ensemble model as target variables. The statistical summary of
these target variables provides valuable insights into their distribution and variability (Fig. 2.2).
The mean TChl-a concentration was 0.922 mg/m3, with a median of 0.739 mg/m3, indicating a
skewed distribution towards higher values. The standard deviation of 0.802 mg/m3 suggests con-
siderable variability, with values ranging from 0.032 mg/m3 to 4.182 mg/m3. This variability is
crucial for training the model to accurately predict TChl-a under different conditions.

Diatoms showed a mean concentration of 0.389 mg/m3 and a median of 0.213 mg/m3, with a
higher standard deviation of 0.500 mg/m3, reflecting their significant presence and variability in
the Arctic Ocean. Dino, with a mean concentration of 0.057 mg/m3 and a median of 0.026 mg/m3,
exhibited lower abundance but also had notable variability as indicated by the standard deviation
of 0.081 mg/m3. Hapto and GA had mean concentrations of 0.197 mg/m3 and 0.193 mg/m3 re-
spectively, both with considerable variability as shown by their standard deviations. Proka had
the lowest mean concentration at 0.008 mg/m3, with a median of 0.006 mg/m3 and a standard
deviation of 0.014 mg/m3, indicating their sparse distribution and reduced presence in this region.

2.2 CMEMS Dataset

In this study, datasets from Copernicus Marine Service (CMEMS), which include different remote
sensing and simulation output products were utilised (Table 2.1), with parameters or features such
as Chl-a concentration, sea surface temperature, nutrients, optical features and other biogeochemi-
cal variables (Fig. 2.3). These datasets span multiple years (1997-2020) and cover above the 50◦N,
providing the basis for the ensemble model development.
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Figure 2.3: Selected Features for the Ensemble Model.

Table 2.1: Copernicus Marine Service Datasets - Daily Resolution.

Dataset ID Variables
Horizontal
Resolution

Source

cmems mod glo bgc my 0.25 P1D-m

NO3,
PO4, Si,
NPPV ,
O2

∼ 25km× 25km Model

c3s obs-oc glo bgc-plankton my l3-multi-
4km P1D

CHL 4km× 4km Observations

c3s obs-oc glo bgc-reflectance my l3-multi-
4km P1D

RRS412,
RRS443,
RRS490,
RRS510,
RRS560,
RRS665

4km× 4km Observations

cmems obs-oc glo bgc-transp my l3-multi-
4km P1D

KD490,
ZSD

4km× 4km Observations

cmems obs-oc glo bgc-optics my l3-multi-
4km P1D

CDM 4km× 4km Observations

cmems mod glo phy my 0.083deg P1D-m
SSS,
MLD

∼ 10km× 10km Model

METOFFICE-GLO-SST-L4-REP-OBS-
SST

SST ∼ 5km× 5km Observations

Figure 2.3 shows how the selected features are grouped according to their nature for better
understanding. The table 2.1 shows the datasets ID of CMEMS from where the features were
taken, together with their original resolution and if they are either simulation model outputs or
observations by satellite sensors. In a machine learning models, features are the individual mea-
surable properties or characteristics of the phenomenon being observed. They serve as the input
variables that the model uses to make predictions. Features directly impact the accuracy and
performance of machine learning models, therefore choosing the right set of features is critical for
building effective models. A brief description of the selected features is summarised as below:

Latitude and longitude, the geographical coordinates of a sample location, are crucial for
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predicting PFT groups because different phytoplankton thrive in distinct geographical regions.
Variations in climate, nutrient availability, and water conditions across latitudinal and longitudinal
gradients significantly influence the distribution of phytoplankton groups [14].

Temporal factors such as year and month provide essential context for understanding sea-
sonal and inter-annual variations in PFT distribution. Seasonal changes impact light availability,
temperature, and nutrient cycling, which in turn influence phytoplankton growth patterns [15].

Nitrate (NO3) concentration is a critical nutrient parameter that affects phytoplankton
growth. Different PFT groups have varying nitrate requirements and uptake mechanisms. Ni-
trate availability can thus shape the composition of phytoplankton communities [16].

Phosphate (PO4) is another vital nutrient for phytoplankton, and its concentration in water
influences phytoplankton diversity and productivity. Phosphate limitation can restrict the growth
of certain PFT groups, favouring those that can efficiently utilise low phosphate levels [17].

Silicate (Si) concentration is particularly important for diatoms, which require silicate for
their frustules. The availability of silicate can thus directly affect the abundance and distribution
of diatoms relative to other PFT groups [18].

Net primary productivity of vegetation (NPPv) is an indicator of the overall produc-
tivity of the phytoplankton community. High NPPv values often correlate with blooms of certain
phytoplankton groups, reflecting their capacity for rapid growth under favorable conditions [19].

Oxygen (O2) levels can influence phytoplankton metabolism and the composition of PFT
groups. Oxygen concentration is related to both photosynthesis and respiration processes in marine
environments [20].

Colored Dissolved Organic Matter (CDM) and Chlorophyll-a (CHL) concentrations
provide insights into the presence and activity of phytoplankton. CDM can affect light penetration
in water, while chlorophyll-a is a direct proxy for phytoplankton biomass. The concentration of
CDM can have a significant effect on biological activity in aquatic systems. CDM diminishes light
intensity as it penetrates water. Very high concentrations of CDM can have a limiting effect on
photosynthesis and inhibit the growth of phytoplankton [21, 22].

The diffuse attenuation coefficient at 490 nm (KD490) and Secchi disk depth (ZSD)
are measures of water clarity and light penetration. The presence of phytoplankton contributes to
the light attenuation in the upper ocean layers, affecting the value of KD490. The ZSD is a simple
measure of water transparency or turbidity, determined by lowering a white disk into the water
until it disappears from view. ZSD is inversely related to KD490, higher KD490 values (greater
light attenuation) correspond to shallower Secchi depths (lower transparency) [21].

Remote sensing reflectance at various wavelengths (RRS412, RRS443, RRS490,
RRS510, RRS560, RRS665) These are remote sensing reflectance values at different wave-
lengths (measured in nanometers). They indicate how much light is being reflected by the water
at these specific wavelengths. Changes in these values can be indicative of different types and
concentrations of substances in the water, including phytoplankton [23].

Sea surface salinity (SSS) and mixed layer depth (MLD) are important physical pa-
rameters that affect phytoplankton distribution. Salinity can influence phytoplankton physiology
and community structure, lower sea surface salinity from ice melt creates favorable conditions for
phytoplankton blooms in polar regions while mixed layer depth affects nutrient availability and
light conditions [24].

Sea surface temperature (SST) is a key determinant of phytoplankton growth rates and
species composition. Temperature influences metabolic rates and the stratification of the water
column, which in turn affects nutrient availability [25].

2.3 Matchup Extraction
To ensure the accuracy and reliability of the machine learning model for predicting the target
variables (PFTs and TChl-a), matching satellite-derived and model output data with in-situ mea-
surements is a critical step. This process involves several key stages, each essential for aligning and
validating the datasets.

The first step involves selecting relevant datasets from the CMEMS. To access these datasets,
an FTP connection is established with the CMEMS server, allowing retrieval of data files stored
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in a structured directory system organised by year and month. The downloading process involves
navigating through these directories and fetching files for each day within the specified date range,
ensuring comprehensive temporal coverage.

The critical task of aligning dataset points with corresponding in-situ measurements, known as
the matchup process, ensures that model/observed-derived features accurately reflect real-world
conditions. Basically, matching in-situ measurements with dataset points that are geographically
and temporally close.

This process begins by reading the in-situ data from a CSV file, containing information about
the location (latitude and longitude) and time of each measurement. For each in-situ data point,
the corresponding dataset file is identified based on the date. The dataset, stored in NetCDF
format, is then accessed. To find the dataset points nearest to the in-situ measurement locations,
the latitude and longitude from the in-situ data are compared with those in the dataset points.
The nearest data points are identified by calculating the minimum Euclidean distance between the
in-situ location and the grid points in the dataset points. This precise matching ensures that the
data points used is as close as possible to the actual measurement location.

Once the nearest dataset points are identified, the values of the relevant features are extracted.
To ensure robustness, a 3x3 grid of surrounding points is considered, accounting for spatial vari-
ability. The values from these grid points are averaged, provided they meet criteria such as a
minimum number of valid data points and a low coefficient of variation. This 3x3 matrix approach
helps to smooth out any local anomalies and provides a more representative average value for the
area surrounding the in-situ measurement, thereby reducing noise and improving data reliability.

For example, the Euclidean distance d between an in-situ point (latIS , lonIS) and a dataset
grid point (latsat, lonsat) is calculated as:

d =
󰁳
(latIS − latcmems)2 + (lonIS − loncmems)2

The nearest grid point minimises this distance. The coefficient of variation (CV) is calculated to
ensure data consistency:

CV =
σ

µ

where σ is the standard deviation and µ is the mean of the values within the 3x3 grid. If CV < 0.25,
the values are considered consistent and averaged.

The matched data with a total of 334 points including the collocated predictor variables with
the in situ measurements, are compiled into a structured format that will be used for the training
of the model.
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Figure 2.4: Histogram and Statistics - Training Predictor Variables from CMEMS Dataset after
Matchup Extraction.

The descriptive statistics of these predictor variables in the matchup dataset, illustrated in
Figure 2.4, provide a comprehensive understanding of their distributions and variabilities, which
are crucial for model training. For instance, nitrate (NO3) concentrations, with a mean of 5.995
and a standard deviation of 2.150, exhibit significant variability, indicating the diverse nutrient
conditions that phytoplankton experience in the Arctic Ocean. Phosphate (PO4) and silicate (Si)
show similar patterns of variability, essential for understanding the nutrient limitations and re-
quirements of different PFTs.

Net primary productivity of vegetation (NPPv), with a mean of 11.776 and a high standard
deviation of 9.185, reflects the dynamic productivity levels in the Arctic, influenced by various
environmental factors. Oxygen (O2) levels, relatively stable with a mean of 339.348 and a lower
standard deviation, provide a consistent measure of the marine environment’s health and its influ-
ence on phytoplankton metabolism.

The optical properties, such as CDM, CHL, KD490, and ZSD, highlight the variability in water
clarity and phytoplankton biomass. For example, the mean CHL concentration is 0.897 mg/m3,
with a standard deviation of 0.538, indicating a broad range of phytoplankton biomass across dif-
ferent regions and conditions in the Arctic.

Remote sensing reflectance values at various wavelengths (RRS412, RRS443, RRS490, RRS510,
RRS560, RRS665) provide detailed insights into the optical characteristics of the water, essential
for detecting phytoplankton presence and concentration. The relatively low mean values and stan-
dard deviations reflect the subtle variations in water color that can be linked to phytoplankton
and other substances.

Sea surface salinity (SSS) and mixed layer depth (MLD) are critical physical parameters. SSS,
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with a mean of 32.834 psu, shows moderate variability, influencing phytoplankton physiology and
distribution. MLD, with a mean of 13.305 m and a higher standard deviation, reflects the dynamic
nature of water column mixing, affecting nutrient availability and light conditions for phytoplank-
ton growth.

Sea surface temperature (SST), with a mean of 277.711 K and a standard deviation of 3.699,
underscores the thermal conditions that influence phytoplankton metabolic rates and species com-
position. The variability in SST is crucial for understanding seasonal and inter-annual changes in
phytoplankton dynamics.

2.4 Pre-Processing
Preparing the dataset for a machine learning model is a crucial step that ensures the reliability
and accuracy of the predictions. The data preparation process involves a series of techniques, each
designed to handle different aspects of the dataset. This section provides a brief explanation of
these techniques, focusing on the logic behind each step.

The initial stage involves loading two datasets, the first one obtained during the matchup ex-
traction (Section 2.3) which includes the predictor variables, and the second one with the in-situ
measurement, which are the so-called target variables (TChl-a and PFT). These datasets are read
from CSV files into structured tables, allowing for efficient data manipulation.

One of the primary challenges in working with real-world datasets is handling missing values
(NaN values). In this process, missing values in the predictor variables dataset due to the matchup
extractions are addressed using K-Nearest Neighbours (KNN) imputation. KNN imputation pre-
dicts missing values based on the values of the nearest neighbours in the dataset. Mathematically,
this involves identifying the k-nearest samples in the feature space and imputing the missing value
with the mean or median of these neighbours. For example, if we have a missing value in a feature,
KNN imputation will find the 20 closest samples (neighbours) in the dataset and calculate the
mean of their values to replace the missing one. This method is effective because it preserves the
local structure of the data and leverages the information from similar instances to fill in the gaps.

After addressing missing values, the process continues with handling zeros in the in-situ dataset.
In this case the target variables dataset. Zeros can be problematic because they might represent
missing data or values below the detection limit rather than actual zero measurements. To miti-
gate this issue, all zeros are replaced with a small positive value (0.001mg/m3). This substitution
prevents distortions in the dataset that could arise from treating zeros as true values and ensures
that logarithmic transformations applied later do not encounter undefined values.

Logarithmic transformation is applied to the target dataset (Figure 2.2), and to CHL in the
predictor dataset (Figure 2.4). Log transformation is used to stabilise the variance, normalise the
distribution, and reduce the skewness of the data. By transforming the data to a logarithmic scale,
extreme values are compressed, and the overall distribution becomes more symmetrical. This is
beneficial for two reasons, one is that the Chl-a concentration of PFTs, thus the TChl-a have a
Gaussian distribution in the logarithmic scale (Figure 2.2), and the second reason is that machine
learning algorithms assume already normally distributed input data.

Normalisation of the predictor data is performed to ensure that all features contribute equally
to the model. Normalisation involves scaling the features to a standard range, typically between
0 and 1, or by transforming them to have a mean of zero and a standard deviation of one (stan-
dardisation). For example, normalisation can be expressed as:

normalised value =
original value−min(feature)

max(feature)−min(feature)
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This scales the values to a range of [0, 1]. Standardisation can be expressed as:

standardised value =
original value− µ

σ

where µ is the mean of the feature, and σ is the standard deviation.

Once normalisation is complete, the target dataset is also normalised using a similar approach
to ensure compatibility with the predictors. The normalised predictors and targets are then com-
bined into a single dataset, ready for partitioning into training and testing sets.

The final step involves splitting the dataset into training and testing sets based on a specified
proportion. This is achieved using a cross-validation partitioning method, specifically the holdout
approach. A random partition of the data is created, holding out a specified proportion for testing,
while the remaining data is used for training the model. This approach ensures that the model’s
performance can be evaluated on unseen data, providing an estimate of its generalisation ability.
Mathematically, if the total number of samples is N and the test proportion is p, the training set
will contain (1− p)N samples, and the test set will contain pN samples.

In summary, the data preparation process involves loading the datasets, handling missing val-
ues with KNN imputation, addressing zeros, applying logarithmic transformation, normalising the
data, and splitting it into training and testing sets. Each step is carefully designed to ensure that
the data is clean, consistent, and suitable for training a robust machine learning model.

2.5 Model Selection
To accurately predict the concentrations of TChl-a and the different PFTs, a diverse ensemble
of machine learning models was selected and trained using the prepared datasets. The selected
models include the Gradient Boosting Machine (GBM), Fully Connected Neural Network (FCNN),
Random Forest Regression (RFR), and Support Vector Machine (SVM). Each of these models was
trained individually to capture different aspects of the data and leverage their unique strengths.
After training, a final ensemble model was constructed using Ridge Regression Ensemble to com-
bine the predictions from all four models. This ensemble approach aims to enhance the overall
prediction accuracy and robustness by integrating the strengths of multiple learning algorithms.

2.5.1 Gradient Boosting Machine (GBM)

GBM is a machine learning algorithm that is optimised for regression and classification tasks. The
essence of GBM lies in its ensemble approach, which sequentially builds an ensemble of weak learn-
ers, typically decision trees. Unlike traditional ensemble methods that average the predictions of
individual models, GBM constructs each new model to correct the errors made by its predecessors,
enhancing the overall accuracy iteratively.

The foundation of GBM is the boosting technique, which improves model performance by com-
bining multiple simple models. In this sequential process, each model is trained to minimise the
errors of the combined ensemble from the previous iterations. This iterative refinement is guided
by gradient descent, a powerful optimisation method that minimises the chosen loss function. The
loss function quantifies the difference between the predicted and actual values, guiding the model
in learning from its mistakes.

Mathematically, GBM starts with an initial model, f0(x), which is typically a simple constant
value that minimises the loss function over the training data. In each subsequent iteration m, a
new model hm(x) is added to the ensemble. This new model is trained to predict the negative
gradient of the loss function with respect to the current ensemble’s predictions. Formally, the
update at each iteration can be represented as:

fm(x) = fm−1(x) + ρmhm(x)
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where ρm is the learning rate, a parameter that controls the contribution of each new model
to the ensemble. The learning rate is crucial as it balances the model’s convergence speed and its
ability to generalise to new data. A smaller learning rate usually requires more iterations but can
lead to better generalisation, while a larger learning rate may converge faster but risk overfitting.

The core optimisation in GBM involves minimising the loss function L(y, f(x)), where y repre-
sents the true values, and f(x) is the model’s prediction. The negative gradient of the loss function,

−∂L(y,f(x))
∂f(x) , indicates the direction in which the model should adjust its predictions to reduce the

error. Each new model in the ensemble is trained to approximate this gradient, effectively learning
the direction and magnitude of necessary adjustments.

An important aspect of GBM is the choice of the base learner. Decision trees are commonly
used due to their flexibility and ability to handle non-linear relationships. Each tree in GBM is
typically shallow, often referred to as a ”stump” when it has only one split. Shallow trees ensure
that each new model introduces only minor corrections, preventing overfitting and maintaining the
model’s generalisation ability.

To further enhance performance and prevent overfitting, GBM employs regularisation tech-
niques such as shrinkage and subsampling. Shrinkage, implemented through the learning rate ρ,
reduces the influence of each added model, promoting gradual improvements and robustness. Sub-
sampling, on the other hand, involves training each new model on a random subset of the data,
introducing diversity and reducing variance.

In practical applications, GBM has demonstrated significant success across various domains.
Its flexibility in handling different types of loss functions makes it adaptable to a wide range of
problems, such as predicting Phytoplankton Functional Types (PFTs) using tabular data. [26]

2.5.2 Fully Connected Neural Network (FCNN)

FCNN is a fundamental type of artificial neural network in which each neurone in one layer is
connected to every neurone in the subsequent layer. This architecture enables the network to learn
complex patterns and representations by allowing the neurones to interact freely across layers. FC-
NNs are widely used for various tasks, including regression, classification, and pattern recognition,
due to their flexibility and powerful learning capabilities.

The core of an FCNN is its layered structure, typically consisting of an input layer, one or more
hidden layers, and an output layer. Each layer is composed of neurones, or nodes, which perform
computations and pass their outputs to the next layer. The connections between neurones are
weighted, and these weights are the parameters learned during the training process. The input
layer receives the raw data, which is then transformed and propagated through the network.

Mathematically, the output of a neurone j in layer l can be described by the following equation:

alj = φ

󰀣
n󰁛

i=1

wl
ija

l−1
i + blj

󰀤

where al−1
i represents the activations from the previous layer, wl

ij are the weights connecting

neurone i in layer l− 1 to neurone j in layer l, blj is the bias term for neurone j in layer l, and φ is
the activation function. The activation function introduces non-linearity into the network, allowing
it to model complex relationships. Common activation functions include the sigmoid, hyperbolic
tangent (tanh), and rectified linear unit (ReLU).

Training an FCNN involves adjusting the weights and biases to minimise a loss function, which
measures the difference between the predicted outputs and the actual targets. This optimisation
is typically performed using backpropagation, an efficient algorithm that computes the gradient of
the loss function with respect to each weight by applying the chain rule of calculus. The gradients
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indicate the direction in which the weights should be adjusted to reduce the loss.

The backpropagation algorithm involves two main steps: forward propagation and backward
propagation. During forward propagation, the input data is passed through the network, and the
activations of each neurone are computed. The final activations at the output layer represent the
network’s predictions. The loss function L(y, ŷ), where y is the true value and ŷ is the predicted
value, is then calculated. In the backward propagation step, the gradients of the loss function with
respect to each weight are computed. These gradients are used to update the weights using an
optimisation algorithm, such as stochastic gradient descent (SGD):

wl
ij = wl

ij − η
∂L

∂wl
ij

where η is the learning rate, a hyperparameter that controls the size of the weight updates.
FCNNs are highly flexible and can be tailored to specific tasks by adjusting their architecture

and hyperparameters. The number of hidden layers, the number of neurones per layer, and the
choice of activation function can all be tuned to optimise performance. Regularisation techniques,
such as dropout and weight decay, are often applied to prevent overfitting. Dropout randomly
disables a fraction of neurones during training, forcing the network to learn more robust features,
while weight decay penalises large weights, promoting simpler models. [27]

2.5.3 Random Forest Regression (RFR)

RFR is an ensemble learning method that operates by constructing multiple decision trees during
training and outputting the average prediction of the individual trees. This technique combines
the strengths of decision trees while mitigating their limitations, such as overfitting. Random
Forests are renowned for their robustness, accuracy, and ability to handle high-dimensional data
and complex interactions among features.

At the core of RFR is the concept of ensemble learning, which involves aggregating the predic-
tions of several base models to improve overall performance. In a Random Forest, each base model
is a decision tree. Decision trees split the data at various points based on feature values to minimise
a loss function, such as mean squared error (MSE) for regression tasks. The tree structure allows
for capturing non-linear relationships and interactions between features.

The construction of a Random Forest involves the following key steps. First, a large number
of decision trees are created using bootstrapped samples of the training data. Bootstrapping, also
known as bagging, involves randomly sampling the training data with replacement, resulting in
different subsets for training each tree. This introduces diversity among the trees, as each tree is
trained on a slightly different dataset.

Mathematically, for a dataset D with N samples, a bootstrap sample Db is created by sam-
pling N times with replacement from D. This means that some samples may be repeated in Db,
while others may be omitted. Each decision tree is then trained on its respective bootstrap sample.

During the construction of each tree, a random subset of features is selected at each split point.
This process, known as feature bagging, ensures that the trees are diverse not only in their training
data but also in the features they consider for splitting. The number of features selected at each
split is typically a user-defined parameter, often set to the square root of the total number of
features.

The decision tree construction can be mathematically described as follows. Let Θ denote the
set of parameters that define a particular tree, including the splits and the values at the nodes.
Each tree T (Θb) in the forest is trained on its bootstrap sample Db and uses a subset of features
at each split to minimise the loss function. For regression, the prediction of each tree for a given
input x is the average of the target values in the leaf node where x falls.
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Once all trees are trained, the Random Forest makes a prediction by averaging the predictions
of the individual trees. If there are M trees in the forest, the prediction for an input x is given by:

ŷ =
1

M

M󰁛

m=1

Tm(x)

where Tm(x) is the prediction of the m-th tree. This averaging process reduces variance and
improves the overall accuracy of the model.

RFR offers several advantages. The aggregation of multiple trees reduces the risk of overfitting,
which is a common problem with individual decision trees. Additionally, the use of bootstrapping
and feature bagging introduces randomness, leading to a more robust and stable model. Random
Forests can also handle large datasets with higher dimensionality and provide estimates of feature
importance, helping to identify the most influential features in the prediction task. [28]

2.5.4 Support Vector Machine (SVM)

SVM is a powerful supervised learning algorithm widely used for classification and regression tasks.
SVM is designed to find the optimal hyperplane that separates data points of different classes with
the maximum margin. In the context of regression, SVM is adapted to Support Vector Regression
(SVR), which aims to find a function that deviates from the actual target values by a margin of
tolerance.

The fundamental concept behind SVM is the idea of finding a hyperplane in an n-dimensional
space (where n is the number of features) that distinctly classifies the data points. The optimal
hyperplane is the one that maximises the margin, which is the distance between the hyperplane
and the nearest data points from either class, known as support vectors. The maximum margin
criterion ensures that the classifier is robust and has good generalisation capabilities.

For a given dataset with features xi and target values yi, where i = 1, 2, . . . , N , the goal of
SVM is to solve the following optimisation problem:

min
w,b

1

2
󰀂w󰀂2

subject to the constraints:

yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, ∀i

where w is the weight vector, b is the bias term, and ξi are slack variables introduced to handle
misclassifications. The term 󰀂w󰀂2/2 represents the margin, and the constraints ensure that the
data points are correctly classified with a margin of at least 1, allowing for some misclassification
controlled by the slack variables.

In the case of Support Vector Regression (SVR), the objective is to find a function f(x) that
approximates the target values yi within a margin of tolerance 󰂃. The optimisation problem for
SVR is:

min
w,b

1

2
󰀂w󰀂2 + C

N󰁛

i=1

(ξi + ξ∗i )

subject to the constraints:

yi − (w · xi + b) ≤ 󰂃+ ξi
(w · xi + b)− yi ≤ 󰂃+ ξ∗i
ξi, ξ

∗
i ≥ 0, ∀i

where C is a regularisation parameter that controls the trade-off between maximising the mar-
gin and minimising the training error, and ξi, ξ

∗
i are slack variables that allow deviations from the
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margin 󰂃.

A key feature of SVM is the use of kernel functions, which enable the algorithm to handle
non-linear relationships by mapping the input features into a higher-dimensional space where a
linear hyperplane can effectively separate the data points. Commonly used kernel functions in-
clude the linear kernel, polynomial kernel, and radial basis function (RBF) kernel. The kernel trick
allows SVM to perform complex transformations without explicitly computing the coordinates in
the higher-dimensional space, thus maintaining computational efficiency.

The choice of kernel and its parameters significantly influences the performance of the SVM
model. For example, the RBF kernel, defined as:

K(xi,xj) = exp
󰀃
−γ󰀂xi − xj󰀂2

󰀄

introduces a parameter γ that controls the width of the Gaussian function, effectively deter-
mining the influence of a single training example.

SVM is particularly effective for high-dimensional spaces and cases where the number of dimen-
sions exceeds the number of samples. Its robustness to overfitting, especially in high-dimensional
spaces, makes it a suitable choice for complex datasets. [29]

2.5.5 Ridge Regression Ensemble (RRE)

RRE is a powerful technique used to combine the predictions of multiple machine learning models,
improving the overall accuracy and robustness of the final prediction. This method leverages the
principles of ridge regression, a type of linear regression that includes a regularisation term to
prevent overfitting and ensure stability in the presence of multicollinearity.

The core idea of ridge regression is to introduce a penalty on the size of the coefficients, which
helps in shrinking them towards zero and thereby reducing the model complexity. Mathematically,
the ridge regression model aims to minimise the following objective function:

min
w

󰀻
󰀿

󰀽

N󰁛

i=1

(yi −w · xi)
2
+ λ

p󰁛

j=1

w2
j

󰀼
󰁀

󰀾

where w is the vector of coefficients, xi represents the input features, yi is the target value,
N is the number of samples, p is the number of features, and λ is the regularisation parameter.
The term λ

󰁓p
j=1 w

2
j is the ridge penalty, which discourages large coefficients and thereby prevents

overfitting.
In the context of ensemble learning, RRE can be used to combine the outputs of several base

models. The ensemble model predicts the target value as a weighted sum of the predictions from
the individual models. Suppose there are M base models, each providing a prediction fm(x) for
an input x. The ensemble prediction ŷ can be expressed as:

ŷ =

M󰁛

m=1

wmfm(x)

where wm are the weights assigned to the predictions of the base models. The goal is to find
the optimal weights that minimise the prediction error on the training data while also applying
the ridge penalty to avoid overfitting.

The optimisation problem for the ridge regression ensemble can be formulated as:

min
w

󰀻
󰀿

󰀽

N󰁛

i=1

󰀣
yi −

M󰁛

m=1

wmfm(xi)

󰀤2

+ λ

M󰁛

m=1

w2
m

󰀼
󰁀

󰀾
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This formulation ensures that the ensemble model not only fits the training data well but also
maintains generalisability to new data.

RRE is particularly effective when combining models that are diverse in their predictions. By
weighting the predictions of different models, the ensemble can capture various aspects of the data
that individual models might miss. This diversity is crucial in reducing the overall variance and
improving the stability of the predictions.

In this study, RRE is used to combine the outputs of four different models: GBM, FCNN,
RFR, and SVM. Each of these models brings unique strengths to the ensemble. [30]

2.6 Accuracy Assessment

2.6.1 Performance Metrics

To evaluate the performance of the machine learning models used in predicting Chl-a concentra-
tion of PFTs, four key metrics are employed: Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), the coefficient of determination (R2), and the Median Absolute Percentage Error
(MdAPE). Each metric provides unique insights into the model’s accuracy and reliability.

Root Mean Squared Error (RMSE)

The RMSE is a widely used metric for measuring the differences between predicted and actual
values. It is defined as the square root of the average of the squared differences between the
predicted values (ŷi) and the actual values (yi):

RMSE =

󰁹󰁸󰁸󰁷 1

N

N󰁛

i=1

(ŷi − yi)2

where N is the number of observations. RMSE gives a sense of how concentrated the data is
around the line of best fit. It is particularly useful because it penalises larger errors more than
smaller ones, due to the squaring of the differences. Lower RMSE values indicate a better fit of
the model to the data. This metric is sensitive to outliers, which can disproportionately affect the
result, making it a comprehensive measure of model performance.

Mean Absolute Error (MAE)

The MAE measures the average magnitude of the errors in a set of predictions, without considering
their direction. It is calculated as the average of the absolute differences between the predicted
values and the actual values:

MAE =
1

N

N󰁛

i=1

|ŷi − yi|

MAE provides a straightforward interpretation of the prediction error, as it represents the average
absolute deviation of the predictions from the actual values. Unlike RMSE, MAE does not penalise
larger errors more than smaller ones, providing a more balanced view of the model’s prediction
accuracy. Lower MAE values indicate better predictive performance. This metric is less sensitive
to outliers compared to RMSE, making it a useful measure for understanding the typical size of
the errors.

Coefficient of Determination (R2)

The coefficient of determination, R2, is a statistical measure that indicates the proportion of the
variance in the dependent variable that is predictable from the independent variables. It is defined
as:

R2 = 1−
󰁓N

i=1(yi − ŷi)
2

󰁓N
i=1(yi − ȳ)2
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where ȳ is the mean of the actual values. R2 values range from 0 to 1, with higher values indicating
a better fit. An R2 value of 1 signifies that the model perfectly explains the variance in the data,
while an R2 value of 0 indicates that the model does not explain any of the variance. R2 provides
an intuitive measure of the model’s explanatory power, showing how well the predictions match
the observed data.

Median Absolute Percentage Error (MdAPE)

The MdAPE is a robust measure of prediction accuracy that is less sensitive to outliers compared
to RMSE and MAE. It is defined as the median of the absolute percentage errors between the
predicted values and the actual values:

MdAPE = median

󰀕󰀏󰀏󰀏󰀏
ŷi − yi

yi

󰀏󰀏󰀏󰀏× 100

󰀖

MdAPE provides an easy-to-understand percentage error metric, representing the typical predic-
tion error in percentage terms. Lower MdAPE values indicate better predictive accuracy. This
metric is particularly useful for comparing model performance across datasets with different scales
and is less affected by extreme values than the mean absolute percentage error (MAPE).

Interpretation of Metrics

These performance metrics together offer a comprehensive view of the model’s accuracy and re-
liability. RMSE provides insight into the magnitude of the prediction errors, heavily penalising
larger deviations, and is useful for understanding the overall fit of the model. MAE offers a
straightforward measure of average error, giving a balanced view of prediction accuracy without
disproportionately weighting larger errors. R2 complements these metrics by indicating the pro-
portion of variance explained by the model, providing a clear measure of its explanatory power.
MdAPE offers a robust percentage-based error metric that is less sensitive to outliers and provides
an intuitive interpretation of typical prediction error.

In the context of predicting Phytoplankton Functional Types (PFTs), these metrics help in
evaluating how well the models capture the underlying patterns in the data. Low RMSE and
MAE values, along with high R2 values and low MdAPE values, indicate that the model performs
well, accurately predicting the PFTs based on the given features. By using these metrics, the ef-
fectiveness and robustness of the machine learning models can be quantitatively assessed, ensuring
reliable and accurate predictions.

2.6.2 Cross-validation approach

Cross-validation is a fundamental technique in machine learning used to assess the generalisability
and robustness of a model. In this study, a 5-fold cross-validation approach is employed, which
involves training the model five times with different holdout sets and then averaging the results to
obtain a comprehensive evaluation. This method splits the dataset into a training set and a test
set, typically using 70% of the data for training and 30% for testing. This process is repeated five
times, each time with a different random split, ensuring that the model’s performance is evaluated
on multiple data splits.

One primary advantage of cross-validation is its ability to reduce overfitting by training and
validating the model on different subsets of data, thereby providing a more reliable estimate of
the model’s ability to generalise. This method ensures every data point is used for both training
and validation, maximising the efficient use of available data, which is especially beneficial in fields
with limited data availability, like environmental science. Additionally, cross-validation is essen-
tial for model selection and hyperparameter tuning, helping identify the best-performing model
configuration. By using cross-validation to test and tune hyperparameters, the chosen model and
its parameters are better suited to the data, leading to improved predictive performance. The
variability in performance metrics across iterations also offers insights into the model’s stability
and robustness, highlighting areas for potential improvement.
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2.7 Validation and PFT mapping

2.7.1 In-situ Data

The validation of the ensemble model developed in this study was conducted using an indepen-
dent in situ PFT data set collected from PS131 expedition. The PS131 expedition, also known as
ATWAICE, was carried out from June 27, 2022, to August 17, 2022, aboard the German research
vessel Polarstern. The primary objectives of the expedition included investigating ocean-ice-air
interactions, studying the impacts of climate change on the Arctic environment, and collecting
data on various oceanographic and biological parameters [1].

The in-situ measurements were collected from June 29, 2022, to August 12, 2022, covering a
period of 45 days (Figure 2.5 and Figure 2.6). Using the temporal range of this data, correspond-
ing predictor variables were extracted from the CMEMS dataset for the same 45-day period. The
CMEMS dataset included the same parameters as in the predictor dataset in the training phase
(Table 2.2). But unlike the training phase, where only matching points based on in-situ locations
and dates were used, the validation involved downloading all the data points of the Arctic over the
45-day period.

Figure 2.5: PS131 in-situ measurements location - TChl-a (mg/m3) – 45 days.
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Figure 2.6: PS131 in-situ measurements location - Chl-a PFT (mg/m3) – 45 days.
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2.7.2 CMEMS Products

Figure 2.7: Histogram Descriptive Statistics - Validation Predictor Variables from CMEMS Dataset
– 45 days.

The descriptive statistics of the validation predictor variables dataset, illustrated in Figure 2.7,
obtained from the CMEMS products listed in the table 2.2, provide critical insights into the envi-
ronmental conditions during the validation period. For instance, nitrate (NO3) concentrations in
the validation dataset have a mean of 4.123 with a higher standard deviation of 4.185 compared to
the training dataset, indicating more variability and a broader range of nutrient conditions. The
maximum value for nitrate in the validation set is significantly higher, suggesting the presence of
regions with extremely high nutrient inputs.
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Table 2.2: Validation - Copernicus Marine Service Datasets - Daily Resolution.

Dataset ID Variables
Horizontal
Resolution

Source

cmems mod glo bgc-nut anfc 0.25 P1D-m
NO3, PO4,
Si

∼ 25km× 25km Model

cmems mod glo bgc-bio anfc 0.25 P1D-m
NPPV ,
O2

∼ 25km× 25km Model

c3s obs-oc glo bgc-plankton my l3-multi-
4km P1D

CHL 4km× 4km Observations

c3s obs-oc glo bgc-reflectance my l3-multi-
4km P1D

RRS412,
RRS443,
RRS490,
RRS510,
RRS560,
RRS665

4km× 4km Observations

cmems obs-oc glo bgc-transp my l4-
gapfree-multi-4km P1D

KD490,
ZSD

4km× 4km Observations

cmems obs-oc glo bgc-optics my l3-multi-
4km P1D

CDM 4km× 4km Observations

cmems mod glo phy-so my 0.083deg P1D-
m

SSS ∼ 10km× 10km Model

cmems mod glo phy anfc 0.083deg P1D-m MLD ∼ 10km× 10km Model

METOFFICE-GLO-SST-L4-REP-OBS-
SST

SST ∼ 5km× 5km Observations

Phosphate (PO4) concentrations in the validation dataset show a mean of 0.505, slightly higher
than in the training dataset, with a higher variability indicated by the standard deviation of 0.324.
This suggests varying nutrient dynamics during the validation period. Silicate (Si) concentrations
exhibit a mean of 6.942 and a high standard deviation of 8.196, highlighting substantial variability
and the presence of areas with high diatom growth potential.

Net primary productivity of vegetation (NPPv) has a mean of 23.601 with a high standard
deviation of 19.080, reflecting dynamic productivity levels and substantial variability in phyto-
plankton growth conditions. Oxygen (O2) levels, with a mean of 347.691 and a standard deviation
of 32.253, remain relatively stable, providing a consistent measure of the marine environment’s
health during the validation period.

The optical properties, such as CDM, CHL, KD490, and ZSD, highlight variations in water
clarity and phytoplankton biomass. The mean CHL concentration in the validation dataset is
1.530 mg/m3, with a higher standard deviation of 2.280, indicating significant fluctuations in phy-
toplankton biomass. The higher mean and variability compared to the training dataset suggest
more dynamic phytoplankton activity during the validation period.

Remote sensing reflectance values at various wavelengths (RRS412, RRS443, RRS490, RRS510,
RRS560, RRS665) in the validation dataset show slightly higher means and variability, reflecting
changes in water optical properties and possibly different phytoplankton compositions and concen-
trations.

Sea surface salinity (SSS) has a mean of 29.470 with a higher standard deviation of 6.514, indi-
cating substantial changes in salinity levels, possibly due to melting ice or freshwater inputs. The
mixed layer depth (MLD) shows a mean of 12.881 with a standard deviation of 4.660, suggesting
variations in water column mixing and nutrient availability. Sea surface temperature (SST), with
a mean of 278.908 K and a higher standard deviation of 4.164, underscores the thermal variability

23



influencing phytoplankton growth rates and species composition.

These descriptive statistics of the validation predictor variables highlight the diverse and dy-
namic environmental conditions during the validation period. Comparing these with the training
dataset reveals important differences, such as higher variability in nutrients and optical properties,
which can affect the performance of the ensemble model. The robust preprocessing and alignment
of these variables ensure that the model’s predictions are based on accurate and consistent data,
enhancing the reliability of the validation results.

2.7.3 Pre-Processing

Since the products including all predictor variables acquired from CMEMS files had different reso-
lutions, interpolation was necessary to align the data spatially. This interpolation ensured that all
predictor variables were available at the same spatial resolution, providing consistent input for the
model. Then, common pixels between the CMEMS data were identified using the remote sensing
reflectance at 665 nm (RRS665) as reference, as it had the fewest points. This step was crucial for
ensuring that the spatial points from different datasets corresponded correctly and all predictor
files contained the same number of location points corresponding to the identified common pixels.

Interpolation

This section involved the interpolation of geospatial data from various sources with different spatial
resolutions (Table 2.2) to a unified 4km grid, subsequently storing the interpolated data in new
files. The process began by reading the latitude and longitude data of the target 4km grid from
a 4km resolution reference file, followed by setting up grids for the variables to be interpolated
from their respective original resolutions. For each variable group such as salinity, layer thickness,
nutrients, bio, and surface temperature dimensions and variables were defined in new files to store
the interpolated data.

The interpolation process for each variable involved creating a mesh grid based on the original
resolution, defining the necessary dimensions and variables in the target file, and iterating over the
time steps to read slices of the original data. These data slices were then interpolated to the 4km
grid using linear interpolation methods and subsequently written to the new file. This approach
ensures that all data, regardless of its original resolution, could be compared or combined on a
consistent 4km grid, thus facilitating further analysis or visualisation.

Common Pixels

To prepare the dataset for analysis, geospatial data from various CMEMS products was read and
filtered based on a reference variable. The reference variable, ”RRS665”, was selected due to its
relevance in the dataset and was used to determine valid entries. The latitude and longitude values
associated with ”RRS665” were used to create a mesh grid representing the geospatial coordinates.
A logical mask was generated to identify valid (non-NaN) entries in the ”RRS665” data, which
served as a basis for filtering out invalid (NaN) values from other variables in subsequent steps.

The next step involved defining a list of predictor variables from the different CMEMS prod-
ucts, each associated with specific filenames and variable names. The filtering process applied
the non-NaN mask to each predictor variable to ensure that only valid data points were retained.
The corresponding data was then read from each file, and non-NaN entries were preserved. These
filtered values were combined to create a comprehensive dataset, and any remaining rows contain-
ing NaN values were removed to ensure completeness. The consolidated data, including latitude,
longitude, and all predictor variables without NaN values, was then organised into a single table,
ready for further analysis or visualisation.

After these preprocessing steps, the dataset was prepared similarly to the training phase, in-
cluding normalisation and transformation processes. The predictor variables were then input into
the trained ensemble model to generate daily predictions. These daily predictions were averaged
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to create a comprehensive map of the Arctic for Chl-a PFTs and TChl-a over the entire period.

2.7.4 PFT Mapping

To generate maps of the Chl-a PFTs and TChl-a, the daily distributions were predicted using the
ensemble model, and these predictions were averaged over a specified number of days to produce
the resulting maps. The process began with defining the predictor and target variables, followed by
loading the trained models and the coefficients of the ridge regression ensemble model. An initial
storage framework was established for daily data predictions and their corresponding coordinates.

For each day within the defined period, data from CSV files was loaded and preprocessed.
Multiple machine learning models (GBM, FCNN, RFR, SVM) were applied to generate predic-
tions for each PFT. These predictions were then combined using an ensemble method to enhance
robustness. The predictions and their associated geospatial coordinates were stored for each day
to maintain continuity over the period.

Subsequently, reference coordinates and the accumulated predictions were loaded, and storage
was initialised to accumulate the log-transformed values of the predictions. For each PFT, the pre-
dicted values were log-transformed and accumulated over the days according to their corresponding
coordinates. A nearest neighbour search was employed to match the prediction coordinates with
the reference grid. The mean log-transformed values for each grid point were then calculated, with
any grid points lacking data marked as missing. Finally, the averaged predictions were plotted
using an Arctic projection to create the maps.

2.7.5 PFT Validation using in-situ Matchups

The goal of the validation was to assess the performance of the model by comparing its predic-
tions with the in-situ measurements. This involved matching the predicted data with the in-situ
measurements based on location (latitude and longitude) and date and applying the same metrics
as during the training phase.
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3. Results and Discussions

3.1 Training Phase Performance
To analyse the performance of the Ridge Regression Ensemble model, it is crucial to delve into
the specific metrics for each PFT and TChl-a. This detailed analysis provides insights into the
strengths and weaknesses of the ensemble approach and highlights areas for potential improvement.

Analysis of Individual Models - Table 3.1
GBM demonstrated notable results in predicting the concentration of various PFTs and TChl-

a. Specifically, GBM achieved the highest R2 values for Hapto and TChl-a, indicating a strong
predictive capability for these categories. However, its performance was less effective for Proka
and Diatoms, suggesting that the model struggled to accurately capture the dynamics of these
PFTs in the Arctic Ocean. The relatively higher RMSE and MAE values for these less effective
categories indicate larger prediction errors. This can be partly attributed to the lower mean and
higher variability of these PFTs in the training dataset, as indicated by the descriptive statistics:
Diatoms (mean: 0.389 mg/m3, std: 0.500 mg/m3) and Prokaryotes (mean: 0.008 mg/m3, std:
0.014 mg/m3).

FCNN, known for its versatility and power in various applications, showed varying degrees of
success in this context. The highest R2 values were observed for TChl-a and Hapto, indicating
reasonable effectiveness in these areas. However, the performance significantly dropped for Proka
and Diatoms, highlighting potential limitations in the model’s ability to generalise across different
PFTs. The increased RMSE and MAE values for these PFTs suggest that the FCNN had difficulty
in making precise predictions, possibly due to the low concentrations and high variability of these
groups in the dataset.

SVM presented a balanced performance across different PFTs. It achieved its best results for
Hapto and TChl-a, with moderate R2 values indicating satisfactory predictive accuracy. Nonethe-
less, the values for Diatoms and Proka were relatively lower, indicating moderate predictive ac-
curacy. The relatively low RMSE and MAE values for these PFTs suggest that while the SVM
model was generally effective, there was still room for improvement. The variability in the predic-
tor variables, such as nutrients and temperature, likely influenced these results.

RFR exhibited robust performance, particularly for Hapto and TChl-a. This model demon-
strated its capability to handle non-linear relationships and interactions between features. However,
similar to other models, the R2 values for Diatoms and Proka indicated room for improvement.
The relatively low RMSE and MAE values for these PFTs suggest that RFR was effective in mak-
ing precise predictions but struggled with certain PFTs due to their lower abundance or complex
ecological roles.

Ridge Regression Ensemble Analysis - Table 3.2
The Ridge Regression Ensemble model, which combines the strengths of the individual mod-

els, showed the highest overall performance. For Diatoms, the ensemble model achieved an R2 of
0.814, indicating a strong predictive capability, likely due to the high abundance and well-defined
seasonal cycles of Diatoms in the Arctic. The relatively low RMSE and MAE values suggest that
the model is able to make precise predictions with minimal error. However, it is crucial to consider
the MdAPE value as well, which provides a robust measure of prediction accuracy less sensitive to
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outliers.

For Dino, the ensemble model achieved an R2 of 0.612. While the R2 value is lower than that
for Diatoms, the relatively low RMSE and MAE values might indicate that the variance in the
actual measurements of Dino is low, leading to smaller error margins. This could suggest that the
model’s predictions are not as challenged by the data variability, potentially masking underlying
prediction difficulties. The MdAPE value here helps confirm the model’s reliability by providing
an intuitive percentage-based error metric.

Hapto exhibited an R2 of 0.745. The high R2 value reflects the model’s strong ability to predict
the concentrations of Hapto. The relatively low RMSE and MAE values further emphasise the
accuracy of the model in predicting this PFT, likely due to their moderate abundance and distinct
physiological characteristics. The MdAPE value corroborates this accuracy, indicating robust per-
formance.

Proka had an R2 of 0.641. Although the R2 value is lower compared to other PFTs, the ex-
ceptionally low RMSE and MAE values suggest that the model might be overfitting to specific
characteristics of the data, or that the variance in Proka’ measurements is low. This indicates that
while predictions appear precise, they may not be robust. Therefore, a focus on R2 and MdAPE
values provides a better understanding of the model’s generalisation capabilities and avoids mis-
leading interpretations based on RMSE and MAE alone.

GA showed an R2 of 0.696. These metrics suggest a moderate level of predictive accuracy, with
the model performing reasonably well. The lower abundance of GA compared to Diatoms and
Hapto likely contributed to the lower R2 value, but the relatively low RMSE and MAE values still
indicate that the model can make accurate predictions. The MdAPE value here again provides a
more reliable measure of prediction accuracy.

For TChl-a, the ensemble model achieved an R2 of 0.809. The high R2 value reflects the
model’s robust performance in predicting overall chlorophyll concentrations, which is crucial for
understanding primary production in the Arctic Ocean. The RMSE and MAE values indicate a
strong predictive accuracy, essential for comprehensive ecosystem monitoring. The MdAPE value
further supports this accuracy, ensuring that the model’s predictions are reliable.

Our model performance is also compared to the previous global PFT retrieval models devel-
oped based on larger global data sets, such as those by Xi et al. [13] and the STEE model [9].
Xi et al. (2021) employed an EOF-based approach for global PFT retrievals and achieved good
performance metrics, with R2 values of 0.82 for Total Chlorophyll-a (TChl-a), 0.71 for Diatoms,
and 0.53 for Green Algae (GA), among other PFTs. However, this EOF-based approach may not
be optimally suited for Arctic-specific conditions due to its reliance on global data sets that may
not capture the unique environmental characteristics of the Arctic, such as the presence of sea ice,
strong seasonal light variations, and specific nutrient dynamics.

In contrast, our machine learning-based approach demonstrates several advantages over the
EOF-based method of Xi et al. (2021) when applied to the Arctic region. Our ensemble model,
specifically trained on Arctic data, achieved an R2 value of 0.809 for TChl-a, 0.814 for Diatoms,
and 0.696 for GA. These results indicate that our model is able to account for the localised envi-
ronmental factors and data sparsity characteristic of the Arctic, providing improved retrievals of
PFT concentrations in this challenging region.

When compared with the STEE model, which achieved R2 values higher than 0.6 for all eight
PFTs globally (with a maximum R2 of 0.88 for Diatoms), our ensemble model’s performance is
slightly downgraded but still comparable, especially given the more limited data availability and
the specific regional focus of the Arctic Ocean. For example, our model achieved an R2 of 0.814
for Diatoms, close to the global STEE model’s performance, and comparable R2 values for other
PFTs such as Haptophytes and Prokaryotes (0.745 and 0.641, respectively). This demonstrates
that, despite the reduced amount of data, the regional training tailored to the Arctic Ocean context
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Table 3.1: Training Performance Metrics - Individual Models.

PFT RMSE MAE MdAPE R2

Gradient Boosting Machine

Diatom 0.357 0.203 40.433 0.586
Dino 0.076 0.038 43.881 0.535
Hapto 0.199 0.109 39.115 0.770
Proka 0.0114 0.005 32.970 0.499
GA 0.179 0.108 37.089 0.524
TChl-a 0.402 0.242 19.901 0.791

Fully Connected Neural Network

Diatom 0.411 0.233 46.755 0.505
Dino 0.091 0.048 67.527 0.446
Hapto 0.264 0.154 63.129 0.604
Proka 0.013 0.005 49.317 0.266
GA 0.205 0.122 42.623 0.427
TChl-a 0.470 0.294 31.424 0.774

Support Vector Machine

Diatom 0.344 0.193 36.034 0.570
Dino 0.083 0.043 59.492 0.504
Hapto 0.205 0.117 37.903 0.716
Proka 0.008 0.005 41.796 0.462
GA 0.143 0.083 28.427 0.469
TChl-a 0.414 0.259 24.202 0.783

Random Forest Regression

Diatom 0.302 0.169 32.468 0.612
Dino 0.071 0.035 49.301 0.546
Hapto 0.180 0.094 29.969 0.789
Proka 0.011 0.004 34.999 0.496
GA 0.152 0.086 29.329 0.561
TChl-a 0.399 0.249 22.870 0.773

is still valid and capable of providing meaningful insights into phytoplankton dynamics.

Overall, while our model’s performance is slightly lower than the global models, the results
highlight the benefits of using a regionally focused machine learning approach to enhance the
understanding of PFT distributions in the Arctic, thereby underscoring its utility for ecological
monitoring in areas with unique environmental conditions and limited data.
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Table 3.2: Validation Performance Metrics - Ensemble Model.

Ridge Regression Ensemble

PFT RMSE MAE MdAPE R2

Diatom 0.292 0.164 32.605 0.814
Dino 0.075 0.0372 47.380 0.612
Hapto 0.171 0.094 28.080 0.745
Proka 0.011 0.004 26.120 0.641
GA 0.132 0.079 30.302 0.696
TChl-a 0.380 0.224 19.568 0.809

Figure 3.1: Scatterplots of predicted vs observed TChla and PFT Chla values (Black line 1:1 fit).
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3.2 Validation Analysis
To validate the ensemble model, a series of systematic steps were undertaken to ensure the accu-
racy of the predictions. Initially, predictor variables (Fig. 2.7) parameters were prepared. These
predictors were used to generate daily predictions for 45 days using pre-trained models, GBM,
FCNN, RFR, and SVM. These individual model predictions were then combined using a RRE
approach using the pre-loaded coefficients from the training phase.

The validation process included matching these predictions with in-situ measurements collected
during the PS131 expedition. A threshold of 0.04 degrees, corresponding to the spatial resolution
of the prepared CMEMS products, was applied to ensure that only predictions within this radius
from the in-situ data points were considered. This step was crucial for ensuring spatial relevance
and accuracy. For each in-situ point, the nearby predicted values were averaged, allowing for a
meaningful comparison. The final step involved calculating performance metrics as for the training
performance such as RMSE, MAE, and MdAPE to quantitatively assess the model’s prediction
accuracy. These metrics provided insights into the model’s performance, highlighting both its
strengths and areas for potential improvement, and make easier the comparison with the training
phase performance and other validated models.

To assess the performance of the ensemble model, it is essential to compare the validation in-
situ dataset with the training in-situ dataset.

3.2.1 Comparison of Training and Validation Datasets

The descriptive statistics indicate notable differences between the training and validation datasets,
which could impact the model’s predictive capabilities. For instance, the mean and maximum
values of TChl-a are higher in the validation dataset compared to the training dataset, suggesting
more variable environmental conditions during the validation period. This variability could pose
a challenge for the model, potentially affecting its accuracy.

Comparison:

• Diatoms also exhibit higher mean and maximum values in the validation dataset, indicating
a more substantial presence and variability during the validation period. This increased
variability in Diatom concentrations could impact the model’s performance, as it may need
to account for a broader range of values.

• Dino show a slight decrease in mean concentration in the validation dataset, but with a
few higher outliers. This could suggest sporadic blooms or specific conditions favouring
Dinoflagellates during the validation period, which the model needs to handle effectively.

• Hapto and Proka present lower mean concentrations in the validation dataset compared to
the training dataset. The lower abundance of these PFTs in the validation dataset could
potentially simplify the model’s predictions but also require it to be sensitive to smaller
concentrations.

• GA exhibit a higher mean concentration in the validation dataset, which could reflect en-
vironmental conditions that favour their growth during the validation period. The model’s
ability to accurately predict GA concentrations under these conditions is crucial for its overall
performance.

Overall, the differences between the training and validation datasets highlight the importance
of ensuring that the model is robust and capable of generalising across different environmental
conditions. The variability in the validation dataset, particularly the higher values for some PFTs,
poses a significant challenge that the model needs to overcome to demonstrate its effectiveness.
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3.2.2 Validation Performance

To assess the performance of the Ridge Regression Ensemble model, it is essential to examine the
metrics obtained during the validation phase and compare them with the training performance
metrics, as shown in Table 3.3 and the scatter plots in the figure 3.2, in which can be seen the lat-
itude of the matching points. Additionally, considering the differences in the descriptive statistics
of the validation and training in-situ datasets, it is expected that the model will face challenges
due to these variations.

Diatoms: The RRE model achieved an R2 of 0.463 for Diatoms during the validation phase, a
significant decrease from the training phase R2 of 0.814. This drop can be attributed to the higher
mean (1.080 mg/m3) and increased variability (standard deviation of 2.212 mg/m3) of Diatoms
in the validation dataset compared to the training dataset (mean of 0.389 mg/m3 and standard
deviation of 0.500 mg/m3). The higher RMSE and MAE values during validation further indicate
increased prediction errors, reflecting the model’s struggle with the more diverse validation data.
Such a drop is within the expected range, considering the significant difference in the data distri-
butions.

Dino: For Dino, the R2 during validation is 0.332, lower than the training phase R2 of 0.612.
The validation dataset had a lower mean (0.036 mg/m3) and a similar standard deviation (0.078
mg/m3) compared to the training dataset (mean of 0.057 mg/m3 and standard deviation of 0.081
mg/m3). The increased RMSE and MAE values indicate that the model’s predictions for Dino are
less accurate during validation, possibly due to the sporadic higher values observed in the valida-
tion dataset. This drop in performance is typical for models when dealing with less abundant and
more variable datasets.

Hapto: The model’s R2 for Hapto during validation is 0.304, a decrease from the training
phase R2 of 0.745. The validation dataset showed a lower mean (0.120 mg/m3) and a similar
standard deviation (0.215 mg/m3) compared to the training dataset (mean of 0.197 mg/m3 and
standard deviation of 0.238 mg/m3). The higher RMSE and MAE values during validation suggest
that the lower mean concentration and variability in the validation dataset posed a challenge for
the model, leading to decreased performance. This drop in performance is expected due to the
variability in the validation dataset.

Proka: The R2 for Proka during validation is 0.483, which is relatively close to the train-
ing phase R2 of 0.641. The validation dataset had a lower mean (0.004 mg/m3) and a similar
standard deviation (0.008 mg/m3) compared to the training dataset (mean of 0.008 mg/m3 and
standard deviation of 0.014 mg/m3). The consistent RMSE and MAE values suggest that the
model maintained its predictive accuracy for Proka despite the lower mean concentration and re-
duced variability in the validation dataset. The small drop in performance indicates the model’s
robustness for this PFT, likely due to the low abundance of Prokaryotes in both datasets, which
resulted in less variability to influence the model’s performance.

GA: The model achieved an R2 of 0.563 for Green Algae during validation, slightly lower than
the training phase R2 of 0.696. The validation dataset showed a higher mean (0.253 mg/m3)
and a similar standard deviation (0.239 mg/m3) compared to the training dataset (mean of 0.193
mg/m3 and standard deviation of 0.191 mg/m3). The slightly higher RMSE and MAE values dur-
ing validation indicate a marginal decrease in predictive accuracy, likely due to the increased mean
concentration of GA in the validation dataset. This performance drop is within the expected range.

TChl-a: The R2 for TChl-a during validation is 0.744, compared to the training phase R2 of
0.809. The validation dataset had a higher mean (1.533 mg/m3) and increased variability (stan-
dard deviation of 2.363 mg/m3) compared to the training dataset (mean of 0.922 mg/m3 and
standard deviation of 0.802 mg/m3). The higher RMSE and MAE values during validation in-
dicate less accurate predictions, reflecting the model’s struggle with the more variable validation
data. However, the relatively high R2 value indicates that the model performed well despite the
increased variability, which is a positive outcome.
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Expected Performance Drop: Performance metrics can vary significantly between training
and validation datasets, which could lead to the expected drops in performance metrics like R2,
depending on the complexity and variability of the data [31]. In this study, the drop in perfor-
mance is within this expected range, indicating that the model generalises reasonably well despite
the challenges posed by the validation dataset.

Table 3.3: Validation Performance Metrics - Ensemble Model.

Ridge Regression Ensemble

PFT RMSE MAE MdAPE R2

Diatom 0.268 0.178 48.512 0.463
Dino 0.048 0.037 53.532 0.332
Hapto 0.311 0.248 73.477 0.304
Proka 0.011 0.009 23.787 0.483
GA 0.062 0.042 18.613 0.563
TChl-a 0.380 0.289 36.233 0.744

Overall, the performance metrics indicate that the Ridge Regression Ensemble model experi-
enced a decrease in predictive accuracy during the validation phase compared to the training phase.
This is expected due to the increased variability and higher mean concentrations in the validation
dataset compared to the training dataset. The model’s performance reflects the challenges of gen-
eralising across different datasets and highlights the importance of considering dataset variability
and ensuring the model’s robustness across varying environmental conditions.
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Figure 3.2: Scatterplots showing Predicted vs. Observed Values using the independent validation
data set from PS131 (mg/m3) (Black line 1:1 fit).

3.3 Mapping of the Arctic PFTs
In order to map the PFT distribution for the Arctic Ocean, daily predicted values for each PFT
were stored along with their corresponding geographic coordinates. This allowed for the accu-
mulation of predictions across the 45-day period. The next step involved calculating the mean
log-transformed values of these predictions. This transformation was performed to mitigate the
effect of outliers and stabilise the variance. The log-transformed values were then averaged over
the entire period, providing a comprehensive representation of the predicted TChl-a and PFT con-
centrations as can be seen in Figure 3.3 and Figure 3.4, respectively.

The distribution of TChl-a and various PFTs in the Arctic can be influenced by multiple envi-
ronmental factors, including nutrient availability, light conditions, and temperature. Generally, we
expect to find higher concentrations of Diatoms near coastal areas where nutrient input is higher
due to upwelling and river discharges. Diatoms thrive in nutrient-rich waters, making coastal
zones ideal habitats. Conversely, open waters, particularly in higher latitudes, might show lower
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concentrations of Diatoms.

GA are typically found in both coastal and open waters but are more sensitive to changes in
light and nutrient conditions. Their distribution can be quite patchy, reflecting localised variations
in these factors. The maps show varying concentrations of GA across different regions, influenced
by local environmental conditions. Specifically, GA are more present along the coasts of northern
Europe and northern Asia, particularly in the Barents Sea, Kara Sea, Laptev Sea, and parts of the
East Siberian Sea. These areas likely offer the optimal light and nutrient conditions that Green
Algae need.

Hapto tend to have more specialised niches and are more common in cooler waters, playing
a significant role in biogeochemical cycling. The maps reflect these ecological preferences, with
Hapto showing the highest concentrations around Bugrino in Russia, where cooler temperatures
and favourable nutrient conditions support their growth. Like GA, they are also distributed along
the coasts of northern Europe (Norway and Sweden) and northern Asia.

Dino are present along the coasts of northern Europe and northern Asia but do not exhibit a
specific area with particularly high values. This more generalised distribution suggests that Dino
may adapt to a broader range of environmental conditions within the Arctic region, which might
include both stratified waters and varying nutrient levels.

Proka, which include cyanobacteria, are generally found in lower concentrations in the Arctic
due environmental factors such as temperature and nutrient availability [32]. However, they play
crucial roles in nutrient cycling and primary production, especially in areas with lower competition
from other phytoplankton groups. The maps indicate that Proka have a slightly higher presence
along the coasts of Norway, potentially due to specific local conditions such as nutrient availability
and light.

The TChl-a map provides an overarching view of change to phytoplankton abundance in the
Arctic, integrating the contributions of all PFTs. Higher TChl-a concentrations are expected in
regions with favourable growth conditions for phytoplankton, such as nutrient-rich coastal waters
and areas with optimal light and temperature conditions. These maps serve as a valuable tool for
assessing the accuracy of the model predictions by comparing them with known ecological patterns
and validating against in-situ measurements (Figure 2.5 and Figure 2.6).

In summary, the creation of these maps and their analysis provides a deeper understanding of
the spatial distribution and ecological dynamics of PFTs and TChl-a in the Arctic. The machine
learning ensemble model effectively captures the distribution of PFTs, revealing plausible patterns
that align with known ecological behaviours. The results are comparable to global model retrievals,
demonstrating the model’s potential to improve TChl-a and Chl-a PFT estimations specifically for
the Arctic region. The validation against in-situ data and consideration of environmental factors
confirm the model’s strengths while also identifying areas where further refinements could enhance
its performance.
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Figure 3.3: Mean TChla distribution in the Arctic Ocean (mg/m3) during 29 June - 12 August
2022.
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Figure 3.4: Mean Chl-a PFT distribution in the Arctic Ocean (mg/m3) during 29 June - 12 August
2022.
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4. Conclusions and Outlook

4.1 Conclusions
This study focused on the development and validation of an ensemble machine learning model
to predict the concentrations of TChl-a and Chl-a of various PFTs in the Arctic Ocean. Given
the significant changes in the Arctic region due to climate change, understanding the dynamics of
phytoplankton is crucial for monitoring marine ecosystems and biogeochemical cycles.

The ensemble model combined the strengths of GBM, FCNN, RFR, and SVM through a Ridge
Regression Ensemble approach. This method demonstrated promising results during the train-
ing phase, particularly for Diatoms and TChl-a, with R2 values of 0.814 and 0.809, respectively.
However, performance varied across different PFTs, reflecting the complexity and variability of
phytoplankton dynamics in the Arctic.

Validation of the model using in-situ measurements from the PS131 expedition demonstrated
the applicability of the machine learning ensemble approach, showing an overall good agreement
between the model predictions and the observed data. This positive validation supports the model’s
capability to capture key patterns and trends in PFTs and TChl-a concentrations in the Arctic
Ocean. However, the validation performance metrics also revealed some challenges, including a
drop in predictive accuracy compared to the training phase. This decrease in performance can be
attributed to the inherent differences between the training and validation datasets, highlighting
the importance of accounting for environmental variability and further underscoring the need for
robust model generalisation to handle diverse Arctic conditions effectively.

The creation of Arctic maps for PFT Chl-a and TChl-a over a 45-day period provided valuable
insights into the spatial distribution of these variables. The maps revealed higher concentrations
of Diatoms near coastal areas, reflecting nutrient-rich conditions, while GA showed a patchy distri-
bution influenced by localised environmental factors. Hapto exhibited specialised niches in cooler
regions, such as around Bugrino, where favourable nutrient conditions also support their growth.
Dino were distributed along various coastal regions without a specific area of high concentration,
possibly due to their ability to thrive in diverse environmental conditions. Proka, found in lower
concentrations, highlighted the harsh conditions of the Arctic.

Overall, this study demonstrates the potential of using machine learning models for predicting
phytoplankton dynamics in the Arctic. The ensemble model showed promise in capturing the
complex patterns of PFT distribution and TChl-a concentration. The insights gained from this
study can inform future research and monitoring efforts in the Arctic region.

4.2 Outlook
Future work should focus on several key areas to improve the accuracy and reliability of phyto-
plankton predictions in the Arctic Ocean:

1. Enhanced Data Collection: Increasing the spatial and temporal resolution of in-situ
measurements will provide a more comprehensive dataset for model training and validation.
Collaborative efforts to collect more data during different seasons and across various locations
in the Arctic will enhance the model’s robustness.
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2. Incorporation of Additional Variables: Integrating more environmental variables, such
as light availability, ice cover, and ocean currents, can improve the model’s ability to capture
the factors influencing phytoplankton dynamics. These variables can provide a more holistic
view of the conditions affecting phytoplankton growth and distribution.

3. Advanced Model Architectures: Exploring another advanced machine learning archi-
tectures, such as deep learning models and hybrid approaches, and try with other different
combinations for the ensemble model, could possibly give a better predictive performance.

4. Long-term Monitoring and Prediction: Developing models capable of long-term predic-
tions will be crucial for understanding the impacts of climate change on Arctic phytoplankton.
These models should be designed to account for long-term trends and shifts in environmental
conditions.

5. Interdisciplinary Approaches: Collaborating with a larger group of experts in oceanog-
raphy, climatology, and ecology will provide a more comprehensive understanding of the
Arctic ecosystem, and ideas for additional variables or different in-between methods. Inter-
disciplinary approaches can integrate various data sources and perspectives, leading to more
accurate and meaningful predictions.

6. Policy and Conservation Implications: The insights gained from phytoplankton pre-
dictions can inform policy decisions and conservation efforts in the Arctic. Understanding
phytoplankton dynamics is crucial for managing fisheries, protecting marine biodiversity, and
mitigating the impacts of climate change.

In conclusion, this study lays the groundwork for future research on phytoplankton dynamics
in the Arctic Ocean where observations are reliable. By addressing the challenges identified and
exploring new methodologies, we have shown much potential of improving the retrieval capability of
the PFTs in this particular region, which help enhance our understanding of this critical component
of the marine ecosystem and its response to a rapidly changing environment.
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