Observed Pathways and Interannual Variability of the Warm Inflow Onto the Continental Shelf in the Southern Weddell Sea
Model projections suggest that the continental shelf in the southern Weddell Sea may experience a shift from today's near-freezing temperature to a much warmer state, where warm water floods the shelf and basal melt rates beneath the Filchner Ronne Ice Shelf increase dramatically. Today, the Filchner Trough serves as a conduit for the southward flow of Warm Deep Water (WDW) during summer and, thus, requires continuous monitoring of its hydrographic conditions. An extensive network of moorings was installed at key sites along the inflow pathway from 2017 to 2021, to expand on existing mooring records starting in 2014. The moorings complemented with under-ice profiling floats reveal two inflow pathways, where WDW enters along the eastern flank of the Filchner Trough as well as through a smaller trough east of there. Within the observed period, 2017 and 2018 feature anomalously warm inflows. The inflow is regulated by the heaving of isopycnals over the continental slope, and the southward propagation toward Filchner Ice Shelf is two times faster during these warm years. Furthermore, the warm years coincide with low summer sea ice concentration, which enhances surface stratification through increased freshwater input and modifies sea ice-ocean stresses that both act to lift the warm water layer and increase the temperatures on the continental shelf. Finally, the recent record low sea ice conditions around the Antarctic emphasize the importance of our findings and raise concerns regarding a potentially increasing presence of WDW on the southern Weddell Sea shelf.
Steiger et al. - 2024 - Observed Pathways and Interannual Variability of t.pdf - Other
Restricted to Staff Only
Download (6MB)