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Hidden impacts of ocean warming and
acidification on biological responses of
marine animals revealed through meta-
analysis

Katharina Alter 1,15 , Juliette Jacquemont 2,3,15, Joachim Claudet 3,
María E. Lattuca 4, María E. Barrantes5, Stefano Marras6,
Patricio H. Manríquez 7,8, Claudio P. González7,8, Daniel A. Fernández4,5,
MyronA. Peck 1,9, CarloCattano 10,11,MarcoMilazzo 10,12, FelixC.Mark 13 &
Paolo Domenici 6,10,14

Conflicting results remain on the impacts of climate change on marine
organisms, hindering our capacity to predict the future state of marine eco-
systems. To account for species-specific responses and for the ambiguous
relation of most metrics to fitness, we develop a meta-analytical approach
based on the deviation of responses from reference values (absolute change)
to complement meta-analyses of directional (relative) changes in responses.
Using this approach, we evaluate responses of fish and invertebrates to
warming and acidification. We find that climate drivers induce directional
changes in calcification, survival, andmetabolism, and significant deviations in
twice as many biological responses, including physiology, reproduction,
behavior, and development. Widespread deviations of responses are detected
even under moderate intensity levels of warming and acidification, while
directional changes aremostly limited tomore severe intensity levels. Because
such deviationsmay result in ecological shifts impacting ecosystem structures
and processes, our results suggest that climate changewill likely have stronger
impacts than those previously predicted based on directional changes alone.

The rapid increase in atmospheric carbon dioxide is changing our
climate at a pace never observed before, with consequences on global
biodiversity and, ultimately, human well-being1. Ocean warming (OW)
and ocean acidification (OA), caused by the increased partial pressure
of carbon dioxide (pCO2) in seawater, and deoxygenation represent
the three greatest climatic threats to marine life2. Dramatic effects of
these three drivers have already been observed not only at the
organism level but also at the scale of entire ecosystems3. Examining
the impacts of climate change onmarine life has been one of themost
rapidly growing fields of research4. Research shows that OW increases
energetic costs and decreases the survival of marine organisms and

that OA impacts invertebrates more than fish through adverse effects
on survival, calcification, growth, and development5–11. Additional
factors such as life-stage, taxa, and acclimation time have been
demonstrated to significantly alter the sensitivity of marine organisms
to climate change drivers5,7,8,12–14. Recently, experimental designs have
increased in complexity and realism to account for the interaction of
simultaneous climate change drivers, although the combined effect of
deoxygenation with OW or OA remains understudied11,15.

An inherent challenge to the richness of the published literature
documenting the effects of climate drivers is to design quantitative
syntheses that summarize results while accounting for the diversity of
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systems tested. Previous meta-analyses testing effects on similar taxa
and biological responses have found varying magnitudes of climate
driver effects and even different directions of changes (Fig. 1). While
publication biases and decline effects (i.e., the decreasing effect of a
driver over time) may contribute to this heterogeneity16–22, conflicting
results also arise from differences in methods used to pool data since
meta-analyses have either been performed on metrics individually
(e.g., “growth rate”, “size”, and “weight”20), grouped by category (e.g.,
“growth”11,14) or all pooled together (e.g., “overall sensitivity”13). While
testing effects on categories of biological responses rather than on
individualmetrics increases the statistical power ofmeta-analyses, this
approach requires to attribute a direction to eachmetric, i.e., whether
an increase of the metric is beneficial or detrimental to fitness, so that
metrics of opposite directions (e.g., mortality and survival) do not
cancel out when aggregated. However, in most cases, the effect of a
metric’s increase onfitness remains uncertain or is context-dependent.
For example, an increase in boldness is linked to longer exploration
periods which might result in more success in foraging for food but
also may increase mortality due to increased exposure to

predators23–25. Similarly, although increases in respiration rates are
generally considered to bepositively linked to fitness inmeta-analyses,
such increases can also indicate higher metabolic needs that come at
the expense of growth and reproduction26,27. Hence, changes in
metrics may result in trade-offs rather than in unequivocal benefits or
costs to fitness, and, for most metrics, it remains challenging to con-
fidently determine their relation to fitness.

Many meta-analyses have dealt with the ambiguous relation of
metrics to fitness by assuming a positive effect in all cases exceptwhen
a negative effect on fitness is clearly established (e.g., mortality, shell
damage)5,7,11. However, this assumption may result in mislabeling the
direction of more ambiguous metrics, ultimately leading to mean-
ingful but opposite changes in metrics canceling out when averaged
and underestimating climate impacts28. This risk is amplified when
results are pooled across species, ecosystems, and climates because of
the importance of species-specific traits in mediating responses to
climate change drivers13,29 and because benefits provided by traits are
context-dependent. Some analyses have taken these specificities into
account by summarizing results at the taxa level7, for given species

Fig. 1 | Results of previous meta-analyses on the effects of climate drivers on
biological responses of marine animals. Different colored tiles indicate that a
given meta-analysis reported increases (blue), decreases (magenta), conflicting
results (i.e., different effects depending on variables tested that were not pooled in
the study; orange), no effect (gray) or did not evaluate (white) a given biological

response of invertebrates and fish to ocean acidification, ocean warming, and their
combination. Data were assessed at the 95% confidence interval level. Fish and
mollusc icons are available on the noun project website: https://thenounproject.
com/icon/fish-1464319/ and https://thenounproject.com/icon/mollusk-5552214,
respectively.
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traits14, life-stages11, or by presenting individual effect sizes in addition
to means8. However, disaggregating data comes with the trade-off of
lower statistical robustness and generates multiple heterogeneous
results that obscure overall trends.

A different approach is therefore needed to overcome our limited
understanding of the effect of metrics’ changes on fitness and to
mitigate the risks of underestimating effects when pooling data. We
propose that testing for deviations of biological responses, i.e., abso-
lute distance to reference value, can be used to complement the tra-
ditional directional change approach, i.e., relative distance to
reference value, to detect impacts of climate drivers on marine life
(Fig. 2). We argue that testing for deviations of biological response to
climate drivers is meaningful because any significant deviation from
the reference state of a metric value, whether “positive” or “negative”,
can cause cascading changes up to community and ecosystem
levels30–32. Testing for deviation of metrics rather than for directional
changes is a widespread approach in medical fields such as human
physiology and cognition33,34 and has recently been applied to test the
effects of environmental drivers on the abundance of fish species35.

Here, we conduct a meta-analysis testing for deviations in biolo-
gical responses under climate change drivers to complement the
directional meta-analytical approach that has so far dominated this
field. We first review metrics measured in the literature and evaluate
which ones can confidently be linked to either adverse or positive
effects on fitness, which is necessary to interpret results from direc-
tional meta-analyses. Then, we test the effects of OW, OA, and their
combination on marine organisms by evaluating both directional
changes and deviations in ten categories of biological responses. We
analyze the impacts of climate drivers for invertebrates and fish
separately and for three intensity levels ofOWandOA: levels predicted
for 2100 under IPCC Representative Concentration Pathways 6.0 and
8.5 (RCP 6 and RCP 8.5), and levels exceeding RCP 8.5 (hereafter
“extreme level”). Finally, we compare significant effects detectedwhen
testing for directional changes with those detected when testing for
deviations. We find significant deviational effects of climate drivers in
twice asmany biological responses of fish and invertebrates thanwhen
testing for directional effects. We detect widespread deviations of
responses even under moderate intensity levels (IPCC RCP 6) of OW
andOA for 2100,whiledirectional changes aremostly limited tohigher
intensity levels (RCP 8.5 and extreme).Our results highlight the risks of

underestimating the impacts of climate change on biological response
and reveal impacts of climate change that were until now hidden by
counterbalancing effects.

Results and discussion
Relation of metrics to fitness
We identified 217 studies that investigated the combined effect of OA
and OW on marine organisms, yielding 3162 control-treatment com-
parisons testing different species, climate driver levels, or metrics. We
grouped metrics into ten categories of biological responses, and
restricted data extraction to two metrics per biological response per
study, selecting themetricsmost frequentlymeasured in the literature
(see Methods and Supplementary Data 2 for details on metric selec-
tion). This resulted in the extraction of data documenting 110 metrics,
which were evaluated by experts’ judgment for their effect on fitness
(Supplementary Data 4). Five out of the ten biological response cate-
gories included over tenmetrics (Fig. 3), with physiology and behavior
being measured through the broadest range of metrics (n = 34 and
n = 20, respectively). Only four biological responses (biodiversity,
biomechanics, reproduction, and survival) were entirely measured by
metrics for which an increase is associated with a non-ambiguous (i.e.,
positive or negative) effect on fitness (Fig. 3). By contrast, 50 to 80% of
metrics used to measure the six other biological responses (behavior,
calcification, development, growth, metabolism, and physiology) have
an ambiguous relation tofitness either becauseof lackof knowledgeor
because of context-dependent effects.

Fig. 2 | Diagram showcasing differences between directional changes and
deviations. Antagonistic responses at the experiment level can cancel out when
computing amean directional change (lnRR). By contrast, significant responses are
revealed when computing mean deviation (abs(lnRR)). CI confidence interval, n
sample size.

Fig. 3 | Effect of metric’s increase on fitness and number of metrics per biolo-
gical response category. Magenta, blue, and gray fillings indicate metrics for
which an increase leads to a negative, positive, or ambiguous effect on fitness,
respectively. The number of metrics per biological response category included in
our analysis is indicated next to each bar. Source data are provided as a Source
Data file.
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Directional effects of climate drivers
Following the approach used in previous meta-analyses5–11,14, we first
tested for directional effects of climate drivers on biological responses
using logarithm response ratios (lnRR). Due to recent research efforts
focusing on previously understudied biological responses, we also
synthesized the effect of OA and OW on a community-level response,
i.e., invertebrate biodiversity, and increased the number of organism-
level responses evaluated for fish and invertebrates in comparison to
previous meta-analyses (Fig. 1). However, we did not find any study
investigating the effects of combinedOAandOWonfishbiomechanics
or biodiversity. We found thatmost biological responses (seven out of
ten for invertebrates and five out of eight for fish) were significantly
affected by OW or OA (Fig. 4 and Supplementary Table 3). OA nega-
tively impacted most biological responses of invertebrates (behavior,
biomechanics, calcification, development, growth, reproduction, and
survival) but only affected one of eight biological responses of fish
(decrease in growth). These results are consistent with previous meta-

analyses6,7,10,16 and reflect the reliance of invertebrates on the avail-
ability of carbonate ions, which decreases under OA36,37, to build their
shells and skeletons7,38. By contrast, fish can tolerate higher OA levels
than invertebrates39 due to their elaborate acid-base regulation
system40 and to their bony skeleton composed of calcium phosphate
rather than calcium carbonate41. We did not find any directional effect
of OA on fish behavior, although this could be due to the diversity of
fish species pooledor to the diversity of behavioralmetrics considered
jointly and should be interpretedwith caution. The effect of OA on fish
behavior is presently a matter of debate19,21,28,42–44.

OW had more effects on the biological responses of fish than
invertebrates (Fig. 4). Stimulation of metabolism and inhibition of
survival were observed for both fish and invertebrates, but decreases
in development and reproduction were only observed for fish. Larger
impacts of OW on fish compared to invertebrates have been hypo-
thesized to derive from greater increases in metabolic costs for this
taxa45. In comparison to previous meta-analyses, we found similar

Fig. 4 | Directional effects of climate drivers on biological responses of marine
animals. Directional effect (lnRR) of ocean warming (OW, circles), ocean acid-
ification (OA, pCO2, squares), and their combination (OW+OA, diamonds) on the
biological responses of invertebrates (orange) and fish (green). Significant devia-
tions are denoted by filled symbols (resp., open symbols for non-significant

symbols). Error bars represent 95% confidence intervals associated with the mean
effect size and numbers indicate sample sizes. Source data are provided as a Source
Data file. Fish and mollusc icons are available on the noun project website: https://
thenounproject.com/icon/fish-1464319/ and https://thenounproject.com/icon/
mollusk-5552214, respectively.
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directional effects of responses to OW on invertebrates but fewer
effects ofOAonfish (Fig. 1). The combinationofOWandOA (OW+OA)
resulted in fewer and smaller effects thanOAalone on invertebrates, or
OW alone on fish (Fig. 4). These results suggest antagonistic effects of
OWandOA, which support findings fromprevious studies7,11, although
context-dependent synergistic and additive effects have also been
reported6. When significant, responses of invertebrates to OW+OA
mostly mirrored responses to OA, while for fish, they mostly mirrored
responses to OW (Fig. 4), reflecting the climate driver most impactful
to these respective taxa.

Impact of climate driver level
The number of biological responses affected by OW and OA, as well as
themagnitude of these responses, increased with the intensity level of
climate drivers (Fig. 5, Supplementary Data 5, Supplementary Table 1).
For invertebrates, exposure to RCP 6 levels of climate drivers did not
induce any directional response. Yet, under RCP 8.5 levels, OW
increased metabolism, OA decreased survival, reproduction, growth,
development, calcification, and biomechanics, and their combination
increased metabolism and decreased calcification. Similarly, we found
only two significant effects of RCP 6 level drivers on fish directional
responses: inhibition of growth under OW and increases in behavioral
responses under OW+OA. Effects on fish were more pronounced
under RCP 8.5 levels: OW decreased survival and development and
enhanced metabolism, while OA reduced growth, and their combina-
tion inhibited development. More directional responses were affected
under extreme levels of drivers (exceeding RCP 8.5) for both

invertebrates and fish (Fig. 5). These trends are consistent with pre-
vious results onOWorOA individually13,14,46 and document, for the first
time, this pattern for the combination of these drivers. Currently, RCP
8.5 levels of climate drivers have been tested sixfold more often than
RCP 6 levels. The underrepresentation of less severe levels of climate
drivers hinders our ability to evaluate the ecological outcomes asso-
ciated with achieving different RCP trajectories and limits our capacity
to predict and manage for near-term impacts of OW and OA. The
smaller sample size associated with RCP 6 levels might also contribute
to the limited effects detected in this study and calls for further
research efforts.

The intensity level of an experiment depends on the choice of its
control value, which should account for the mean local environmental
conditions but also for the variability and extreme conditions that
organisms experience during their development. However, pCO2
control values used in studies are sometimes based onpCO2 values for
the open ocean, which can strongly differ from local coastal pCO2
conditions47,48. For this reason, it has been suggested to measure
intensity levels of experimental OA using a ΔpCO2 exposure index
based on local pCO2 upper conditions rather than on control values
provided by studies46. Applying this approach, we found a significant
correlation between the ΔpCO2 exposure index and the magnitude of
both directional and deviational responses, yet the data fit was similar
to that based on ΔpCO2 as provided in studies (Supplementary Fig. 2).
Similarly, responses of invertebrates to RCP 6, RCP 8.5, and extreme
levels of OA were stable using either study-based or exposure index
ΔpCO2, i.e., 75 and79%of significant responseswere sharedusing both

Fig. 5 | Directional effects of climate drivers by intensity level. a Directional
effects (lnRR) of ocean warming (OW), ocean acidification (OA), and their combi-
nation (OW+OA) on biological responses of invertebrates (left) and fish (right)
according to the intensity level considered (representative concentration pathway
(RCP) 6 (R6), RCP 8.5 (R8), and extreme (ex)). The magnitude of effects is repre-
sented by a blue (increase) to magenta (decrease) color scale. Light gray tiles

indicate an absence of data. Asterisks indicate significant effects. b Proportion of
biological responses for which a significant increase (blue) or decrease (magenta)
was found for each climate driver and intensity level. Source data are provided as a
Source Data file. Fish and mollusc icons are available on the noun project website:
https://thenounproject.com/icon/fish-1464319/ and https://thenounproject.com/
icon/mollusk-5552214, respectively.
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approaches for directional and deviational effect sizes, respectively
(Supplementary Figs. 3, 4). While the exposure index approach is
currently restricted to sessile organisms and pCO2 treatments,
adapting this methodology to accommodate the study of additional
climate drivers and their combination, as well as mobile organisms,
could provide further insights to elucidate drivers of organisms’
response to climate change.

Deviations of biological responses
Because of the diversity of species, experimental designs, and metrics
tested in the literature, and because of the predominance of metrics
with ambiguous relation to fitness, we posit that restricting analyses of
climate impacts to mean directional changes across studies can be
misleading. When pooling different species and metrics, changes of
opposite directions can cancel out, masking individually significant
changes (Fig. 2). This is problematic as the deviation of any response
from its reference state holds biological significance by altering the
balance at the cellular, organism, or ecosystem scale. Deviation of
responses requires thoroughconsideration and testingwhenevaluating
climate change impacts andcannotbe capturedbymeta-analysesbased
on relative effect size. For this reason, we converted relative effect size
into absolute effect size (|lnRR|) to calculate the average deviation in
biological responses across studies. By mathematical construction, all
significant directional changes translate into significant deviations, but
significant deviations can be found in the absence of significant direc-
tional change, because, unlike relative effect sizes, absolute effect sizes
do not cancel out when averaged (Fig. 2).

We found that OW, OA, and their combination caused significant
deviations in all biological responses of invertebrates and fish, except
for fish calcification and fish reproduction under OA (Fig. 6 and Sup-
plementary Table 4). For a given climate driver, significant effects were
detected in up to eight times more responses when testing for abso-
lute deviations than for directional changes (Fig. 7 and Supplementary
Data 5 and 6). This was especially true for biological responses
described through numerous metrics with ambiguous effects on fit-
ness, such as behavior and physiology (Fig. 3), which supports our
hypothesis that antagonistic effects might be hidden when testing for
directional changes in such responses. We also found significant
deviations inmost biological responses of invertebrates underOWand
of fish under OA, for which we had detected limited directional
changes (Fig. 7 and Supplementary Data 5 and 6). Similarly, we found
significant deviations in the behavior and physiology of fish and
invertebrates under OW+OA whereas no directional change was
detected. This is in line with the finding that a number of behavioral
effects in fishes can be mediated by neurophysiological or sensory
mechanisms22, the effects of which may be revealed only when devia-
tions rather than directional changes are taken into account. More-
over, we observed significant deviations in the responses of
invertebrates to RCP 6 levels, whereas no directional changes were
detected (Supplementary Table 5). In contrast, we found no additional
effect of RCP6 level drivers onfish responseswhen testing for absolute
deviations compared to testing for directional changes. The deviation
of responses under OW+OA closelymirrored that of responses under
OW or OA alone, depending on taxa and response, and globally fol-
lowed a trend of antagonistic effect of OW+OA.

Although the challenge of including ambiguous metrics in meta-
analyses has been previously recognized16, themost common approach
has been to exclude them from analyses or to assign them a positive
direction as a default before pooling them5–7. Our results suggest that
these approaches underestimate the effects of climate change because
ambiguous metrics that are pooled can be antagonistic and cancel out
in the overall average effect size. The only alternative approach has
been to report metrics separately20 or to analyze metrics that have
opposite directionalities in independent categories (e.g., boldness
being assessed separately from other behavioral metrics14).

Effect of life-stage and acclimation time
Organisms’ life-stage (embryo, larvae, juvenile, or adult) had a sig-
nificant effect on responses to climate drivers. In both fish and inver-
tebrates, early-life-stages (embryo, larvae, juveniles) displayed more
significant directional responses than adults (Supplementary Figs. 5, 6
and Supplementary Table 2). Early-life-stage invertebrates pre-
dominantly displayed significant decreases in responses (Supplemen-
tary Fig. 5), while early-life-stage fish displayed both significant
increases and decreases (Supplementary Fig. 6). Under OW and OA+
OW but not OA alone, biological responses of fish embryos were
decreased, and those of juveniles were increased. Biological responses
of fish larvae were decreased under OA and increased under OW. For
both invertebrates and fish, deviations of responses were significant
and similar in magnitude across life-stages and climate drivers, with
the exception of embryos’ responses that were lower in magnitude.
The lower magnitude of deviations, but higher magnitude of direc-
tional response of embryos compared to more advanced life-stages,
could be due to the less ambiguous and less diversemetricsmeasured
on embryos, typically related to survival and “normality” of develop-
mental processes, leading to fewer counterbalancing effects when
computing overall relative effect size. The higher sensitivity of early-
life-stages to climate drivers has been found in some, but not all,
previous meta-analyses and has been attributed to their lack of reg-
ulation and protection mechanisms to cope with environmental
changes (ref. 11 vs. ref. 14). Conversely, acclimation time had limited to
no effect on directional and deviational responses of organisms
(Supplementary Figs. 7, 8). This is consistent with previous meta-
analyses that did not find a clear effect of acclimation time on organ-
isms’ response7, and suggest that the influence of acclimation time is
likely overshadowed by stronger drivers of responses at the meta-
analytical scale, such as life-stage, metric category, or intensity of cli-
mate driver level.

From deviations in the responses of organisms to
ecological shifts
The relevance of examining the deviational effects of climate drivers is
linked to characteristics of biological processes from the cellular to the
ecosystem level. Over evolutionary time scales, organisms have
adjusted their metabolic machinery to achieve physiological home-
ostasis at the lowest metabolic cost possible within the range of con-
ditions of their local environment49. Any deviation from an optimal
setpoint of homeostasis, whether originating fromametric increase or
decrease, is energetically costly as it inducesmetabolic regulation and,
in some cases, compensatory responses50. If abiotic conditions vary
within the evolutionarily experienced maxima and minima, physiolo-
gical regulation will ensure homeostasis, yet regulatory metabolic
costs will usually rise with increasing deviation from the setpoint51. As
such, deviation in physiological responses might provide a valuable
indicator of the level of stress that organisms are experiencing.

At the population and ecosystem scales, antagonistic responses of
different species to climate drivers are unlikely to result in a net absence
of change as reflected by directional effect sizes, but rather in a shift of
community composition and ecosystem structure52,53. Indeed, an
increase in the growth rate of a given species will induce cascading
effects to predators and prey through trophic interactions, and to
competitors because of finite resource availability, resulting in sig-
nificant shifts in the ecosystem structure. For example, OA has been
observed to decrease the relative feeding performance of bivalves and
sea urchins in comparison to gastropods20,54, and to increase the relative
growth of turf algae in comparison to kelp54. Taken together, these
changes induced a shift in the habitat-forming species of this ecosystem
from kelp to turf algae54. Similarly, studies investigating the effects of
climate change on marine biodiversity have reported a reshuffling of
species rather than a net loss53,55. None of these shifts can be detected at
the meta-analytical level by averaging relative distances to reference
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states but can be detected by averaging absolute distances, i.e., devia-
tions in responses. However, we acknowledge that testing for deviation
is less conservative than testing for directional effects because the for-
mer decreases the variability of results, thereby increasing the magni-
tude or significance of climate effects. Therefore, we suggest that
deviation and directional analyses should be performed jointly.

Perspective and future directions
Although experimental designs have increased in complexity to better
reflect real-life systems, several knowledgegaps and limitations remain
and hinder our understanding of the current and future impacts of
climate change on marine life. Most studies we reviewed relied on

short exposure times to test the impacts of climate drivers (51 ± 7 days;
mean± SE), which cannot account for long-term adaptive responses
through phenotypic plasticity or adaptation across generations. Con-
versely, the effects of short, acute climate drivers, such as heat waves
or extreme OA events, remain paradoxically understudied in com-
parison to the gradual effects of OA and OW11. This limits our capacity
to predict near-term impacts of climate change, characterized by
increased frequency and intensity of extreme events and milder
average increases in OW, OA, and other climate drivers56. This repre-
sents a problematic mismatch with the timescale of information nee-
ded to inform present-day adaptive management interventions
attempting to limit impacts and enhance the resilience of socio-

Fig. 6 | Deviation effects of climate drivers on biological responses of marine
animals. Deviation (abs(lnRR)) of biological responses of invertebrates (orange)
and fish (green) to ocean warming (OW, circles), ocean acidification (OA, squares),
and their combination (OW+OA, diamonds). Significant deviations are denoted by
filled symbols (resp., open symbols for non-significant symbols). Error bars

represent 95% confidence intervals associated with the mean effect size and
numbers indicate sample sizes. Source data are provided as a Source Data file. Fish
and mollusc icons are available on the noun project website: https://
thenounproject.com/icon/fish-1464319/ and https://thenounproject.com/icon/
mollusk-5552214, respectively.
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ecological systems within the upcoming decade rather than at the end
of the century. Another important consideration is the role played by
environmental variability in the adaptive capacity of organisms. Most
studies investigating the biological effects of climate drivers have been
conducted by exposing organisms to stable experimental conditions
even though environmental variability is the norm in nature46. While
evidence remains scarce, recent studies have shown that organisms
tend to be more tolerant of climate change drivers when exposed to
fluctuating conditions47,57.

Finally, more knowledge on the mechanisms that link biological
changes to ecosystem structure is needed to predict howdeviations or
directional changes of responses at the organism level translate into
ecosystem-level shifts. This involves conducting experiments investi-
gating multi-species systems and biotic interactions, measuring
community-level indicators such as species richness, evenness, func-
tional redundancy or trophic structure, as well as conducting in-situ
experiments. While designing empirical studies that test for

community-level shifts is challenging, models can provide valuable
insight on this matter (e.g., ecosystem-level impacts from changes in
fish boldness58).

Our study constitutes an important step forward in documenting
the impacts of ocean warming, ocean acidification, and their combi-
nation on marine life by assessing the broadest range of biological
responses to date and by testing both directional changes and devia-
tions of these responses. We argue that metrics commonly pooled in
meta-analyses have predominantly ambiguous or context-dependent
effects on fitness, which results inmean effect sizes that are difficult to
interpret and that likely underestimate climate impacts.We found that
many biological responses that appear unaffected when testing for
directional effects are, in fact, significantly deviated from their refer-
ence state, suggesting more pervasive effects of climate change than
previously thought.Whilemorework is needed to ascertain the impact
of deviations in organism-level responses at the ecosystem level,
accounting for counterbalancing effects when averaging responses

Fig. 7 | Directional and deviational effects of climate drivers. a Effects of ocean
warming (OW), ocean acidification (OA), and their combination (OW+OA), on
biological responses of invertebrates (left, orange) and fish (right, green) according
to the intensity level considered (representative concentration pathway (RCP) 6
(R6), RCP 8.5 (R8), or extreme (ex)). Colors indicate significant directional and
deviational effects (darkest colored tiles), significant deviational effects only (light
colored tiles), or no significant effects (white tiles). The absence of data is indicated
by gray tiles. b Proportion of biological responses (%) for which significant

directional and deviational effects (darkest colored tiles), significant deviational
effects only (light colored tiles), or no significant effects (white tiles) were found
under each intensity level for invertebrates (left, orange) and fish (right, green).
Note that all significant directional effects imply significant deviations. Source data
are provided as a Source Data file. Fish andmollusc icons are available on the noun
project website: https://thenounproject.com/icon/fish-1464319/ and https://
thenounproject.com/icon/mollusk-5552214, respectively.
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acrossmetrics and species is a fundamental step toward precautionary
assessments of climate change impacts on organisms.

Methods
Literature search and data collection
Systematic literature search strategy. We performed our systematic
literature search on Google Scholar and ISI Web of Science following
the PRISMA methodology59 (Supplementary Fig. 1). The following
search string was used for ISI Web of Science: (ocean acidification OR
carbon dioxideORCO2) AND (warmingOR temperature) AND (fishOR
invertebrate* OR mollusk* OR echinoderm* OR crustacean* OR cni-
daria OR bryozoan* OR marine organism*). For Google Scholar, we
searched the following combination of words: ocean acidification,
carbon dioxide, CO2, warming, temperature, ocean warming, fish, and
invertebrate for each year between 2008 and 2022 and limited the
search results to 100 per year. All papers published before January
2022were included inour systematic review. In addition, the reference
lists from the retrieved publications, as well as those from previously
published meta-analyses on the effects of OA or OW onmarine life11,19,
were cross-checked to find publications containing relevant data.

Screening criteria. We retained studies that tested the combined
effects of OA and OW on marine ectotherms, i.e. fish (teleosts, elas-
mobranchs) or invertebrates (Annelida, Arthropoda, bryozoa, Cni-
daria, Echinodermata, Mollusca, Nematoda, Platyhelminthes, and
Porifera). To be considered in the analysis, publications had to include
at least two pCO2 and two temperatures in a full factorial design and
include information on control and treatment values of pCO2 and
temperature. This was done so that antagonistic, synergistic, or addi-
tive effects of OA and OW could be evaluated. Only studies that used
CO2 or CO2-enriched gas to manipulate pCO2 were kept, those using
acid addition were excluded. We counted studies as testing for OA or
OW effects if this was the explicit goal of the experiment. For example,
we excluded a study that registered an increase of pCO2 of 86 µatm
because this was only an undesired parameter change that occurred
during a temperature experiment60. We excluded all studies that did
not report mean values, sample size, or one of the following error
types: variance, standard error, standard deviation, or 95% confidence
interval.

Data extraction. We extracted quantitative data from the text, tables,
and graphs of publications using the software GetData, Graph Digi-
tizer, and WebPlotDigitizer. For each study, we extracted informa-
tion on the biology and ecology of the studied organism (phylum,
family, species, life-stage, climatic zone, habitat) as well as informa-
tion on the experimental design of the study (climate driver tested,
climate driver level, and biologicalmetric measured). For each tested
driver in a study, we recorded control and treatment values (tem-
perature in °C, pCO2 in µatm), and the associated biological response
variables (mean, error, and sample size). Control conditions for pCO2

and temperature were chosen based on the conditions at which the
organism was sampled in the wild and acclimated, or in the case of
laboratory-raised organisms, the conditions stated in the paper as
representing the common biotic range for that organism. Experi-
ments that tested temperature or pCO2 conditions that were lower
than the control conditions were not extracted. In the case of studies
testing for more factors than OA and OW (e.g., oxygen, salinity, food
level), we only extracted data from experiments in which those fac-
tors had control values. Data from trans-generational studies were
kept only for the parent generation, i.e., the generation that was
exposed to control levels of the climate change driver before
experiencing OW and OA.

Classification of metrics. We grouped metrics among ten biological
responses: behavior, biodiversity, biomechanics, calcification,

development, growth, physiology, reproduction, metabolism, and
survival (Supplementary Data 3). Then, we attributed a direction
(positive, negative, or ambiguous) to each metric according to whe-
ther an increase in that metrics’ value was considered beneficial, det-
rimental, or ambiguous (and/or unknown) to the organism, species, or
community. The scoresweregiven based on the expertise of five of the
co-authors (KA, PD, MM, CC, and FCM), who reviewed metrics and
assigned them a direction independently (Supplementary Data 4). We
adopted the most conservative approach, i.e., we only assigned a
positive or negative direction to a metric if all five co-authors unan-
imously agreed on that direction. We classified all other metrics as
having an ambiguous direction (Supplementary Data 4). When two
metrics measuring the same phenomenon weremeasured in opposite
ways across studies (e.g., mortality rate and survival rate, morpholo-
gical normality (%) and abnormality (%)), we converted all metrics to
their positive measurement (e.g., survival rate and morphological
normality) to increase the statistical power of our analysis.

Climate scenarios. We attributed one of three climate scenarios (RCP
6, RCP8.5, or extreme) to experiments basedon thedifferenceofpCO2

and temperature (T) between control and treatment values. The
attribution of climate scenarios followed projections from IPCC 20221:
RCP 6 scenario for experiments with ΔpCO2 < 350 µatm or ΔT < 2 °C;
RCP 8.5 scenario for experiments with 350<ΔpCO2 < 750 µatm or
2 °C <ΔT < 4 °C, and extreme climate scenariowhenΔpCO2 > 750 µatm
or ΔT> 4 °C. For experiments combining pCO2 and temperature
treatments, an RCP scenario was only attributed if ΔpCO2 and ΔT
corresponded to the same scenario. The ΔpCO2 treatments in the
selected studies ranged from 78 µatm61 to 7894 µatm62, and the ΔT
ranged from 0.9 °C63 to 12.8 °C64.

Number of data points extracted per study. Multiple data points
were extracted from the same study when they corresponded to dif-
ferent drivers, RCP scenarios, species, life-stages, geographic loca-
tions, habitats, or biological responses (e.g., a survival metric and a
reproduction metric). For biodiversity metrics, the least taxa-
aggregated values were extracted because we considered biodi-
versity at the community level. When a study reported results on dif-
ferent ontogeny (e.g., number of days since hatching) within one life-
stage (e.g., juvenile), data corresponding to the most advanced time
point within that life-stage was extracted. When experiments were
repeated in summer and winter, we kept the data from the summer
experiment as this was the seasonmost commonly investigated.When
data were collected from several spawning periods, we kept data from
the main spawning event. In all other cases (e.g., several clones mea-
sured, different times of the day investigated, several body sizes used),
values provided in the article were averaged. The variance of the
averaged values s2aggregated was calculated using Eq. 1:

s2aggregated =
1

k2 :
X

i
s2i ð1Þ

where si is the variance associatedwith the averaged value i and k is the
total number of values being averaged.

Number of metrics extracted per study. When several metrics from
the same category were reported in one paper (e.g., the activity of
three different enzymes, that all fall within the physiology category),
we selected a maximum of two metrics to avoid the over-
representation of any given study in our dataset. The selected
metrics were chosen based on a priority ranking. First, we assigned
priority to metrics classified as positive or negative over those classi-
fied as ambiguous. Then we inspected if metrics were correlated and
only kept the most inclusive one. For example, if the condition index,
shell length, and shell weight were measured, we kept only the
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condition index to avoid codependency of metrics within the dataset.
When metrics were correlated and equally inclusive, we kept the
metric most commonly measured across studies. For example, the
activities of the two enzymes superoxide dismutase (SOD) and glu-
tathione S-transferase were considered to be correlated because they
are both proxies for antioxidant capacity, but SODwas kept because it
wasmeasured inmore studies. Ifmetrics from the same category were
as commonly measured across studies, we chose one randomly. Our
choices of selected metrics from studies that reported several metrics
from the same category are listed in Supplementary Data 2.

Data analysis
For each treatment i, a relative effect size was calculated as the natural
logarithm response ratio of the mean response in treatment i over the
mean response in control i (Eq. 2):

lnRRi = ln
�xtreatment,i

�xcontrol,i

� �
ð2Þ

In the case of metrics for which an increase is detrimental to
fitness (i.e., negative direction, Supplementary Data 3), the log of the
inverse (i.e., control/treatment) was calculated, so that an increase
would result in a negative effect size. This formula was also applied in
the case of metrics of positive direction but with negative values,
because an increase of a negative value corresponds to a negative
outcome. If an experiment reported a mean value of zero for its
treatment or control, or if an experiment reported values of opposite
sign (one positive and one negative) for its control and treatment, the
experiment was not included in the analysis because they do not allow
to calculate log ratios.

Additionally, for each experiment i, an absolute effect size |ln RRi|
was calculated as follow (Eq. 3):

lnRRi = jln
�xtreatment,i

�xcontrol,i

� �
j ð3Þ

Variance, standard deviations, and confidence intervals asso-
ciated with control and treatment mean values were converted into
standard errors (SEtreatment,i and SEtcontrol,i respectively). The within-
experiment variance vi associated the experiment iwas then calculated
for both relative and absolute effect size as (Eq. 4):

vi =
SE2treatment,i

�x2
treatment,i

+
SE2control,i
�x2control,i

ð4Þ

Experiments measuring survival, morphological abnormalities, or
fertilization success sometimes had null or extremely lowwithin-study
variance, e.g., as a result of all individuals surviving. Because the rma()
function of the {metafor} package has a within-study variance thresh-
old of 0.0001, we attributed the fixed value of 0.0001 to n = 24
experiments (from a total of 3162 experiments) for which variance fell
under that threshold. We verified that this did not result in a dis-
proportionate weight given to these data points by checking the
weights attributed by models to these studies, as detailed in Supple-
mentary Data 1.

Random-effectmodel. We performed all the parametric data analyses
using the {metafor} package65,66. We used a weighted random-effects
model to quantify the effect of treatments on variables. Effect sizes
were weighted, accounting for both the within- and among-study
variance components. We conducted a meta-analysis for each combi-
nation of taxa (2 levels: invertebrate or fish), climate driver (3 levels:
OW, OA, and their combination); climate driver level (RCP 6, RCP 8.5
and extreme); and category of biological response (ten levels, see
above), which led to 54 models. Model heterogeneity, residual

heterogeneity, degrees of freedom, and p values associatedwith the 54
models tested are detailed in Supplementary Data 5, 6 (deviation and
directional meta-analyses, respectively). We also carried out meta-
analyses across these same categories but grouped climate scenarios
together (Supplementary Tables 3, 4). A treatment was considered to
have a significant effect on a variable when the 95% confidence interval
calculated by the model did not overlap zero.

Covariates. The influence of the driver intensity (RCP 6, RCP 8.5, and
extreme) on both relative and absolute effect sizes was investigated at
the taxa x biological response xdriver levelwhen thedataset hadn ≥ 10
data points and featured at least two different scenarios populated by
at least two data points. The model heterogeneity and residual het-
erogeneity associated with these models are shown in Supplementary
Tables 1, 5 (directional and deviation meta-analyses, respectively).

The influence of life-stage (embryo, larvae, juveniles, or adults)
and acclimation time (number of days of acclimation, square-root
transformed) on both relative and absolute effect sizes was investi-
gated at the taxa x driver level. Model heterogeneity, residual het-
erogeneity, and associated p values are provided in Supplementary
Table 2.

Sensitivity analyses. To test the robustness of our meta-analysis
results, we carried out several sensitivity analyses18 to detect: (1) the
presence of a publication bias and of outliers using visual observation
of funnel plots (SupplementaryData 1); (2) the sensitivity of our results
to publication bias using the Rosenthal’s fail-safe number (Nfs); (3)
whether a different outcome could be obtained when correcting for
publication bias using Duval and Tweedie’s Trim and Fill test67,68.
Rosenthal’s fail-safe number is an estimation of the number of addi-
tional non-significant effect sizes required for a significant meta-
analysis result to become non-significant. This allowed us to check the
sensitivity of results to uncaptured studies. This risk is estimated to be
high if Nfs is below 5n + 10, with n the number of data points in the
meta-analysis. This was not the case for any of our results (Supple-
mentary Table 6). Duval and Tweedie’s Trim and Fill test could only be
applied to our relative meta-analyses, which were all found to be
robust to potential publication bias under this test (Supplementary
Table 6).

Outlying effect sizes were identified through the visual observa-
tion of funnel plots (Supplementary Data 1). Additionally, their asso-
ciated weight was checked using forest plots (Supplementary Data 1)
tomake sure that no unique value was overwhelmingly influencing the
overall effect size18. The studies corresponding to outlying points were
scrutinized for factors that could explain the extreme values found.
Because no flaws or marked differences in the experimental design of
these studies were found, no points were excluded from our meta-
analyses.

Effect of upper environmental conditions. We tested the effect of
local upper environmental conditions, as a proxy for local variability,
on the biological responses of organisms. We limited this analysis to
OA following a detailed methodology developed to test the effects of
local pCO2 extremes on organisms’ responses to OA46. This metho-
dology can only be applied under a certain number of conditions, i.e.,
when studiedorganismsare sessile or have low-vagility andwhenpCO2

data from sampling sites are available. Furthermore, it has not yet been
extended to evaluate the effects of local temperature extremes. This
would require a novel approach that takes into account other biocli-
matic metrics such as diurnal temperature ranges, isothermality,
temperature seasonality and range, microclimate as well as thermal
acclimation capacity. In addition, many studies do not report the date
of the animal collection, the start date of experiments, and thermal
conditions in the laboratory before the commencement of experi-
ments, which would be crucial information for such an approach. This
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adds to the difficulties associated with developing this approach,
which is outside the scope of this study. We checked studies included
in our meta-analysis against the selection criteria given in ref. 46. We
retained species selected in ref. 46 and included 24 additional sessile
and gregarious or low-vagility benthic species (Supplementary
Table 7). Out of the 217 studies used in our meta-analyses, 62 met all
selection criteria, including 25 studies that were already included in
ref. 46 and 37 additional studies (Supplementary Fig. 9).

Upper environmental conditions at the sampling sites of these
62 studies originated from global database and local buoys deploy-
ments, and were extracted from the supplementary information in
ref. 46 We then calculated (1) a study-based ΔpCO2 and (2) a ΔpCO2

exposure index by calculating the difference between the pCO2

treatment value and (1) the pCO2 control value as given in studies, or
(2) upper local environmental conditions, respectively.

We tested the relation between study-based ΔpCO2 and ΔpCO2

exposure index and the response of organisms using linear regression
models.We attributed climate scenarios to eachdata point following the
sameprocedure as described in the “Climate scenario” section but using
the ΔpCO2 exposure index instead of the study-based ΔpCO2. Because
studies that met the criteria necessary to calculate a ΔpCO2 exposure
indexweremuch fewer thanour initial studypool,weperformed tests at
the biological response x intensity level regardless of sample sizes.
Results from linear regressions are shown in Supplementary Fig. 2, and
directional and deviational responses by the biological response and by
intensity level usingbothΔpCO2 approaches in Supplementary Figs. 3, 4,
respectively. The model heterogeneity and residual heterogeneity
associated with these models are shown in Supplementary Table 8.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used and generated in this study have been deposited in the
Zenodo database with https://doi.org/10.5281/zenodo.10223034
(https://zenodo.org/records/10223034)69. Source data are provided
with this paper.

Code availability
The code used to perform this study are publicly available in the
Zenodo database with https://doi.org/10.5281/zenodo.10223034
(https://zenodo.org/records/10223034)69.

References
1. Pörtner, H. O. et al. Climate Change 2022: Impacts, Adaptation and

Vulnerability (Cambridge Univ. Press, 2022).
2. Hoegh-Guldberg, O. et al. in Global Warming of 1.5 °C. An IPCC

Special Report on the impacts of global warming of 1.5 °C above
pre-industrial levels and related global greenhouse gas emission
pathways, in the context of strengthening the global response to
the threat of climate change, sustainable development, and efforts
to eradicate poverty (eds Masson-Delmotte, V. et al.) (Cambridge
Univ. Press, 2018).

3. Weiskopf, S. R. et al. Climate change effects on biodiversity, eco-
systems, ecosystem services, and natural resourcemanagement in
the United States. Sci. Total Environ. 733, 137782 (2020).

4. Riebesell, U. & Gattuso, J.-P. Lessons learned from ocean acid-
ification research. Nat. Clim. Change 5, 12–14 (2015).

5. Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis
reveals negative yet variable effects of ocean acidification on
marine organisms. Ecol. Lett. 13, 1419–1434 (2010).

6. Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals
complex marine biological responses to the interactive effects of
ocean acidification and warming. Ecol. Evol. 3, 1016–1030 (2013).

7. Kroeker, K. J. et al. Impacts of ocean acidification on marine
organisms: quantifying sensitivities and interaction with warming.
Glob. Change Biol. 19, 1884–1896 (2013).

8. Lefevre, S. Are global warming and ocean acidification conspiring
against marine ectotherms? A meta-analysis of the respiratory
effects of elevated temperature, high CO2 and their interaction.
Conserv. Physiol. 4, cow009 (2016).

9. Catalán, I. A. et al. Critically examining the knowledge base
required tomechanistically project climate impacts: a case study of
Europe’s fish and shellfish. Fish. Fish. 20, 501–517 (2019).

10. Hancock, A. M., King, C. K., Stark, J. S., McMinn, A. & Davidson, A. T.
Effects of ocean acidification on Antarctic marine organisms: a
meta-analysis. Ecol. Evol. 10, 4495–4514 (2020).

11. Sampaio, E. et al. Impacts of hypoxic events surpass those of future
ocean warming and acidification. Nat. Ecol. Evol. 5, 311–321 (2021).

12. Byrne, M. Oceanography and Marine Biology (CRC Press, 2011).
13. Wittmann, A.C. & Pörtner, H.-O. Sensitivities of extant animal taxa to

ocean acidification. Nat. Clim. Change 3, 995–1001 (2013).
14. Cattano, C., Claudet, J., Domenici, P. & Milazzo, M. Living in a high

CO2 world: a global meta-analysis shows multiple trait-mediated
fish responses to ocean acidification. Ecol. Monogr. 88, 320–335
(2018).

15. Boyd, P. W. et al. Experimental strategies to assess the biological
ramifications of multiple drivers of global ocean change - a review.
Glob. Change Biol. 24, 2239–2261 (2018).

16. Hendriks, I. E., Duarte, C. M. & Álvarez, M. Vulnerability of marine
biodiversity to ocean acidification: A meta-analysis. Estuar. Coast.
Shelf Sci. 86, 157–164 (2010).

17. Schooler, J. Unpublished results hide the decline effect. Nature
470, 437–437 (2011).

18. Page, M. J., Sterne, J. A. C., Higgins, J. P. T. & Egger, M. Investigating
and dealing with publication bias and other reporting biases in
meta-analyses of health research: a review. Res. Synth. Methods 12,
248–259 (2021).

19. Clements, J. C., Sundin, J., Clark, T. D. & Jutfelt, F. Meta-analysis
reveals an extreme “decline effect” in the impacts of ocean acid-
ification on fish behavior. PLoS Biol. 20, e3001511 (2022).

20. Leung, J. Y. S., Zhang, S. &Connell, S. D. Is ocean acidification really
a threat tomarine calcifiers? A systematic review andmeta-analysis
of 980+ studies spanning two decades. Small 18, 2107407 (2022).

21. Munday, P. L. Reanalysis shows there is not an extreme decline
effect in fish ocean acidification studies. PLoS Biol. 20, e3001809
(2022).

22. Esbaugh, A. J. Recalibrating the significance of the decline effect in
fish ocean acidification research. PLoS Biol. 21, e3002113 (2023).

23. Ward, A. J., Thomas, P., Hart, P. J. & Krause, J. Correlates of boldness
in three-spined sticklebacks (Gasterosteus aculeatus). Behav. Ecol.
Sociobiol. 55, 561–568 (2004).

24. Nannini, M. A., Parkos, J. & Wahl, D. H. Do behavioral syndromes
affect foraging strategy and risk-taking in a juvenile fish predator?
Trans. Am. Fish. Soc. 141, 26–33 (2012).

25. Mamuneas, D., Spence, A. J., Manica, A. & King, A. J. Bolder stick-
leback fish make faster decisions, but they are not less accurate.
Behav. Ecol. 26, 91–96 (2015).

26. Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified
oceans. Mar. Ecol. Prog. Ser. 373, 295–302 (2008).

27. Lemoine, N. P. & Burkepile, D. E. Temperature-inducedmismatches
between consumption and metabolism reduce consumer fitness.
Ecology 93, 2483–2489 (2012).

28. Esbaugh, A. J. Physiological implications of ocean acidification for
marine fish: emerging patterns and new insights. J. Comp. Physiol.
188, 1–13 (2018).

29. Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of
species traits in predicting range shifts. Trends Ecol. Evol. 31,
190–203 (2016).

Article https://doi.org/10.1038/s41467-024-47064-3

Nature Communications |         (2024) 15:2885 11

https://doi.org/10.5281/zenodo.10223034
https://zenodo.org/records/10223034
https://doi.org/10.5281/zenodo.10223034
https://zenodo.org/records/10223034


30. Bolnick, D. I. et al. Why intraspecific trait variation matters in com-
munity ecology. Trends Ecol. Evol. 26, 183–192 (2011).

31. Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the eco-
logical effects of ocean acidification and warming: moving from
individual to community-level responses. Glob. Change Biol. 22,
974–989 (2016).

32. Sih, A., Cote, J., Evans, M., Fogarty, S. & Pruitt, J. Ecological
implications of behavioural syndromes. Ecol. Lett. 15, 278–289
(2012).

33. Alexander-Bloch, A. et al. Copy number variant risk scores asso-
ciated with cognition, psychopathology, and brain structure in
youths in the Philadelphia Neurodevelopmental Cohort. JAMA
Psychiatry 79, 699–709 (2022).

34. Ecker, C. et al. Interindividual differences in cortical thickness and
their genomic underpinnings in autism spectrum disorder. Am. J.
Psychiatry 179, 242–254 (2022).

35. Erisman, B. E. et al. A meta-analytical review of the effects of
environmental and ecological drivers on the abundance of red
snapper (Lutjanus campechanus) in the U.S. Gulf of Mexico. Rev.
Fish. Biol. Fish. 30, 437–462 (2020).

36. Schoepf, V. et al. Coral energy reserves and calcification in a
high-CO2 world at two temperatures. PLoS ONE 8, e75049
(2013).

37. Gattuso, J. P. et al. Contrasting futures for ocean and society from
different anthropogenic CO2 emissions scenarios. Science 349,
aac4722 (2015).

38. Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acid-
ification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192
(2009).

39. Melzner, F. et al. Physiological basis for high CO2 tolerance in
marine ectothermic animals: pre-adaptation through lifestyle and
ontogeny? Biogeosciences 6, 1–19 (2009).

40. Claiborne, J. B., Edwards, S. L. & Morrison-Shetlar, A. I. Acid-base
regulation in fishes: cellular and molecular mechanisms. J. Exp.
Zool. 293, 302–319 (2002).

41. Brauner, C. J. & Val, A. L. Fish Physiology: Homeostasis and Tox-
icology of Non-Essential Metals (Academic Press, 2019).

42. Clark, T. D. et al. Ocean acidification does not impair the behaviour
of coral reef fishes. Nature 577, 370–375 (2020).

43. Munday, P. L. et al. Methodsmatter in repeating ocean acidification
studies. Nature 586, E20–E24 (2020).

44. Williamson, P., Pörtner, H. O., Widdicombe, S. & Gattuso, J. P.
Ideas and perspectives: When ocean acidification experiments are
not the same, repeatability is not tested. Biogeosciences 18,
1787–1792 (2021).

45. Rummer, J. L. et al. Life on the edge: thermal optima for aerobic
scope of equatorial reef fishes are close to current day tempera-
tures. Glob. Change Biol. 20, 1055–1066 (2014).

46. Vargas, C. A. et al. Upper environmental pCO2 drives sensitivity to
ocean acidification in marine invertebrates. Nat. Clim. Change 12,
200–207 (2022).

47. Vargas,C.A. et al. Species-specific responses tooceanacidification
should account for local adaptation and adaptive plasticity. Nat.
Ecol. Evol. 1, 0084 (2017).

48. Thomsen, J. et al. Naturally acidified habitat selects for
ocean acidification–tolerant mussels. Sci. Adv. 3, e1602411
(2017).

49. Burton, T., Ratikainen, I. I. & Einum,S.Environmental changeand the
rate of phenotypic plasticity. Glob. Change Biol. 28, 5337–5345
(2022).

50. DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic
plasticity. Trends Ecol. Evol. 13, 77–81 (1998).

51. Pörtner, H. O., Bock, C. & Mark, F. C. Oxygen-and capacity-limited
thermal tolerance: bridging ecology and physiology. J. Exp. Biol.
220, 2685–2696 (2017).

52. Sperling, E. A., Frieder, C. A. & Levin, L. A. Biodiversity response to
natural gradients ofmultiple stressors oncontinentalmargins.Proc.
R. Soc. B Biol. Sci. 283, 20160637 (2016).

53. Nagelkerken, I. & Connell, S. D. Ocean acidification drives global
reshuffling of ecological communities. Glob. Change Biol. 28,
7038–7048 (2022).

54. Connell, S. D. et al. The duality of ocean acidification as a resource
and a stressor. Ecology 99, 1005–1010 (2018).

55. Timmers, M. A. et al. Biodiversity of coral reef cryptobiota shuffles
but does not decline under the combined stressors of ocean
warming and acidification. Proc. Natl Acad. Sci. USA 118,
e2103275118 (2021).

56. Bindoff, N. L. et al. in IPCC Special Report on the Ocean and Cryo-
sphere in a Changing Climate (eds Pörtner, H. -O. et al.) Ch. 5
(Cambridge Univ. Press, 2019).

57. Tanvet, C. et al. Corals adapted toextremeandfluctuating seawater
pH increase calcification rates and have unique symbiont com-
munities. Ecol. Evol. 13, e10099 (2023).

58. Wang, W., Xu, N., Zhang, L., Andersen, K. H. & Klaminder, J.
Anthropogenic forcing of fish boldness and its impacts on eco-
system structure. Glob. Change Biol. 27, 1239–1249 (2021).

59. Page, M. J. et al. The PRISMA 2020 statement: an updated
guideline for reporting systematic reviews. Int. J. Surg. 88,
105906 (2021).

60. Enzor, L. A., Zippay, M. L. & Place, S. P. High latitude fish in a high
CO2 world: synergistic effects of elevated temperature and carbon
dioxide on the metabolic rates of Antarctic notothenioids. Comp.
Biochem. Physiol. 164, 154–161 (2013).

61. Nowicki, J. P., Miller, G. M. & Munday, P. L. Interactive effects of
elevated temperature and CO2 on foraging behavior of juvenile
coral reef fish. J. Exp. Mar. Biol. Ecol. 412, 46–51 (2012).

62. Glandon, H. L., Kilbourne, K. H., Schijf, J. &Miller, T. J. Counteractive
effects of increased temperature and pCO2 on the thickness and
chemistry of the carapace of juvenile blue crab, Callinectes sapi-
dus, from the Patuxent River, Chesapeake Bay. J. Exp. Mar. Biol.
Ecol. 498, 39–45 (2018).

63. Stubler, A. D., Furman, B. T. & Peterson, B. J. Sponge erosion under
acidification and warming scenarios: differential impacts on living
and dead coral. Glob. Change Biol. 21, 4006–4020 (2015).

64. Leo, E., Graeve, M., Storch, D., Pörtner, H.-O. &Mark, F. C. Impact of
ocean acidification and warming on mitochondrial enzymes and
membrane lipids in two Gadoid species. Polar Biol. 43, 1109–1120
(2020).

65. Viechtbauer, R. Meta-analysis package for R: package “metafor”
version 2.4-0 (2019).

66. R Core Team. R: a language and environment for statistical com-
puting (R Foundation for Statistical Computing, 2022).

67. Duval, S. & Tweedie, R. Trim and fill: a simple funnel‐plot–based
method of testing and adjusting for publication bias in meta‐ana-
lysis. Biometrics 56, 455–463 (2000).

68. Shi, L. & Lin, L. The trim-and-fill method for publication bias: prac-
tical guidelines and recommendations basedon a large database of
meta-analyses. Medicine 98, e15987 (2019).

69. Alter, K. et al. Hidden impacts of climate change on biological
responses of marine life. Zenodo 10223034 (2023).

Acknowledgements
This work was supported by the ERANet project CLIMAR “Climate-driven
Changes in the Habitat Suitability of Marine Organisms” (grant number
BMBF DLR01DN17019) (K.A., M.A.P., P.D., S.M., P.H.M., C.P.G., D.A.F.,
M.E.B., andM.E.L.), theproject FutureMARES “Climate change and Future
MARine EcosystemServices and biodiversity” from the European Union’s
Horizon 2020 research and innovation program under grant agreement
No 869300 (M.A.P. and K.A.), the International CO2 Natural Analogs
(ICONA) Network funded by Japan Society for the Promotion of Science

Article https://doi.org/10.1038/s41467-024-47064-3

Nature Communications |         (2024) 15:2885 12



(M.M. and C.C.), the National Research and Development Agency (ANID,
Chile) (P.H.M.), the National Fund for Scientific and Technological
Development (FONDECYT, Grants 1130839 and 1181609) (P.H.M.), the
National Scientific andTechnical ResearchCouncil (CONICET, Argentina,
grant numbers: PIP 2934 and PUE 2016—CADIC) (D.A.F. and M.E.L.), the
project OCAH-Beagle “Ocean acidification and Hypoxia impacts on high
latitude marine coastal ecosystems: the case of the Beagle Channel
(Southern Patagonia—Argentina, Chile) from the Prince Albert II of
Monaco Foundation under the financing agreement No. 2863 (M.E.L.),
Biodivera (MOVE and METRODIVER) (J.C.) and Fondation de France
(MultiNet) (J.C.). Fish and mollusk icons were created by Lars Meierto-
berens and Qolbin Saliim, respectively, from the Noun Project (CC
BY 3.0).

Author contributions
P.D. initiated the study. K.A. led the data compilation to which P.H.M.,
C.P.G., M.E.L., M.E.B., S.M., D.A.F., M.M., and C.C. contributed. K.A.,
M.M., C.C., F.C.M., and P.D. assigned directions to metrics. J.J. per-
formed with the assistance of J.C. the meta-analyses. K.A., J.J., P.H.M.,
F.C.M., J.C., and P.D. interpreted and discussed the results. K.A. and J.J.
wrote the first draft with the support of P.H.M., F.C.M., M.A.P., and P.D.
All co-authors contributed to the final version.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-47064-3.

Correspondence and requests for materials should be addressed to
Katharina Alter.

Peer review information Nature Communications thanks Anne Todg-
ham and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

1Royal Netherlands Institute for Sea Research, Department of Coastal Systems, P.O. Box 59, 1790 AB Den Burg, The Netherlands. 2School of Aquatic and
Fishery Sciences, University of Washington, 1122 NE Boat St, 98195 Seattle, WA, USA. 3National Center for Scientific Research, PSL Université Paris, CRIOBE,
CNRS-EPHE-UPVD, Maison de l’Océan, 195 rue Saint-Jacques, 75005 Paris, France. 4Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ber-
nardo Houssay 200, V9410CAB Ushuaia, Argentina. 5Universidad Nacional de Tierra del Fuego, Antártida e Islas del Atlántico Sur; Instituto de Ciencias
Polares, Ambiente y Recursos Naturales (UNTDF - ICPA), Fuegia Basket 251, V9410BXE Ushuaia, Argentina. 6CNR-IAS, Consiglio Nazionale delle Ricerche,
Instituto per lo studio degli Impatti Antropici e Sostenibilità in ambiente marino. Località Sa Mardini, 09170 Torregrande, Oristano, Italy. 7Centro de Estudios
Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile. 8Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile.
9Wageningen University, Department of Animal Sciences, Marine Animal EcologyGroup, De Elst 1, 6708WDWageningen, The Netherlands. 10NBFC, National
Biodiversity Future Center, Palermo, Italy. 11Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn (SZN), Lungomare Cristoforo
Colombo, I-90149 Palermo, Italy. 12Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20, I-90123 Palermo, Italy.
13Section of Integrative Ecophysiology, AlfredWegener Institute Helmholtz Centre for Polar andMarine Research, AmHandelshafen 12, Bremerhaven 27570,
Germany. 14CNR-IBF, Area di Ricerca San Cataldo, Via G. Moruzzi N°1, 56124 Pisa, Italy. 15These authors contributed equally: Katharina Alter, Juliette
Jacquemont. e-mail: katharina.alter@nioz.nl

Article https://doi.org/10.1038/s41467-024-47064-3

Nature Communications |         (2024) 15:2885 13

https://doi.org/10.1038/s41467-024-47064-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:katharina.alter@nioz.nl

	Hidden impacts of ocean warming and acidification on biological responses of marine animals revealed through meta-analysis
	Results and discussion
	Relation of metrics to fitness
	Directional effects of climate drivers
	Impact of climate driver�level
	Deviations of biological responses
	Effect of life-stage and acclimation�time
	From deviations in the responses of organisms to ecological�shifts
	Perspective and future directions

	Methods
	Literature search and data collection
	Systematic literature search strategy
	Screening criteria
	Data extraction
	Classification of metrics
	Climate scenarios
	Number of data points extracted per�study
	Number of metrics extracted per�study
	Data analysis
	Random-effect�model
	Covariates
	Sensitivity analyses
	Effect of upper environmental conditions
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




