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ABSTRACT

Changes in snow accumulation on the Antarctic Ice Sheet are of significant relevance to global mean

sea level. Measurements taken over a 33-year period near the Neumayer Stations, Dronning Maud

Land (DML), Antarctica, were used to statistically analyse both interannual and intraannual trends

and variability of snow accumulation. While a significant increases in snow accumulation have been

observed at Kohnen Station on the DML plateau in the interior of the continent, the question arises as

to whether the coastal measurements near Neumayer show similar trends. This study reveals that

two unprecedented accumulation years, 2021 and 2023, were recorded near Neumayer; however,

no statistically significant long-term trend could be identified in the time series, which shows several

periods of increasing and decreasing mulit-annual means in snow accumulation. Despite this, shifts

in certain accumulation characteristics during the study period suggest the possible onset of a pos-

itive trend. Specifically, positive annual accumulation anomalies have become more frequent and

more intense, the rate of interannual accumulation increase has accelerated, and the current period

reflects a prolonged state of above-average accumulation. High interannual variability, however,

prevents the identification of a significant trend within the available data period.

Periodicities observed in the time series suggest possible links to larger atmospheric patterns, such

as the Antarctic Circumpolar Wave. Further research is required to also investigate the role of the

major climate modes such as the Southern Annular Mode (SAM) and El Niño-Southern Oscilla-

tion (ENSO) and how these might influence local accumulation trends. This climatological analysis

offers valuable data that could be used for future ground-truthing of satellite observations and bench-

marking of climate models, especially given the higher temporal resolution of these measurements

compared to firn and ice core records.
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ZUSAMMENFASSUNG

Veränderungen in der Schneeakkumulation auf dem antarktischen Eisschild sind von erheblicher

Bedeutung für den mittleren globalen Meeresspiegel. Messungen, die über einen Zeitraum von 33

Jahren in der Nähe der Neumayer-Stationen im Küstenbereich von Dronning Maud Land (DML),

Antarktis, durchgeführt wurden, wurden verwendet, um statistische Analysen der inter- und in-

traannualen Trends und der Variabilität der Schneeakkumulation zu untersuchen. Während an

der Kohnen-Station auf dem DML-Plateau im Inneren des Kontinents signifikante Zunahmen der

Schneeakkumulation beobachtet wurden, stellt sich die Frage, ob die Küstenmessungen in der Nähe

von Neumayer ähnliche Trends aufweisen.

Diese Studie zeigt, dass in den Jahren 2021 und 2023 zwei beispiellose Akkumulationsjahre in der

Nähe von Neumayer aufgezeichnet wurden; jedoch konnte in der Zeitreihe kein statistisch signifikan-

ter langfristiger Trend festgestellt werden. Die Zeitreihe zeigt mehrere Phasenmit zunehmenden und

abnehmenden mehrjährigen Mitteln der Schneeakkumulation. Dennoch deuten Veränderungen in

bestimmten Akkumulationsmerkmalen während des Untersuchungszeitraums auf einen möglichen

Beginn eines positiven Trends hin. Insbesondere treten positive jährliche Akkumulationsanomalien

häufiger und intensiver auf, die Rate des interannuellen Akkumulationsanstiegs hat sich beschleu-

nigt, und die aktuelle Periode spiegelt einen verlängerten Zustand überdurchschnittlicher Akkumula-

tion wider. Eine hohe interannuelle Variabilität erschwert jedoch die Identifizierung eines signifikan-

ten Trends innerhalb des verfügbaren Datenzeitraums.

Periodizitäten, die in der Zeitreihe beobachtet wurden, weisen auf mögliche Verbindungen zu

größeren atmosphärischenMustern hin, wie der Antarktischen Zirkumpolarwelle. Weitere Forschun-

gen sind erforderlich, um auch die Rolle der wichtigsten Klimamoden, wie dem Southern Annular

Mode (SAM) und der El Niño-Southern Oscillation (ENSO), zu untersuchen und wie diese lokale

Akkumulationstrends beeinflussen könnten. Diese klimatologische Analyse bietet wertvolle Daten,

die in Zukunft zur Validierung von Satellitenbeobachtungen und als Grundlage für die Kalibrierung

von Klimamodellen genutzt werden könnten, insbesondere angesichts der höheren zeitlichen Auflö-

sung dieser Messungen im Vergleich zu Firn- und Eiskernaufzeichnungen.
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1 INTRODUCTION

1.1 Motivation

Antarctica’s total ice mass is equivalent to 58.3 meters of sea-level rise, with East Antarctica alone

contributing 53.3 meters (Dufour et al. 2019). Therefore, monitoring snow and ice accumulation and

ablation in this region is crucial for understanding future sea-level fluctuations.

As the climate warms, the Clausius-Clapeyron relation states that the atmospheric potential to hold

water vapor increases by approximately 7% per degree Kelvin of warming, which enhances mois-

ture transport to polar regions. In combination with other climate dynamics, this is projected to lead

to increased precipitation and, consequently, greater snow accumulation in Antarctica (Bengtsson

et al. 2011). This thesis examines a 33-year record of snow accumulation at Neumayer Station,

Dronning Maud Land (DML), to investigate whether current observations already show evidence of

such an increase.

Despite these projections of increased precipitation, assessing trends in Antarctic snowfall remains

challenging due to the variability across available observational datasets. Ice core records and re-

analysis data suggest minimal changes in precipitation since the 1950s, while altimetry data indicate

a recent increase in surface height, potentially linked to enhanced snowfall since the 1990s (Boening

et al. 2012). This discrepancy underscores the need for in situ measurements, such as stake farm

observations, which provide consistent, long-term data to validate models and reconcile differences

between datasets.

Satellite-based studies indicate a positive mass balance in Dronning Maud Land (DML) (Lenaerts

et al. 2019), yet satellite data alone cannot fully capture local accumulation processes. Ground-

truthing through in situ measurements is essential for accurately estimating accumulation, as satel-

lites may miss regionally specific signals. For instance, Medley et al. (2018) state that in situ mea-

surements reveal no clear trends in temperature or accumulation at Neumayer Station, while signif-

icant changes have been observed at Kohnen Station on the plateau, suggesting different patterns

between coastal regions and the interior (Medley et al. 2018).

Recent high-accumulation events in DML raise the question of whether they are short-term anoma-

lies or the start of a longer-term trend, similar to Kohnen Station (Wang et al. 2023; Medley et al.

2018). Long-term records from the Neumayer stake farms will assist to determine if these extremes

are outliers or signs of broader climatic shifts.

Finally, understanding the seasonal pattern of snow accumulation is crucial for interpreting ice core

records, which are key to reconstructing past climate conditions (Schlosser et al. 2010). Any shifts in

the seasonality of accumulation due to climate change would directly impact how these records are

6



1.2. SNOW DEPTH, ACCUMULATION AND SURFACE MASS BALANCE (SMB)

interpreted. This study aims to analyze both interannual trends and seasonal accumulation patterns

at Neumayer station, focusing on changes over the past three decades.

1.2 Snow Depth, Accumulation and Surface Mass Balance (SMB)

The distribution of snow depth is inherently heterogeneous, with increased variability observed over

complex terrain. Even on flat terrain, such as shelf ice, different processes lead to a heterogeneous

snow distribution. This is initiated by the precipitation distribution, which is generally more homoge-

neous than the snow depth itself (Eisen et al. 2008). Spatial variations in snowfall rates are typically

governed by the interplay between atmospheric circulation and topography, varying on spatial scales

of kilometers or more (Clark et al. 2011).

During and after snowfall, various processes can influence snow depth on more localized scales,

often on the order of tens to hundreds of meters (Clark et al. 2011). Following processes contribute

to the heterogeneous distribution of snow depth:

• Wind during Snowfall: Wind can transport falling snowflakes, leading to inhomogeneities in

the snow deposited on the surface. However, given the 40x40 m spatial extent of the stake

farm, it is reasonable to assume that snowfall rates are relatively homogeneous across this

area.

• Wind-Driven Snow Redistribution: Also referred to as drifting snow erosion, snow is gen-

erally eroded in regions with high wind speeds and transported to areas of lower wind veloc-

ity, resulting in decreased (in erosion areas) or increased (in deposition areas) snow depth

(Sundsbø 1998; Voordendag et al. 2024). Creep occurs in the lowest millimeters of the plane-

tary boundary layer, the saltation region extends up to 100 cm, and the suspension region can

be several hundred meters thick (Sundsbø 1998). Creep denotes the movement of particles

along the surface, whereas saltation describes the trajectory of particles that leap above the

surface. Suspension refers to the transport of particles that remain suspended in the airflow.

In flat terrain, saltation generally serves as the predominant mode of transport for drifting snow

at wind speeds ranging from 10 to 14 m s−1. While drifting snow erosion is considered to be

two to three orders of magnitude smaller on a continental scale, it can be locally significant,

especially in dry and windy regions (Lenaerts et al. 2010). The resulting snow patterns are

heavily influenced by local topography, wind speed, and direction (Voordendag et al. 2024).

On average, 30% of the initial accumulation at the stake farm close to Neumayer is removed

by wind erosion (Schlosser et al. 2002).

• Sublimation: Sublimation can occur either directly from the snow surface or from drifting snow,

as the boundary layer atmosphere is undersaturated. The latter describes the sublimation of

snow during transport by wind, where snow transitions directly from solid to gaseous phase

before redeposition at the surface occurs. Lenaerts et al. (2010) found that drifting snow subli-

mation removes 16 ± 8% of the annual snowfall at Neumayer Station. In addition, sublimation

of drifting snow exceeds surface sublimation at coastal and katabatic wind-controlled Antarctic

sites, and this may also apply to the stake farm analysed in this thesis (Lenaerts et al. 2010).
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INTRODUCTION

• Melt: Melting plays a minor role in snow depth variability in Antarctica, as temperatures only

rarely exceed 0°C during the austral summer (Jakobs et al. 2019). Near Neumayer, partial

melting can occur near the ice shelf edge during warm days with intense radiation, leading to

the occasional formation of denser or even melt layers. However, vertical transport of liquid

water does not occur (Lenaerts et al. 2017; van den Broeke et al. 2010).

• Compaction: The compaction of the snowpack may be attributed to three primary factors: the

overburden of its own weight, pressure exerted by wind, and snow metamorphism processes

(Voordendag et al. 2024). Snow metamorphism depends on the temperature during and after

snowfall (Schlosser et al. 2002). Frequent fresh snow accumulates at Neumayer implying that

the settling of surface snow is limited. Therefore, surface snow density is relatively constant

over time (Lenaerts et al. 2010).

Height and density changes at the stakes of a stake farm can be viewed as the cumulative result of

the aforementioned processes (van den Broeke et al. 2004).

The Surface Mass Balance (SMB) is typically defined as the annual sum of precipitation, surface

sublimation, runoff, erosion, and sublimation of drifting snow, integrated over the surface of a glacier,

ice sheet, or ice cap (Lenaerts et al. 2010). Solid precipitation is the primary and largest positive

contributor to the SMB (Schlosser et al. 2008). Rather than evaluating SMB across the entire surface,

it is often measured locally as mass per unit area per unit time. This is referred to as the specific

surface mass balance (SSMB), denoted as Σ (van den Broeke and Giesen 2021). The SSMB during

a given period can be calculated by the change in height ∆h over a specified time interval ∆t and

the average density ρ over this change in height (van den Broeke and Giesen 2021; Cuffey and

Paterson 2010). The formula is as follows:

Σ =
ρ∆h

∆t
(1.1)

All methods for determining SMB or SSMB rely on some form of length measurement, such as height

change or layer thickness. Converting these length measurements into SMB values necessitates

knowledge of the density distribution of the observed sample (Eisen et al. 2008). However, obtaining

reliable density profiles poses significant challenges (van den Broeke and Giesen 2021). Traditional

methods calculate density bymeasuring the volume andmass of snow samples; however, accurately

determining sample volume under field conditions can be difficult (Eisen et al. 2008). Consequently,

SMB or SSMB is often estimated using density estimates that may not align with actual density

measurements.

In this context, the term ”snow height change” refers to ∆h and includes surface ablation, while the

term ”accumulation” strictly pertains to gains; however, in this thesis, ”accumulation” will be used

interchangeably with ”snow height changes”, i.e. including ablation, which is considered equivalent

to the mass loss from all processes mentioned.

Reliable Density measurements over deep layers are difficult to obtain (van den Broeke and Giesen

2021). To summarise, precipitation, snow depth, accumulation and SMB are closely linked, but

represent different concepts.

8



1.3. CLIMATE

1.3 Climate

In the following subsections, the climate of Antarctica, DML, and Neumayer Stations across the var-

ious spatial scales is examined. Subsection 1.3.1 will look at the broader Antarctic climate system,

focusing on the overarching atmospheric and oceanic processes that influence the continent’s cli-

mate. In subsection 1.3.2, the focus is narrowed to the DML region, analyzing how local topography

and geographical features shape precipitation patterns and temperature variations. DML is located

in the Atlantic sector of Antarctica extending from approx. 30°W (Coats Land) to 50°E (Enderby

Land) (Schlosser et al. 2008). Finally, subsection 1.3.3 will concentrate on the microclimate at the

Neumayer Stations.

1.3.1 Antarctica

In this subsection, key aspects of the Antarctic climate will be explored, including radiation,

atmospheric circulation, temperature, precipitation, and the influences of the El Niño-Southern

Oscillation (ENSO) and the Southern Annular Mode (SAM).

Being completely enclosed by the Southern Ocean, Antarctica is Earth’s most isolated continent.

98% of its surface is covered by snow and ice (König-Langlo et al. 1998). Sea ice around Antarctica

reaches its maximum extent in September and October, and its minimum in February and March

(König-Langlo et al. 1998). Moreover, Antarctica is the continent with the highest average surface

elevation.

Radiation: The duration of the polar night (day) varies depending on the location in Antarctica,

with the sun remaining below the horizon from approx. May to August and not setting between

approx. September and March. Nevertheless, even during the polar day, the combination of low sun

elevation angles and the high albedo of snow and ice results in a mostly negative surface radiation

balance. When a surface has a negative radiation balance, it loses more energy by radiation than it

gains (König-Langlo et al. 1998), which leads to further cooling.

Atmospheric Circulation: The Antarctic atmosphere is surrounded by a zone of sub-polar lows

and strong westerlies at approximately 64°S, known as the circumpolar trough or belt. It moves

back and forth as sea ice expands and retreats. Westerlies prevail north of this belt, easterlies

south. Few depressions and cyclones generated by the circumpolar trough can penetrate into the

interior of Antarctica. Cyclonic disturbances can occur throughout the year and introduce a weak

meridional wind field, which transports relatively warm and moist air, in an otherwise predominantly

zonal flow (König-Langlo et al. 1998; Schlosser et al. 2010). Most of the near-surface circulation on

the Antarctic continent is dominated by katabatic effects with katabatic winds blowing perpendicular

to terrain contours. Katabatic winds are directional constant and increase in speed with terrain

slopes (König-Langlo et al. 1998). During katabatic winds in valleys moisture is transported towards

the sea (Dufour et al. 2019).

Temperature: Mean annual temperature decreases with both distance from the coast and increas-

ing surface elevation of the ice sheet (Rotschky 2007). For instance, at the Neumayer stations

close to the coast and 43 m a.s.l. the mean annual temperature is -16.1°C (since 1981 until 2021)

9



INTRODUCTION

(Bagheri Dastgerdi et al. 2021). In contrast, at a site on the Antarctic plateau (75°S, 15°E) at an

elevation of 3453 m a.s.l., the annual mean temperature is -48.3°C (Rotschky 2007). The day to day

temperature variations are largest during winter in response to the temperature difference between

the air masses from the interior and the surrounding ocean (König-Langlo et al. 1998).

Moisture and Precipitation: Katabatic winds transport moisture offshore, while it is transported

onshore above the katabatic wind layer (above approx. 950 hPa) (Dufour et al. 2019). Generally,

precipitation decreases from the coastal low altitude areas to the inland plateau in Antarctica

(Boening et al. 2012; Schlosser et al. 2008). Local minima (maxima) are found in the lee (luv) of

topographical ridges (Boening et al. 2012; Schlosser et al. 2008).

There a two common types of precipitation: 1. clear sky precipitation or diamond dust and 2.

maritime air intrusions (Turner et al. 2019; Baiman et al. 2023). Clear sky precipitation occurs more

frequently (Turner et al. 2019), especially on the Antarctic plateau (interior), as slopes are gentle

and orographic lifting negligible. Saturation is maintained by strong radiative cooling of the very cold

air masses resulting in the formation of precipitation from clear skies. Precipitation from clear skies

is no different from that originating in clouds. However, the low moisture content of very cold air

masses makes it optically too thin to be visible as clouds (Wille et al. 2021; Bromwich 1988). Clear

sky precipitation occurs in each month but shows some seasonal variations (Schlosser et al. 2010).

The second major type of precipitation are maritime air intrusions, often associated with extreme

precipitation events (EPEs). Turner et al. (2019) defines an EPE ”to be a daily precipitation total

that is within the top 10% of the long-term record of daily precipitation amounts at a location.” EPEs

contribute over 40% of the annual total across much of the continent. In coastal areas and on ice

shelves, their contribution to the annual total can be even greater (Turner et al. 2019). EPEs can

occur when there is a strong meridional flow of amplified planetary waves in the mid-troposphere.

Typically, EPEs are observed when the mean sea level pressure in the circumpolar trough to the

west of the location drops to a minimum (Turner et al. 2019). They usually last for one to three days,

with most lasting only one day (Schlosser et al. 2010). Longer durations occur when atmospheric

circulation becomes blocked, most often with a stationary High-Low surface pressure couplet

(Turner et al. 2019). They are often linked to one polarity of either the Southern Annular Mode

(SAM) or the El-Nino-Southern-Oscillation (ENSO) (Boening et al. 2012; Turner et al. 2019).

Interannual Variability: Two major modes of natural climate variability influencing the Antarctic

climate are SAM and ENSO (King et al. 2023b): The ENSO phenomenon is the most significant

short-term climate fluctuation, occurring every 3-7 years and lasting 9 months to 2 years. It alters

global atmospheric circulation, impacting temperature and precipitation patterns. ENSO comprises

three phases: ’El Niño,’ ’La Niña,’ and ’Neutral.’ As a coupled climate phenomenon, ENSO requires

simultaneous changes in both the ocean and atmosphere to transition between phases (Wallace

and Hobbs 2006). During ’Neutral’ conditions, trade winds blow from east to west across the Pacific,

pushing warm equatorial water to the western Pacific. This divergence leads to upwelling of colder

bottom water along the South American coast, causing the thermocline to slope across the Pacific.

Air pressure is relatively low above the warm West Pacific, in contrast to the high pressure over

the colder East Pacific, causing trade winds to seek balance. The less dense, moist air over the

West Pacific rises, while the air sinks in the East, resulting in dry and warm subsidence. In La Niña,
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sea surface temperatures (SST) in the central and eastern tropical Pacific drop below average,

steepening the thermocline and strengthening easterly winds. In contrast, during an El Niño event,

SST rises above average in these regions, reducing or reversing the pressure gradient across

the Pacific (Wallace and Hobbs 2006; Trenberth 1997). Key impacts of ENSO on the Antarctic

climate are reviewed in Li et al. (2021). The tropical-polar connection between ENSO and the

Antarctic climate is well-established, with El Niño events generating stationary Rossby wave trains

that influence the Amundsen Sea Low (ASL), weakening it by increasing sea level pressure by 2–5

hPa. This weakened ASL alters atmospheric circulation, resulting in regional climate anomalies

such as decreased surface air temperatures (SAT) over the Antarctic Peninsula and increased

SAT over East Antarctica. El Niño also affects Antarctic sea ice distribution, forming an Antarctic

sea ice dipole with increased sea ice concentration in the Bellingshausen and Weddell Seas and

decreased concentration in the Amundsen and Ross Seas. Additionally, El Niño events enhance

moisture transport to West Antarctica, leading to increased snow accumulation. However, the

weakened ASL simultaneously facilitates the onshore flow of Circumpolar Deep Water around West

Antarctica, which accelerates sub-ice shelf melting.

The SAM is the dominant pattern of atmospheric variability in the extratropical Southern Hemi-

sphere, characterized by shifts in atmospheric pressure between the mid-latitudes and Antarctica.

These shifts influence the strength and position of the westerly winds, with positive phases of

SAM leading to stronger, more poleward winds, and negative phases causing the winds to weaken

and move equatorward. The SAM index is measured by calculating the difference between the

normalized monthly zonal sea level pressure at 40°S and 65°S, using data from six observation

stations near these latitudes. SAM significantly influences regional climates, affecting temperature

and precipitation patterns across the Southern Hemisphere, including Antarctica. Its recent trend

toward a more positive state has been linked to human activities, such as ozone depletion and

rising greenhouse gas concentrations (King et al. 2023a).

Marshall et al. (2013) revisits the relationship between SAM and surface air temperature anomalies

across Antarctica, focusing particularly on East Antarctica during austral summer and autumn.

Traditionally, the SAM’s positive phase has been associated with cooling in East Antarctica and

warming in the Antarctic Peninsula. However, the authors observe a significant reversal in this

SAM-temperature relationship during the first decade of the 21st century. Specifically, they find that

positive SAM phases, which were previously linked to cooler temperatures in East Antarctica, are

now associated with warmer temperatures in this region.

1.3.2 Dronning Maud Land (DML)

Most precipitation reaching DML is associated with extratropical cyclones reaching the coast, that

transport moisture from lower latitudes polewards (Gorodetskaya et al. 2020). These precipitation

events fall under the category of maritime air intrusions. Some of the extratropical cyclones are

associated with atmospheric rivers (ARs) (Gorodetskaya et al. 2020). According to Gorodetskaya

et al. (2020) ARs are long, narrow, and transient corridors, that enhance water vapor transport,
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frequently of tropical moisture. These corridors are typically embedded in the warm conveyor belt

ahead of the cyclone’s cold front. Cyclones that have an AR carry a greater amount of moisture

towards the poles than those without an AR. In fact, ARs account for 90% of the annual poleward

moisture transport. Although ARs occur only three days per year, they significantly contribute

to annual precipitation in DML, accounting for 15 ± 7% according to Baiman et al. (2023), while

Simon et al. (2023) report a contribution of 20–40%. Precipitation at the escarpment, which is the

transition zone between the coast and the plateau, is significantly topographic and wind-dependent

(Schlosser et al. 2008). Coastal DML is susceptible to intermittent and intense EPEs, which often

account for more than half (50%) of the total annual precipitation within just a few days each year

(Simon et al. 2023; Turner et al. 2019). Local short-term variability in DML is less driven by SAM or

ENSO (Turner et al. 2019).

1.3.3 Neumayer (NM)

In this study, the term ’Neumayer Station’ is used to collectively refer to the three successive

research stations established in Antarctica: the Georg-von-Neumayer Station (operational from

1981 to 1992), Neumayer Station (1992 to 2009), and Neumayer Station III (since 2009). NM,

situated on the Ekström Ice Shelf at 70°39’S and 8°15’W, is the German wintering base on the DML

coast (see Fig. 1.1). Located about 5 km southwest of Atka Bay and 43 meters above mean sea

level, it drifts with the flowing shelf ice 157 meters per year towards the open sea. In summer, the

ocean areas east and north of Ekströmisen are often free of sea ice.

Weather Patterns: There are two major regimes dominating the weather at NM. Firstly, clear-sky

and dry conditions during southerly katabatic winds are observed frequently. There is only a small

moisture transport due to sublimation from the surface and from drifting snow. The moisture is

trapped within the stable boundary layer. This regime is often accompanied by a high-pressure

ridge over the Weddell Sea (Gorodetskaya et al. 2020). The second common regime involves

extratropical cyclones moving eastward from the northern Weddell Sea, advecting humid and

warm maritime air masses. As a result, temperatures rise and snowfall intensifies (Gorodetskaya

et al. 2020; König-Langlo et al. 1998). Snowfall observations are often classified as ’moderate’ to

’heavy’ (according to WMO) during the passages of these cyclones (Gorodetskaya et al. 2020).

The rare EPEs due to ARs are connected to moderate but very humid northeasterly flow at the

surface, turning to northwesterly flow with height (Gorodetskaya et al. 2020). In addition, warm air

is advected from the north, so that temperatures are higher than on average during these snowfall

events (Schlosser 1999). Occasionally during summer, precipitation can also occur as drizzle or

rainfall (Gorodetskaya et al. 2020). Temperature: The average annual temperature recorded at

NM since 1981 stands at −16.10◦C ± 1.05◦C. Over this period, observations indicate no significant

temporal trend in air temperature (Medley et al. 2018; Bagheri Dastgerdi et al. 2021)

Circulation and Wind: NM lies on the southern boundary of the circumpolar trough and is subject

to frequent cyclonic disturbances throughout the year (Gorodetskaya et al. 2020). Straight easterly

(90°) winds, varying slightly between 70° and 110°, are predominantly observed at NM primarily
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due to the combined effects of (mostly weak) katabatic outflow, which is deflected by the Coriolis

force towards the left, and the convergence with coastal easterlies generated by the cyclones of

the circumpolar trough. These dynamics result in a prevailing pattern of easterly winds (Schlosser

et al. 2010; König-Langlo et al. 1998). Wind speeds are relatively high with an annual mean value

of 8.7 m s−1 and a standard deviation of ± 6.1 m s−1 (König-Langlo et al. 1998). The katabatic

wind alone is characterized by low to moderate wind speeds (about 5 m s−1, rarely more than 10

m s−1 ) and a predominantly southerly direction (also SW or W directions) (Gorodetskaya et al.

2020). In contrast, wind speeds during cyclonic disturbances can reach 25 m s−1 resulting in heavy

blowing snow and whiteouts (Gorodetskaya et al. 2020). Drifting and blowing snow can occur at

wind speeds of 6-12 m s−1 (depending on the condition of the snow surface) and is reported in 40%

of all visual observations at NM (Bagheri Dastgerdi et al. 2021). This makes the direct quantification

of precipitation very difficult.

1.4 Spatial Variability of Snow Accumulation

Firstly, any analysis of snow accumulation must account for its high spatial variability, meaning that

results must be interpreted with respect to their spatial representativeness. Spatial variability refers

to the extent to which measurements differ across different locations.

Snow distribution in DML is heavily influenced by the region’s topography and the processes of wind-

driven sublimation and redistribution (Simon et al. 2023). In general, snow accumulation shows con-

siderable spatial variability, even on scales ranging from meters to kilometers. For instance, wind

shadows cast by buildings or terrain features can introduce high spatial variability at the kilometer

scale—variability that can be as significant as the temporal variability observed over multidecadal

to centennial timescales (Eisen et al. 2008). On a meter scale, sastrugi — elongated ridges formed

by wind erosion and deposition — create local spatial variability, which strongly affects the annual

variability of accumulation patterns (Eisen et al. 2008). However, because sastrugi are small-scale

features, averaging stake measurements within a stake farm typically reduces their influence (Mc-

Connell et al. 1997).

In contrast, for individual stake measurements, even 10-year averages are only representative of

a few square kilometers (Eisen et al. 2008). As discussed by Frezzotti et al. (2005), slopes and

curvatures are the most significant topographic features contributing to spatial variability. Concave

depressions, for example, accumulate snow more rapidly than convex ridges. Katabatic winds play

a dominant role in snow export and sublimation within the undersaturated wind layer, driving spatial

variability on meter scales (Eisen et al. 2008).

Given the high spatial variability in snow accumulation, stake farms serve as essential tools to as-

sess the representativeness of individual measurement points, such as single stakes or ice cores

(Frezzotti et al. 2005). If high standard deviations are observed within a stake farm, it is likely due to

sastrugi or wind crusts. Additionally, the slope along the prevalent wind direction (SPWD) is a useful

measure for assessing spatial variability. When the SPWD is highly variable, the standard deviation

also tends to increase. Conversely, when the SPWD is low or accumulation is high, standard de-
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viations within the farm tend to decrease (Frezzotti et al. 2005). Spatial variability patterns tend to

remain stable over time (Eisen et al. 2008).

Goodwin (1991) conducted a two-year study in Wilkes Land, located east of DML, to examine the

seasonality of spatial variability. His results revealed that during autumn, the spatial variability

peaked. This was due to the formation of a wind-glazed ice crust during snow-free periods occurring

in autumn, which led to the creation of sastrugi and dunes as well as increased surface hardness.

1.5 Temporal Variability of Snow Accumulation

For snow accumulation not only spatial variability but also temporal variability on different time scales

needs to be considered. Before reviewing the interannual scale, the intra-annual periods are looked

at.

1.5.1 Intra-Annual Variability and Seasonality

In general, information on intra-annual snow accumulation is sparse, as frequent direct measure-

ments of precipitation amount and snow accumulation are difficult to obtain. Particularly, at remote

sites in the interior of Antarctica (Dahe et al. 2004). Yet, there are some studies on seasonality of

snow accumulation in Antarctica:

Fujii and Ohata (1982) computed monthly means of net accumulation at Mizuho station in eastern

DML. Nine stakes were read monthly during a four-year measurement period from 1976–1980.

Accordingly, most frequent snowfall occurred in February and March, with a secondary importance

of the periods from October to January and August. Fujii and Ohata (1982) found near-zero

accumulation from April to July.

At South Pole, McConnell et al. (1997) deployed 50 stakes, which were read monthly for 7.25 years

from 1988 onwards. Here, the authors observed a maximal accumulation in spring (September and

October) and hardly any accumulation in summer (December and January). However, very large

stake-to-stake variability was mentioned. McConnell et al. (1997) showed that the primary source

of variability within these short distances of stakes is peak wind velocities that transport snow.

Reijmer and Broeke (2003) installed ten AWSs with sonic altimeters across DML and one on

Berkner Island, operating for four and seven years, respectively. The altimeter has a temporal

resolution (3 hours) that is much higher than that of stake readings, allowing it to capture the timing

of precipitation events. The measurement uncertainty of the instrument is 2 cm, which limits its

ability to recognize ablation. Observations show that annual accumulation results from numerous

small events and a few large ones, with the latter contributing most to the total. Typically, four to

five major events occur annually, characterized by higher temperatures, humidity, wind speeds,

and a shift from katabatic to northerly winds, but without clear seasonality. Coastal and escarpment

regions in DML experience winter accumulation maxima, while Berkner Island and the plateau peak

in summer, though the seasonal cycle at Berkner Island is barely significant at the 5% level (Reijmer

and Broeke 2003).
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1.5.2 Interannual Variability and Long-Term Trends

Methods and Datasets

Various measurement methods and data sets are used to track long-term trends in snow accumu-

lation or mass balance in Antarctica. Some of the most important methods and data sets are:

• The satellites GRACE and its follow-on mission GRACE-FO (Gravity Recovery and Climate

Experiment) measure gravitational field changes providing essential insights into mass balance

changes in the polar regions at approx. monthly resolution (Wahr et al. 2000; Velicogna et al.

2020).

• The satellites ICESat, ICESat-2, and CryoSat-2 employ altimetry techniques to measure

changes in ice sheet elevation. ICESat was launched in 2003, followed by ICESat-2 and

CryoSat-2, which offer improved spatial and temporal resolution (approx. monthly) in capturing

ice height variations (Wahr et al. 2000).

• In-situ measurements such as stakes and ultrasonic sensors offer temporal resolutions span-

ning from hours (ultrasonic sensors) to weeks, months, and years (stakes). These methods

have been utilized to sample data over decades in Antarctica (Eisen et al. 2008).

• Ice thickness measurements, such as ground-penetrating radars (GPR), map internal layers

of equal age to infer accumulation patterns. Depending on the thickness and properties of the

internal layers, GPR profiles can trace back several centuries to even 1000 years with seasonal

resolution (Eisen et al. 2008).

• Ice and firn cores provide information on past snow accumulation with seasonal and annual

resolution in the layers closer to the surface, while deeper layers offer rough estimates. Ice

cores can trace accumulation back up to one million years, depending on the drilling site loca-

tion (Eisen et al. 2008).

• Regional climate models (RCMs) are employed to analyze the long-term effects of climate

change on snow accumulation and the mass balance of the Antarctic. Climate models can

simulate long-term trends over centuries or even millennia, although their temporal resolution

varies depending on the model and computing capacity. Typically, simulations are performed

on time scales of months to decades (Dalaiden et al. 2020).

Stake measurements are locally valuable but are often of limited temporal coverage. In contrast,

remote sensing methods offer broader spatial coverage, although they may lack sufficient temporal

or spatial resolution and require ground-truthing. Firn and ice cores provide extensive records of

snow accumulation and its temporal variability over long periods, but they are spatially sparse and

susceptible to post-depositional disturbances like sublimation and snowdrift redistribution. Averaging

data from multiple cores, along with high-precision snow density measurement techniques within a

region, can help mitigate local noise and enhance our understanding of snow accumulation variability

across larger scales (Wang et al. 2017; Weinhart et al. 2020).
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Interannual Variability and Trends in Antarctic Ice Sheet Accumulation

Interannual variability in Antarctic snowfall is high being largely influenced by EPEs (Boening et al.

2012; Gorodetskaya et al. 2020). Turner et al. (2019) found that 70% of the annual precipitation

variance is explained by the variability in precipitation from EPEs, where the contribution is higher

on the ice shelves and lower in the higher parts of the plateau.

As outlined in Dalaiden et al. (2020) and Schlosser and Oerter (2002), three primary mechanisms

are responsible for a substantial portion of the observed interannual variability in snow accumulation:

thermodynamic processes, large-scale dynamics, and synoptic-scale dynamics.

Thermodynamic processes result in a change in snow accumulation due to a change in air temper-

ature. This is because the maximum moisture content in the atmosphere increases exponentially

with air temperature, in accordance with the Clausius-Clapeyron relationship. Consequently, the

precipitation of more moisture in the form of snow in Antarctica is possible if air masses become

warmer but remain below the freezing point.

The large-scale dynamics transport moisture from lower latitudes to Antarctica. Changes in the

atmospheric circulation result in regionally variable trends, with topography exerting the dominant

control on precipitation in this case (Dalaiden et al. 2020; Simon et al. 2023). Short-lived synoptic-

scale processes, such as ARs and landfalling cyclones, exert a significant influence on interannual

variability in the form of EPEs.

It is important to highlight that these three mechanisms are challenging to distinguish due to their

mutual dependence. Dalaiden et al. (2020) found that both the large-scale transport and short-lived

synoptic scale events control interannual variability in snow accumulation, explaining 49% of the

variation across all regions, with the exception of the AIS plateau. In contrast, Turner et al. (2019)

asserts that on the ice shelves, EPEs predominantly explain the variance, while this relationship

does not hold over the ocean and the higher plateau. The year-to-year variability of EPEs is greater

than the interannual variability of annual precipitation itself (Turner et al. 2019).

The high interannual variability of Antarctic snowfall is closely linked to fluctuations in cyclone activ-

ity, which are themselves influenced by ENSO and SAM (Boening et al. 2012). According to Turner

et al. (2019), the Ross Ice Shelf experiences an increased number of EPEs during an El Niño. Ice

core analysis indicates that El Niño reduces precipitation in the EAIS (King et al. 2023b). A slight

negative anomaly in mass balance is observed during El Niño events in DML (King et al. 2023b).

ENSO affects SMB by modulating heat and moisture transport. This modulation results in lower SST

and reduced moisture flux in eastern West Antarctica while increasing SST and moisture flux around

the Ross Ice Shelf during an El Niño event (Lenaerts et al. 2019).

SAM influences Antarctic SMB by redistributing precipitation across the continent, with positive SAM

phases leading to reduced precipitation in West Antarctica and increased precipitation on the east-

ern Antarctic Peninsula (Lenaerts et al. 2019). In coastal DML, it is linked to an increase in mass

(King et al. 2023b). The combined effect of El Niño and a positive SAM results in a slight increase

in the SMB of the EAIS (King et al. 2023b).

Trend: The AIS has experienced an increase in snow accumulation over the past century, which

has partially offset the observed ice-dynamic mass loss. This dynamic loss, particularly in the West
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Antarctic Ice Sheet (WAIS), has been attributed to ocean warming and grounding line retreat, while

the underlying drivers of increased snow accumulation over the AIS remain unclear (Dalaiden et al.

2020; on Climate Change 2023). For the entire Antarctic continent, Dalaiden et al. (2020) calcu-

lated a relative increase in modeled snow accumulation of 8% between the periods 1850–1879 and

1985–2014.

Both ice core records and climate models indicate that snow accumulation has risen since the early

19th century, coinciding with a warming of the near-surface atmosphere over the AIS, which is

thought to enhance accumulation (Dalaiden et al. 2020; Philippe et al. 2016; Lenaerts et al. 2016).

Other suggested drivers include the interaction of orography with the temperature–accumulation re-

lationship and atmospheric circulation patterns (Dalaiden et al. 2020).

On a continental scale, the increase in total accumulation is primarily attributed to short-lived

synoptic-scale processes, while the general large-scale circulation contributes minimally. However,

there are significant regional differences in these trends. For example, DML has experienced a 30%

increase in snow accumulation primarily due to large-scale processes (Dalaiden et al. 2020).

DML

Both large-scale and synoptic-scale transport contribute nearly equally to the interannual variability

in DML, with synoptic-scale transport being slightly higher (Dalaiden et al. 2020). Thermodynamic

processes, such as the increase in near-surface temperature, are not significantly correlated with

SMB (Lenaerts et al. 2013). King and Christoffersen (2024) reveal that periods of persistent positive

SAM phases lead to increases in snow surface elevation in coastal DML, whereas sustained El Niño

events correlate with decreases in elevation. However, when firn densification models are incorpo-

rated into the analysis, the SAM and ENSO signals are significantly reduced. The overall uncertainty

increases, indicating that firn processes play a critical role in modulating these observed patterns.

Nevertheless, King and Christoffersen (2024) found that two-thirds of the observed variability in ice

sheet elevation (as observed by GRACE and satellite altimetry) can be explained by SAM and ENSO

processes. These findings are particularly robust for the plateau region of DML, while the coastal

areas are associated with greater uncertainty.

Dalaiden et al. (2020) report an increase of 17% in snow accumulation in DML between 1850 and

2014. This is supported by an ice core study by Philippe et al. (2016) conducted on a coastal site

(Derwael Ice Rise) of DML. In this study, the average SMB for the period from 1816 to 2011 is 0.47

m water equivalent per year (m w.e. a−1). This value shows an increase for more recent periods,

with the mean SMB for the period 1991–2011 rising by 32% to 0.64 m w.e. a−1. However, this

ice core was the only source to show increasing SMB in coastal East Antarctica during the last 100

years until 2016 (Philippe et al. 2016). In 2018, however, Medley et al. (2018) reported that the

recent increases in snowfall observed in an ice core in western inland DML near Kohnen Station are

indicative of a long-term pattern (+5.2 ± 3.7% per decade) and are unprecedented in the last two

millennia. RCMs, however, are unable to reproduce this reconstructed trend, suggesting that not all

relevant processes are adequately represented in the models or their initial conditions.

Data from GRACE (Wang et al. 2023; Lenaerts et al. 2013) and modeled data of the regional cli-

17



INTRODUCTION

mate model RACMO2 suggest that there was an increasing mass anomaly in DML between 2007

and 2013 (Fig. 2b). However, there was no discernible trend in SMB from 1980 based on RACMO2

(as of 2013, Fig 2a) (Lenaerts et al. 2013).

At NM Schlosser and Oerter (2002) analyzed three shallow firn cores that were all drilled either at or

close to NM and therefore represent coastal sites. The authors report a decrease in accumulation

in the first half of the 20th century and no trend in the second half.

All in all, more recent studies point to an increase of snow accumulation over the last decades.

The situation appears to be quite complex, as trends in snow accumulation in DML vary depending

on factors such as location (average DML, inland versus coastal) and the method of investigation

(modeling, ice/firn core analysis, satellite data). In some cases, trends indicate increasing snow

accumulation (modeled data for total DML with high spatial resolution as reported in Dalaiden et al.

(2020); inland ice core analysis by Medley et al. (2018); coastal ice core analysis by Philippe et al.

(2016)) in eastern DML, while in others, they suggest constant or decreasing accumulation (firn

core analysis at coastal stations such as in Schlosser and Oerter (2002)). Trends in accumulation

must be interpreted with caution due to the high interannual variability (Schlosser and Oerter 2002).

More recent studies agree on increasing (surface) mass balance and can attribute this to increased

snowfall (Medley et al. 2018; Boening et al. 2012; Philippe et al. 2016; Wang et al. 2023).

1.6 Goals and Outline

This Master’s thesis aims to investigate the various aspects of temporal and spatial trends in the

mean and variability of snow accumulation at a stake farm close to NM. For a structured analysis,

five major research questions were formulated beforehand, which will be laid out in the following

paragraphs, and answers summarized at the end of the thesis in section 4.

Many previous studies (Eisen et al. (2008), Frezzotti et al. (2005),Goodwin (1991), Kuhns et al.

(1997), see Section 1.4) found high spatial variability in snow accumulation. Therefore, the first goal

(RQ: research question) is:

RQ1: How does the spatial variability of snow accumulation within the stake farm behave?

• Due to challenges in quantifying intra-annual variability, this aspect was not included in the

analysis.

• Instead a discussion is included that outlines the challenges of deriving an appropriate metric.

• Long-term stability of snow accumulation patterns and its variability is assessed.

The before-mentioned studies of intra-annual analyses of snow accumulation in Section 1.5.1 all

rest upon rather short time series with the longest being 7.25 years. Based on the uniquely long

time series of 33 years with comparatively high temporal resolution at NM, we are able to contribute

a stable analysis of seasonality in snow accumulation. Thus, the following research question is

addressed next:

RQ2: Is there an intra-annual cycle evident in the dataset of accumulation and its temporal variance?
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The following aspects are further investigated:

• What does the typical intra-annual cycle of averages and variances look like?

• Is there a shift of seasonal contributions to the annual total?

• How does it compare to the annual cycle computed by model output by Schlosser et al. (2002)?

Considering the complex state of research on long-term trends in snow accumulation (1.5.2), the

central goal of this thesis is a profound analysis of the long-term trend at a stake farm close to the

coast.

RQ3: What is the temporal evolution of snow accumulation at NM over the past 33 years?

• What is the average accumulation rate per year? Does it remain constant over the 33-year

period?

• Does a statistically significant trend exist? In this case, what could be the main driver?

• How high is the interannual variability? Is the variance de-/increasing?

Extrema are analyzed to understand their characteristics and underlying causes. With climate warm-

ing, both the mean and variance of the underlying distribution may shift, leading to possible changes

in the frequency and intensity of minima and maxima of snow accumulation.

RQ4: What are the extrema observed in the snow accumulation, and what underlying causes are

addressed in the literature?

Based on the previous RQs, we want to finally address the following research question:

RQ5: Is there evidence in the time series of snow accumulation that corresponds to global climate

warming?

This research question aims to differentiate between natural variability and long-term changes by

investigating fluctuations in snow accumulation time series.

The thesis will include a Methods chapter 2 describing stake measurements, data processing, filter-

ing, and computational procedures. The Results chapter 3 will address the findings for RQ1 to RQ3.

The discussion 4 of the results will tackle also RQ4 and RQ5 in relation to existing literature. The

Conclusion 5 will provide insights into the relevance of the study.
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Fig. 1.1: Map of Antarctica indicating ice shelves shaded in grey. Adapted from Abrahamsen

(2012). The red star denotes the location of Neumayer III station.
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Research activities at NM began in 1981 and have continued to this day. However, the station has

been rebuilt and relocated three times during this period. First snow accumulation measurements

were installed in 1981 close to Georg von Neumayer (GvN) station, which refers to the first location

of the research station. With the construction of a new base ’Neumayer’, this stake farm was moved

and a second stake farm (referred as ’Süd’) was established 10 km south of Neumayer (15 km south

of GvN) in 1987 (Schlosser and Oerter 2002). The measurements correlate well (r=0.71), although

accumulation is higher at ’Süd’ than at ’Neumayer’ (Schlosser and Oerter 2002). Measurements

at the stake farm ’Neumayer’ ended 2008. In 2009 the base was rebuilt and relocated again, now

called ’Neumayer III’. Measurements at ’Süd’ continued, resulting in a uniquely long and consistent

time series, which will be analysed in this thesis. Further information on ’Süd’ will be provided in the

next section.

2.1 Method: Stake Readings

Fig. 2.1: A: Typical bamboo stake. Adapted from Eisen et al. (2008). B: Stake farm Spuso. Photo

taken by Linda Ort. https://blogs.helmholtz.de/atkaxpress/2021/12/mein-antarktischer-arbeitsweg/

Stake readings serve as a straightforward method for measuring accumulation and SMB, represent-

ing single-point measurements at the surface. These stakes are inserted into the snow or ice, initially

with 1 meter protruding from the ground (see Fig. 2.1 subfigure A). Periodically, the length of the

stake above the snow surface is measured to track the snow height changes. To minimize distur-

bances, readings are typically taken from the downwind side, reducing the impact of footprints on

the snow surface (Eisen et al. 2008). Observations are preferably made during calm weather condi-
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tions. Annually, usually at the end of summer, the stakes are removed and repositioned adjacent to

their previous locations (Schlosser et al. 2002). Stake height measurements depend on the stake’s

bottom remaining still relative to the surrounding snow layer.

A stake farm yields individual measurements for a clearly defined small area, typically ranging from

tens of meters to kilometers in side length (see Fig. 2.1 subfigure B). These measurements are then

averaged to obtain a single accumulation value. Using multiple stakes helps mitigate the effects

of small-scale depositional variability. Furthermore, continuously monitoring stake farms provides

insight into the gradual build-up of snow cover throughout the year and into seasonality (Eisen et al.

2008).

Uncertainty: There are two primary sources of uncertainty in stake measurements. The first is

measurement errors, which can result from incorrectly measuring the length of the protruding stake,

submergence of the stake, or surface roughness (e.g. sastrugi). The second source is natural noise

introduced by small-scale spatial variability of snow accumulation caused by relief (Eisen et al. 2008).

Natural noise, as Eisen et al. (2008) point out, is at least one order of magnitude larger than other

sources of uncertainty; however, with an increasing number of stakes, uncertainty is reduced. For

example, sastrugi can form within the stake farm, causing significant variations in snow accumula-

tion at each pole. As the number of stakes increases, it becomes less probable that most of them

will be impacted by the sastrugi. Thus, the average height change of a stake farm represents the

typical accumulation (Schlosser and Oerter 2002).

Stake Farm ’Süd’: ’Süd’ presents a uniquely long time series dataset. Located 10 kilometers south-

west of NM and along the traverse route to the Ritscherflya south of Ekströmisen, this monitoring site

comprises 16 aluminum stakes arranged in a 4x4 grid with 10 meters spacing between them (see

Figure 2.2). Readings at this stake farm began in December 1990 and have continued to this day.

Stake readings at ’Süd’ were initially conducted once per month until May 2010, after which they

transitioned to a bi-weekly reading. It is important to note that the measurements were dependent

on favorable weather conditions, which resulted in irregular intervals between the measurements.

These intervals did not usually correspond to the intended 4-week (or 2-week) period.

2.2 Data Processing

2.2.1 Measurement Format

The heights were manually measured and noted on paper, later transfered to a table in Excel format

including

• the height change of every stake from one reading to the other (from 1994 onward, before only

the mean height change)

• the mean of all 16 height changes

• the integrated height change

• the standard deviation in space
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1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

10 m

North

South

West East

Fig. 2.2: Measuring set-up of stake farm ’Süd’, stakes have a distance of 10 m in both North-South

and West-East direction

• comments on the conditions of the stake farm during measurements

The Excel sheet is converted to a dataframe of purely numeric values and unique timestamps per

row using Python. Comments are saved in a separate data frame.

The height differences measured at 16 stakes provide a reasonable approximation of snow accu-

mulation. However, this measure does not reflect the complete accumulation, as the true value is

slightly higher than the simple height difference. A small correction term, ∆B, must be added to

account for layer thinning due to snow densification (Eisen et al. 2008). Unfortunately, ∆B can only

be determined with density measurements and profiles, which are beyond the scope of this thesis.

In this work, the observed height differences will be referred to as the accumulation ai at each stake

i. For precision, accumulation must also account for the time interval over which it occurred yielding

accumulation rates ȧ. Measurements were taken at irregular time intervals (tj,irreg).

Given:

• height differences ai measured at 16 stakes i,

• 621measurements taken on an irregular time axis tj,irreg, ranging from date t0,irreg = 1990-12-29

to t621,irreg = 2024-03-01,

the original time series can be expressed as

ȧi(tj,irreg). (2.1)

Except for RQ1, we are primarily interested in the average accumulation across all 16 stakes within

the stake farm:

ȧv0 =

∑
i
ȧi(tj,irreg)

16
(2.2)
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Hereafter, I will refer to ȧv0 as version 0 (v0). A complete list of the symbols and variables used can

be found in the nomenclature in the appendix.

2.2.2 Data Quality Control (QC)

At the pre-processing stage, the quality of the data is carefully evaluated. For example, if the dif-

ference between the measurements of two stakes exceeds a predefined threshold, it could indicate

that one of the stakes is problematic. Homogenizing the data from an irregular to a regular time grid

is not necessary at this stage, as stakes are only compared and analyzed relative to other stakes

measured on the same day. Additionally, homogenizing the data into a time series of monthly accu-

mulation rates averaged across stakes before performing quality checks on individual stakes could

result in the loss of valuable information. Homogenization of the data will be addressed in section

2.2.3, where a comprehensive approach to creating a regular time grid will be outlined. In the follow-

ing sections, I will assess various quality check methods, including confidence intervals and three

specifically defined quality criteria, to determine their suitability, with some methods potentially being

rejected based on this assessment.

Confidence Interval

Kuhns et al. (1997) proposed a method for comparing the individual snow fluxes at each stake with

the estimated confidence intervals of the fluxes at the remaining stakes for a given time interval. If the

flux was found to be outside the confidence interval, it was assumed that the reading was erroneous,

for example, due to a misreading of the height on the stake by the field assistant. Consequently, the

individual accumulation measurement was removed from the data set. In contrast to Kuhns et al.

(1997), in this thesis, the confidence interval of accumulation values itself is used instead of snow

fluxes.

Computing the Confidence Interval A confidence interval (CI) provides a range within which the

true value of a measurement is likely to lie with a specified probability (e.g., 95%). Given the sample

size (i = 16), a t-distribution is used to calculate the confidence intervals rather than approximating

with a normal distribution, which is appropriate for larger sample sizes (i ≥ 50). The following steps

describe the calculation and application of the confidence intervals to the accumulation measure-

ments: The mean accumulation rate ȧv0 and the spatial standard deviation σ̃v0 are computed for

each measurement. The standard error is then derived by dividing the standard deviation by the

square root of the number of samples i, which indicates the extent of variability in the sample mean.

The half-width of the confidence interval is determined using the t-distribution critical value, which

depends on the desired confidence level (α = 0.999) and the degrees of freedom (i − 1). The

confidence interval is calculated as:

CI = tα/2,i−1
σ̃v0√
i
.

Finally, the lower and upper bounds of the CI are computed:

ȧlower/upper = ȧv0 ± CI.
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The true accumulation rate value of the measurement day lies within [ȧlower, ȧupper] with a 99.9%

confidence level. For each measurement, values that fall outside the calculated confidence interval

bounds are set to NaN (not a number).

Applying the CI

Figure 2.3 displays the number of measurements per year that are a) available in total, b) NaNs,

and c) NaNs and outside the CI. Even with a very broad CI (the chosen confidence level is 99.9%)

too many data points are outside the CI. If all these values were discarded, the analysis would have

lost one third of data points and 10 m of cumulative accumulation, respectively. For this reason this

option of quality check has been rejected.

Defining Quality Criteria (QC)

QC1: 4σ Interval

In a first approach, outliers were defined as accumulation rates falling outside the range of 〈ȧv0〉 ±
4σ̃〈ȧv0〉. Here, 〈ȧv0〉 = 5.3 cm ∆t−1

j and σ̃〈ȧv0〉 = 10.0 cm ∆t−1
j denote the mean and standard

deviation across the entire time series of individual stake accumulation rates ȧi, where the angled

brackets 〈·〉 represent a temporal average over the entire time series. The term ∆t−1
j refers to the

irregular time intervals between measurements. Assuming a Gaussian distribution, 99.99% of the

data should fall within this interval.

This method flags accumulation rates outside the range ] − 34.7, 45.3[ cm ∆t−1 as outliers. This

approach is problematic because accumulation rates can be as high as 50 cm ∆t−1, leading to the

exclusion of valuable data from the analysis. Additionally, QC1 fails to relate the individual stakes to

the others of the same measurement day. Due to these limitations, this approach is unsuitable and

excluded from further quality control procedures.

QC2: Deviation from Mean Accumulation Rate

To relate individual stake measurements taken on the same day, the average accumulation rate

across all stakes ȧ is calculated and subtracted from each individual stakemeasurement ȧi. An accu-

mulation rate ȧi is considered unphysical if it falls outside the interval [ȧ±2σ̃〈ȧv0〉], where 2σ̃〈ȧv0〉 = 20.0

cm ∆t−1
j . Given the assumption that the spatial characteristics of accumulation remain generally

similar throughout the measurement period, σ̃〈ȧv0〉 is assumed to be a reliable measure of variability

within the stake farm throughout the entire measurement period. Using σ̃ȧ, i.e. the standard devia-

tion across the stake farm of a single measurement, can cause a single erroneous stake to have a

disproportionately large impact on σ̃ȧ, making it an unreliable and non-robust metric in time.

While QC2 generally yields good results, it has a limitation: if two or more neighboring stakes deviate

significantly from the mean in the same direction, it is likely due to sastrugi in the field. Sastrugi are

frequently observed to have height differences of 20 cm from their surroundings. By removing these

two or more data points, valuable information is lost. Therefore, a criterion that accounts for sastrugi

is necessary.

QC3: Relation of Max/Min to other stakes

To account for sastrugi, for a given measurement day, we compare the most extreme accumulation

rate with the second most extreme rate and the rest of the stakes. This is done by calculating the
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Fig. 2.3: Time series of the number of measurements from 1991 until 2024 at stake farm ’Süd’.

Green bars indicate the number of missing data/NaNs per year, orange bars the sum of missing

data/NaNs and data outside a 99.9% confidence interval (CI) per year, blue bars the sum of

missing data/NaNs and data outside the CI and data inside the CI per year.

26



2.2. DATA PROCESSING

difference between the stake with the maximum (or minimum) accumulation rate ȧi,max and the stake

with the second-highest (or second-lowest) accumulation rate ȧi,max2. If the difference ȧi,max−ȧi,max2

is greater than the difference between the second-highest (or second-lowest) stake and theminimum

(or maximum) stake ȧi,max2−ȧi,min, then the maximum (or minimum) rate ȧi,max should be considered

erroneous.

However, QC3 tends to flag too many data points in the low-accumulation range. For example, if

most stakes measure around±1 cm and one stake measures 3 cm, this value is flagged for removal.

Figure 2.4 clearly illustrates why we ultimately decided that both QC2 and QC3 must be satisfied

to discard a value. QC2 performs particularly well on high-accumulation measurement days, while

QC3 struggles in low-accumulation scenarios. Conversely, QC3 is effective on days with sastrugi,

whereas QC2 is not. For example, in the first panel, two cells were flagged by QC2, but since

they are neighboring stakes and exhibit a similar blue-ish pattern, it is likely due to sastrugi. Thus,

retaining these data points is a sound decision.

On 14.05.2009, extremely high accumulation was recorded with an average accumulation of ȧ = 45.7

cm∆t−1
j . It is evident that QC1 should not be used in this case, as it would result in discarding these

valuable measurements. Additionally, the combination of QC1 and QC2 is not effective, as stakes

15 and 16 likely reflect the presence of sastrugi.

The combination of QC2 and QC3 proves effective, as demonstrated on 18.09.2009. On this day,

nearly all stakes in the farm had red cells, except for stake 4, which was dark blue. This outlier was

appropriately flagged for removal.

In total, 18 readings were discarded using the QC2 and QC3 criteria. Errors in measurements can

be attributed to misreading a stake by the field assistant or erroneous data entry into the Excel table.

Furthermore, stakes can break, etc., so that for 15 measurements out of 650 measurements the full

set of individual 16 stake measurements is not available. The first and second moments of these

15 measurements, however, display the same distribution as the distribution of these quantities

computed from the full set of stakes. The same argument is valid for the 18 additional measurements,

where one or more stake readings were discarded during the quality control process (not shown).

Therefore, these 33 measurements are not tracked throughout the analysis but treated equally.

2.2.3 Interpolating to a Regular Time Grid

The time intervals between consecutive measurements tj−1,irreg and tj,irreg are non-uniform (∆tj 6=
const), which affects the accumulation rate ȧ. This effect is illustrated in Figure 2.5. For instance, an

increased measurement frequency typically results in lower accumulation values per measurement.

For example, if 10 cm of snow accumulates in January and is measured once, the accumulation

ȧ would be 10 cm month−1. However, if two measurements are taken, the accumulation might be

recorded as 2 cm ∆t−1
j and 8 cm ∆t−1

j+1. While this issue does not affect analyses of cumulative

accumulation time series being the integral over ∆t−1
j , it must be addressed in other analyses by

interpolating the measurements to a regular time grid. Given that measurements were taken monthly

until 2009 and twice monthly thereafter, I implemented three interpolation methods (v1 – v3) to

convert the data to a regular monthly time grid.

27



METHODOLOGY

Fig. 2.4: Each panel represents the stake farm layout on a given measurement day. The top-left

cell corresponds to stake 1, while the bottom-left cell represents stake 16. Colors indicate the

difference between each stake’s accumulation and the daily mean for the entire stake farm. Red

(blue) cells mean, that the stake had less (more) accumulation than the mean.
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Fig. 2.5: A: Time series of the snow accumulation in cm from January 1991 til March 2024 at stake

farm ’Süd’. Blue, scattered dots represent all data points, the blue (dashed) line the rolling mean

over one (ten) year(s) of data version ’v0’, the green (dashed) line the rolling mean over one (ten)

year(s) of data version ’v3’, which has been multiplied by the number of days per month for better

comparison. B: Time series of the number of measurements per year.
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Temporal interpolation method v1

1. Sum all measurements ȧ(tj,irreg) within a given month m to obtain one value for the monthly

sum. This yields monthly accumulation rates a on a regular time axis tm. Monthly accumulation

rates are referred to as a, as the dot over ȧ is reserved for accumulation rates with units cm/day.

2. Identify all months where a(tm) is NaN (i.e., no measurements were carried out during these

months).

3. Adjust the value for the preceding month m by redistributing the accumulation value a(tm+1)

over the previous and current months as follows:

av1(tm) =
a(tm+1)

2
, (2.3)

av1(tm+1) =
a(tm+1)

2
. (2.4)

However, if multiple measurements were taken in month m + 1, it is more appropriate to only split

the first accumulation value by 2 and apply it to the previous month m. Version 2 addresses this

issue.

Temporal interpolation method v2

Steps 1 and 2 remain the same as for v1:

1. see v1

2. see v1

3. Identify all months m where a(tm) is NaN and a(tm+1) consists of multiple measurements

ȧ(tj,irreg), ȧ(tj+1,irreg), . . .

av2(tm) =
ȧ(tj,irreg)

2
, (2.5)

av2(tm+1) =
ȧ(tj,irreg)

2
+ ȧ(tj+1,irreg) + .... (2.6)

However, both v1 and v2 might incorrectly assign an accumulation event to one month when

it actually occurred in the previous month. For example, if an accumulation rate of 10 cm ∆t−1
j is

measured on 20.04. and 30 cm ∆t−1
j+1 on 02.05., it is more likely that most of the 30 cm snow has

accumulated in the last 10 days of April rather than the first 2 days of May.

30



2.2. DATA PROCESSING

Temporal interpolation method v3

Therefore, the accumulation rate ȧ(tj,irreg) is normalized by the number of days (∆tj) between the

previous measurement tj−1,irreg and tj,irreg, yielding the daily accumulation rate ȧ on the diurnally

spaced time axis td:

ȧ(td) =
a(tj,irreg)

∆tj
. (2.7)

Daily accumulation rates are averaged onto the regular monthly grid by weighting with the number

of days for which the respective daily accumulation rate is applicable (see Fig 2.6):

ȧv3(tm) =
1

nm

∑
j

ȧ(td)nm,j , (2.8)

where nm is the number of days in month m, and nm,j is the number of days in month m up to tj

(
∑
j
nm,j = nm). Finally, a(tm) represents the monthly accumulation rate as the sum of the monthly

mean daily accumulation rate:

av3(tm) =
∑
j

ȧ(td) · nm,j . (2.9)

time

1.3. 1.4. 1.5. 1.6.

tj−1 tj tj+1 tj+2 tj+3

n3j n3j+1

ȧ(tj) ȧ(tj+1) ȧ(tj+2) ȧ(tj+3)

ȧv3(tm=3) = ȧ(tm=4) ȧ(tm=5)

n3j ·ȧ(tj)+n3j+1·ȧ(tj+1)
n3

Fig. 2.6: Exemplary computation of ȧv3 for the month March

I have computed every analysis in the remaining part of this thesis with all three versions. I com-

puted each analysis using all three versions, finding that while there were some minor differences,

especially regarding trends and extrema, no major discrepancies appeared, highlighting the robust-

ness of the results. Furthermore, differences pointed towards months, where the exact timing of the

accumulation event is unknown. In these cases, accumulation rates can be shifted up to one month

backward in time with v3. However, v3 captures best the probability of the timing of the accumulation

event(s), in addition to the equalization of whether a month consists of 28, 29, 30, or 31 days.

Therefore, unless stated otherwise, the results presented in the remaining part of this thesis

refer only to version 3 (v3).
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2.3 Data Analysis

2.3.1 SAM index

The observation-based SAM index is defined as follows:

SAM = P ∗
40◦S − P ∗

65◦S ,

where P ∗
40◦S and P ∗

65◦S denote the normalized monthly zonal sea level pressure (SLP) at 40°S and

65°S, respectively. Monthly values of the SAM index from 01-1991 to 03-2024 were obtained from

(NOAA Climate Prediction Center). The SAM is computed using data from six stations located near

these latitudes. A comprehensive description of this methodology is provided by Marshall (2003).

A Fast Fourier Transform (FFT) was applied to the detrended SAM index time series (obtained by

subtracting the mean SAM index for the entire period from each value) to identify the dominant

frequencies of the SAM. This will be used later in section 4.3.2.

2.3.2 Spatial Variability of Snow Accumulation

The primary aim of this analysis is to analyze and visualize the spatial variability in snow accumu-

lation across the stake farm. The spatial standard deviation is computed across the stakes of the

stake farm. Until February 1994 only the mean height change has been recorded, for this reason, a

spatial standard deviation cannot be computed for that period.

Several measures of spatial variability were computed, including standard deviation (std), interquar-

tile range (IQR), and the standard deviation normalized by the mean accumulation, also known as

the Coefficient of Variation (CV ). The use of CV for analyzing spatial variability in snow accumula-

tion rates was proposed by Goodwin (1991). These metrics were computed using the two different

versions of the dataset, v0 and v3. However, the method proposed by Goodwin (1991) generates

disproportionately high spatial variability values when dividing by mean accumulation with absolute

values smaller than 1 cm, a commonly observed accumulation rate. Consequently, this measure is

not suitable for analyzing spatial variability over short timescales with low accumulation rates.

Spatial variability can be computed for the accumulation values per stake, av0,i, or for the deviations

of the individual stakes from the ’virtual’ mean snow surface of the accumulation period. These are

often very similar, as the standard deviation is calculated either with or without subtracting the mean

of all 16 stakes. Since themean represents a constant offset, subtracting it does not affect the spread

of the data around the mean. The standard deviation, by definition, measures the variability of the

data points relative to their mean, so centering the data by subtracting the mean simply removes

any constant offset but does not change the overall variability.

Exemplarily, spatial standard deviation values computed with v3 appear to increase with the num-

ber of measurements. As shown in Figure 2.7, until 2010, the majority of values (green dots) fall

within the range of 0.0 to 0.5 cm/day. Following the shift from monthly to bi-weekly measurements in

2009/2010, the values range between 0.0 and 0.75 cm/day. In 2010, which had the highest number

of measurements, the data exhibited a greater spread than in other years. Consequently, spatial

standard deviation computed from v3 cannot be used to reliably assess trends over time.
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2.3. DATA ANALYSIS

Instead, the spatial standard deviation is calculated for each individual measurement, without tran-

sitioning from v0 to v3. This approach offers valuable insights into the surface roughness of the

snow, though it is sampled irregularly in time. However, comparing these values is challenging, as

the interval between measurements affects the resulting spatial standard deviation.
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Fig. 2.7: A: Time series of the spatial standard deviation in cm/day from November 1994 to March

2024 at stake farm ’Süd’. Green scattered dots represent individual data points, while the green

(dashed) line represents the rolling median over one (ten) year(s). B: Time series of the number of

measurements per year.

2.3.3 Annual Snow Accumulation Trends and Variability

The long-term trend in snow accumulation is analyzed by de-trending the cumulative accumulation

and examining the resulting residuals (i.e., the de-trended accumulation time series), along with the

raw accumulation rates. The trend is estimated using ordinary least squares (OLS) regression. Cu-

mulative accumulation is calculated by multiplying the monthly mean accumulation rates in cm/day

by the number of days in each respective month, resulting in cumulative accumulation values ex-

pressed in cm. Accordingly, the residuals also have units of cm.

33



METHODOLOGY

Ordinary Least Square Regression for Trend Removal

A linear regression is performed on the cumulative accumulation to remove the long-term trend from

the data (’de-trending’). This is achieved by subtracting the climatological accumulation rate, defined

over the period 1991-–2020, from the time series of accumulation rates, ensuring that both rates are

defined over the same time interval.

The OLS method minimizes the sum of squared residuals ε, providing the best-fit line for the given

data points. The regression model is described

y = β0 + β1x+ ε

,

where y is the cumulative snow accumulation, x is time, β0 is the intercept, β1 is the slope coefficient,

i.e. accumulation rates, and ε represents the error term.

The goal is to estimate the regression coefficients β0 and β1, which define the linear relationship

between time and cumulative accumulation. The focus here is on understanding the relationship,

not on predicting future accumulation. I acknowledge that this approach violates the following OLS

assumptions: first, the variance of the residuals changes over time (heteroscedasticity), and sec-

ond, the residuals are co-dependent, i.e. they are serially correlated, meaning they depend on the

regressor ’time’. This correlation will be considered in further analysis. Specifically, the value of

the residuals is dependent on previous values, but by analyzing the residual time series, this de-

pendency becomes clearer and easier to interpret. Furthermore, the de-trending process acts as a

low-pass filter by removing the climatological accumulation rate, which aids in frequency analysis.

Fitting Gaussian and Student-t Distributions to Histogram Data

The monthly mean accumulation rates were subset into a climate baseline (1991–2020) and recent

years (2021, 2022, and 2023). Each dataset was subsequently utilized to generate histograms for

visual inspection of the underlying distribution. A Gaussian function, defined as

G(x, µ, σ) = Aexp

(
−(x− µ)2

2σ2

)
was fitted to the histogram data using the ’curve_fit’ function from the SciPy library, which uses

non-linear least squares to fit a function to the data. Initial parameter estimates for the mean µ and

standard deviation σ were derived from the histogram data. The goodness of fit was assessed by

calculating the sum of squares of residuals (SSR) and the total sum of squares (SST). The coefficient

of determination R2 was computed using the formula:

R2 = 1− SSR

SST
.

A Student’s t-distribution function was also fitted to the histogram data. The fitting process involved

a similar approach to the Gaussian fitting.
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Frequency Analysis

The objective of this analysis is to identify periodic patterns and dominant frequencies within the time

series of the residuals and homogenized accumulation rates using a) the Fourier Transform and b)

Wavelet Analysis.

Fourier Tansform

The Fourier transformation converts the time-domain residuals and accumulation rates into their

frequency-domain components. This allows for the identification of dominant cycles or periodicities.

Residuals and accumulation rates are transformed into the frequency domain using the Fast Fourier

Transform (FFT) method, chosen for its computational efficiency in handling discrete time series,

such as the monthly-resolved snow accumulation rates and residuals. The FFT returns the frequen-

cies, amplitudes, and phases as complex numbers. The frequency calculated by the FFT indicates

how often a certain component occurs in the time series per time unit (i.e., per month for a monthly

resolved time series). The periods corresponding to each frequency component are calculated as

the inverse of the frequency (periods = 1/frequencies), which is more interpretable in the context of

periodic analysis. The amplitude indicates the strength or contribution of this frequency to the over-

all time series, with a high amplitude meaning that the corresponding frequency component plays a

significant role. The phase indicates the shift of the sine or cosine wave relative to a reference time,

which is less relevant if one is only interested in identifying predominant frequencies in the data.

Wavelet Analysis

Wavelet analysis provides a two-dimensional plot that represents the strength of variations as a func-

tion of both period and time. Unlike Fourier analysis, which characterizes the similarities between a

time series and infinitely extending trigonometric functions, wavelet analysis focuses on similarities

over specific segments of the time series, comparing them to waves of finite duration, known as

wavelets (Wilks 2019). The Morlet wavelet is commonly used in geophysical applications due to

its resemblance to patterns frequently observed in such datasets. It consists of a sinusoidal wave

modulated by a Gaussian envelope that reduces its amplitude as the absolute value of its argument

increases (Wilks 2019). For the wavelet analysis conducted here, I utilize the Python script provided

by Torrence and Compo (1998). By default, the script uses a Morlet wavelet, where the wavelet

basis is normalized to have a total energy of 1 across all scales (Figure 2.8).

The analysis applies to time series consisting of a) residuals and b) accumulation rates over a period

of 33 years. In the first step, as described by Torrence and Compo (1998), the wavelet transform

(the convolution of the wavelet with a vector Y) computes using the function:

wave, period, scale, coi =
wavelet(Y, dt, dj=0.1, s0=2*dt, mother='MORLET', param=6)

In this context, Y represents the time series of residuals (accumulation rates) with monthly resolution
(dt=1). In wavelet analysis, the scale controls the wavelet’s width, determining the time window over

which it detects variations. The parameter dj sets the spacing between discrete scales, with smaller
values providing finer scale resolution. A smaller scale corresponds to a more compressed wavelet,

capturing short-term fluctuations, while larger scales detect longer oscillations. The parameter s0
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Fig. 2.8: From Torrence and Compo (1998): The plot on the left shows the real part (solid line) and

the imaginary part (dashed line) of the Morlet wavelet in the time domain. The plot on the right

shows the corresponding wavelets in the frequency domain. For plotting purposes, the scale is

chosen to be s = 10δt.

sets the smallest scale, starting here at s0 = 2*dt = 2 months, meaning the shortest resolvable

period is two months. The mother wavelet chosen is the Morlet wavelet with a non-dimensional

wavenumber k0 = 6 (specified by param=6), which is a common default for Morlet wavelets.
The output variables are wave, period, scale, and coi. The variable wave represents the wavelet
transform of Y and is an array of complex numbers. The wavelet power spectrum is obtained by

squaring the absolute values of these complex numbers (abs(wave)2), with units of σ2 (the variance

of the time series). The variable period provides a vector of periods (in time units) corresponding to
the scales returned in scale. The coi (Cone of Influence) identifies the regions where edge effects
may influence the results.

To determine whether certain features in the wavelet power spectrum are statistically significant, one

needs to assess if they can be distinguished from an expected background noise spectrum, such

as red noise or white noise. Red noise is characterized by higher power at low frequencies (large

scales) compared to high frequencies (small scales). White noise is a random signal that contains

equal intensity at different frequencies, resulting in a constant power spectral density across the

entire frequency range. To establish the significance of oscillations in the wavelet power spectrum,

a significance test is performed to reject the null hypothesis that these oscillations fall within the

range of the expected background red (white) noise spectrum. The null hypothesis is defined based

on the assumption that the time series has a mean power spectrum, which models as a red (white)

noise spectrum. This assumption is evaluated later using Fourier analysis. If a peak in the wavelet

power spectrum is significantly above this background spectrum, it can be considered a true feature

at a 95% confidence level. To perform this significance test, the function wave_signif is used as

follows:

# Assume white noise background by setting lag1 = 0.0,
# by default red noise background
signif = wave_signif(Y, dt=dt, scale=scale, mother='MORLET')

where Y, dt, and scale are the parameters from the previous function call. The output signif returns
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the periods where the null hypothesis can be rejected at a 95% confidence level.

Interannual Variability

The aim of this analysis is to evaluate the interannual variability in snow accumulation based on

annual accumulation rates. This approach provides insights into how individual years deviate from

long-term trends and helps assess changes in the frequency and magnitude of positive and negative

anomalies. By examining the standard deviation of annual accumulation rates, we can quantify the

spread of data points within individual years.

First, the annual accumulation rates a∑ are calculated for each year in the dataset. For each year,

the mean annual accumulation rate 〈a∑〉 over the entire dataset is subtracted from the annual rates∑
. This deviation represents how much each year’s accumulation differs from the long-term aver-

age. The absolute value of these deviations reflects the magnitude of annual anomalies, while the

sign indicates whether the anomaly is positive or negative. Interannual variability is then quantified

as the standard deviation of these annual anomalies.

2.3.4 Seasonal Snow Accumulation Trends and Variability

This analysis aims to examine seasonal snow accumulation trends over the years, identifying anoma-

lies and shifts in seasonal patterns. To focus on seasonal variations, the time series of accumula-

tion rates, ȧ, is divided into southern hemisphere seasonal groups: Summer (December, January,

February), Autumn (March, April, May), Winter (June, July, August), and Spring (September, Octo-

ber, November). Given that December is included in the summer season, the dataset is adjusted

by shifting the December measurement to align with the following January and February. Due to

autocorrelation, residuals from OLS regression are not used in this analysis.

The number of measurements per season is generally equal, with the exception of 2010, when Win-

ter was sampled 11 times, Spring 12 times, Summer 3 times, and Autumn 6 times.

Initially, the analysis determines each season’s contribution to the annual accumulation and as-

sesses potential shifts in these contributions over the 33-year period. Monthly mean accumula-

tion rates ȧ are grouped by season and averaged to yield seasonal accumulation rates in cm/day

(ȧsummer, ȧautumn, ȧwinter, ȧspring). It is important to note that ȧsummer is calculated using the accu-

mulation rates from January and February of a given year, along with December’s accumulation rate

from the previous year. Additionally, annual averaged accumulation rates 〈ȧ∗〉annual are computed
to include the previous December’s accumulation, ensuring that the annual average encompasses

all four seasons. The star notation indicates this adjustment.

Interannual variability is removed by subtracting 〈ȧ∗〉annual from each seasonal rate (ȧsummer,

ȧautumn, ȧwinter, ȧspring).

Next, the analysis investigates whether specific seasons dominate accumulation patterns. Cumu-

lative accumulation for each seasonal subset is computed. A regression analysis similar to that

conducted for annual cumulative accumulation (2.3.3) yields climatologically balanced accumula-

tion rates per season and year (expressed in cm/(3 months)). Additionally, deviations from the

climatological mean for each season are analyzed by computing residuals from the climatologically
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balanced accumulation.

Finally, these results will be visualized to facilitate interpretation and understanding of the trends and

variability on a seasonal and monthly scale.
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3 RESULTS

In this chapter, I present the findings of my analysis of snow accumulation variability and trends.

Section 3.1 explores spatial variability in snow accumulation at the stake farm. In Section 3.2, I

examine temporal trends and variability, beginning with an analysis of the long-term development

of snow accumulation in Subsection 3.2.1. This subsection includes an overview of monthly and

annual accumulation rates, their distributions, long-term trends derived from ordinary least squares

regression, frequency analysis, and interannual variability. Subsection 3.2.2 narrows the focus to

seasonal accumulation, discussing seasonal contributions to annual totals, distributions of seasonal

accumulation rates, cumulative seasonal accumulation, and monthly-scale fluctuations within sea-

sons. Finally, in Subsection 3.2.3, extreme accumulation events are identified.

3.1 Spatial Variability

The temporal evolution of spatial variability in snow accumulation is examined by analyzing the

standard deviation across the stakes of the stake farm. A notable feature in this time series, shown

in Figure 3.1, is the increased measurement frequency of spatial standard deviation beginning

in 2010. Comparing subplot A with subplot B, the applied quality control removed 3 out of the 4

visually significant peaks from the time series. The peak, observed in 02-2008, was determined to

be physical, suggesting that a spatial standard deviation of 18 cm/∆t may serve as a reasonable

threshold. Values exceeding this threshold could warrant further investigation into the quality of

individual stake readings.

No discernible trend is evident in the standard deviation time series, indicating that surface rough-

ness has remained relatively stable over the observation period. The Coefficient of Variation (CV),

defined as
〈σ̃ȧv0

〉
〈ȧv0〉 , is 1.04, reflecting significant spatial variability within the stake farm throughout the

measurement period.

Figure 3.2 displays the distribution of spatial standard deviation of snow accumulationmeasured

within the stake farm. The distribution is skewed to the right, with a concentration of values between

0 and 10 cm/∆t. The distribution’s skewness suggests that there are rare but significant deviations

from the average surface roughness, represented by the right tail of the histogram. The most fre-

quent standard deviation values fall between 2.5 and 7.5 cm/∆t, with a peak frequency around 5

cm/∆t. The mean standard deviation is 5.54 cm/∆t, and the standard deviation of the data (the

standard deviations) itself is 3.17 cm/∆t, suggesting a substantial spread around the mean but with

a predominant clustering in the lower range of values. The lack of a discernible trend in the overall
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Fig. 3.1: Time series of the spatial standard deviation of the stake farm in cm/∆t for the whole

measurement period (individual stake measurements were recorded from 1994 onwards). In (A)

QC-flagged stake measurements were discarded, in (B) retained.
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time series, paired with this distribution, suggests that the surface roughness (as expressed by the

spatial standard deviation) remains largely stable, although there are occasional spikes in variability.

3.2 Temporal Snow Accumulation Trends and Variability

All results below refer to data version v3 as outlined in Chapter 2

Although the unit cm/day might imply daily snow accumulation, precipitation at NM can also occur

through discrete events on specific days rather than as a continuous process. Additionally, the

analysis is not based on daily measurements but on data collected once or twice per month. To

ensure comparability, we introduced above the preprocessed data v3 in cm/day, which homogenizes

the data. This homogenization tends to smooth out high accumulation values when measurement

intervals exceed one month. When measurements are taken early in the month, the accumulation

may actually reflect snowfall from the preceding month, leading to both smoothing and a ’backward’

redistribution of accumulation in v3. This subsection provides an overview of the monthly and annual

accumulation rates, their distributions, long-term trends obtained through ordinary least squares

regression, as well as analyses of frequency patterns and interannual variability.

3.2.1 Long-Term Development

a) Time Series of Monthly Accumulation Rates

The temporal development of the accumulation rates for the total measurement period is displayed

in Figure 3.3. The majority of the monthly averages scatter in a range from 0.0 to 0.75 cm/day. There

is no obvious change over time. Mass loss (ȧ < 0) occurs seldomly, and more frequent are months

with small-magnitude mass losses and rarely with major mass losses. In January 2011 mass loss

has been strongest since the start of the measurements. More frequent positive accumulation rates

(ȧ > 0) are observed with values up to 1.3 cm/day. The rolling mean computed over a window of

one year reveals an interesting feature. Snow accumulation over time is characterized by several

local minima and maxima, while it does not display a significant global minimum or maximum. The

magnitudes of the maxima are of the same order, only a small positive trend with time is visible. The

minima, in contrast, are less stable in magnitude, with an absolute minimum in 2003/04. There is a

periodicity visible in these oscillations, which will later be analyzed in more detail.

A long-term change over the period 1996–2010 is not indicated by the ten-year rolling mean, which

spans the period from 1996 until 2019. Accumulation rates center at a value of 0.26 cm per day (7.6

cm/month (30 days), 95 cm/year (365 days)).

b) Distribution of Monthly Accumulation Rates

The distribution of accumulation rates at ’Süd’ for the climatological period 1991–2020 is shown

in Figure 3.4, with additional contributions from the years 2021, 2022, and 2023. The histogram
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illustrates the frequency of daily accumulation rates, alongside fitted Gaussian and Student-t distri-

butions to the period 1991–2020. Gaussian fitting yields a mean accumulation rate µ̂ = 0.20 cm/day

and standard deviation σ̂ = 0.22 cm/day, and to the stacked histogram of all years (1991–2023),

with µ̂ = 0.21 cm/day and σ̂ = 0.23 cm/day. A Student-t distribution (red curve) was also fitted to the

1991–2020 data, with parameters µ̂ = 0.19 cm/day, σ̂ = 0.21 cm/day. The fit quality by the coefficient

of determination (R2) is 0.89 for both the Gaussian and Student-t fits.

The majority of the accumulation rates are clustered in the minimal positive accumulation rates,

roughly 0.5 to 1 σ〈ȧ〉clim = 0.25 cm/day away from the mean value 〈ȧ〉clim = 0.28 cm/day. The distri-

bution is therefore skewed and unsymmetric. A gaussian fit is centered around 0.20 cm/day, with a

standard deviation of 0.22 cm/day, similar to a fitted student-t distribution. Although the R2 is quite

high for both fits, we can conclude that accumulation rates are not a gaussian process, since it is

clearly skewed. In detail, the histogram outline falls below the fitted distributions in the regime of net

mass loss rates (ȧ < 0) and mostly above in the regime of net accumulation rates (ȧ ≥ 0).
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Fig. 3.4: A: Stacked histogram of accumulation rates from 1991 to 2023 with green bars

representing accumulation rates measured in the period 1991–2020, dark blue bars for 2021, light

blue bars for 2022, and purple for 2023. Accumulation rates are given in cm/day. The dark orange

line represents the average accumulation rate (1991–2020) 〈ȧ〉clim, the lighter orange line the

average over the entire period (including 2021–23) 〈ȧ〉. (Dark) Blue dashed vertical lines are

〈ȧ〉clim ± (2)σ〈ȧ〉clim . The black and light red lines are the Gaussian and Student-t distributions fitted

to the histogram with accumulation rates from 1991–2020. B, C, D show the histogram of the

subsets 2021, 2022, and 2023 of accumulation rates in cm/day (and with frequency on the y-axis)

and their annual mean 〈ȧ〉annual as a red dashed line. The orange dashed line represents 〈ȧ〉clim
again.
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c) Distribution and Time Series of Annual Accumulation Rates

The annually summed accumulation is strictly positive, with a distinct minimum observed in 2004

(Figure 3.5 subplot A), which represents an anomalously low accumulation year, recording less than

25 cm of snow accumulation in total (see B in Figure 3.5), thus representing the lowest end member

value. At the other extreme, 2021 and 2023 are marked by unprecedented high accumulation. The

highest annual accumulation on record occurred in 2021, with 176.2 cm, followed by 2023 at 164.0

cm. Typically, annual accumulation ranges from 50 to 150 cm/year, with no discernible long-term

trend apparent in the observed annual accumulation. However, 2021 and 2023 are exceptional,

characterized by: a) an excess of 25 and 50 cm, respectively, relative to the highest annual accu-

mulation of the previous 30 years, and b) an excess of 50 and 75 cm, respectively, compared to the

climatological mean of 1 m per year.

Although the distribution of monthly accumulation rates is slightly skewed and therefore non-

Gaussian, the distribution of annual accumulation rates, representing the sum of 12 monthly values,

appears approximately Gaussian. Assuming annual accumulation rates follow a Gaussian distribu-

tion, the probability of observing values exceeding 〈aΣ〉clim+2σ〈aΣ〉clim for 2021 and 2023, based on

the climatology of the preceding 30 years, would be approximately 2.3% each.

Interestingly, monthly accumulation rates of the last three years do not exceed maximal accumu-

lation rates of the past climatology on the monthly basis —in contrast to the annual accumulation

rates of 2021 and 2023, which both exceeded the climatological maximum. Yet, it can be stated

that given the climatology it is rare that three months of a year show these high accumulation rates.

This results in annual average accumulation rates of 2021 and 2023 (0.48 cm/day and 0.45 cm/day,

respectively) to be almost double the annual average accumulation rate 〈ȧ〉clim = 0.28.

d) Long-term Linear Trend

Over the entire measurement period, 33.41 m of snow has accumulated at ’Süd’ (Figure 3.6). Cli-

matologically regressed (by OLS), this results in 99.5 cm of accumulation per year or 0.27 cm per

day. These values approximate the results from the previously presented averaged accumulation

rates. The cumulative accumulation aligns closely with the climatological regression line. There are

several periods where snow accumulation deviates from the climatological regression line, but in

the long-term, it stays close to it. Only the last three years might indicate a change towards more

accumulation.

In subplot B of Figure 3.6 the residuals from the climatological regression line on a monthly time

scale are displayed. During the first 3 years of the measurement period, more snow accumulated

than expected from the climatological regression line, followed by two years of less-than-average

accumulation. A second local maximum is reached in 2000 (75 cmmore than expected accumulated

up to 2000). The following 5 years (2000–2005) are mostly characterized by a decrease in snow

accumulation compared to the climatological regression line. This decrease introduces the absolute

minimum in snow accumulation of the whole measurement period for the next 3 years (2005–2008),

in which up to 1 m less than climatologically expected accumulated. Until 2014 snow accumulation

gradually increases towards the climatological accumulation rate. After 4 years of below-average
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Fig. 3.5: A: Time series of the annually summed accumulation in cm at ’Süd’ from 1991 until 2023.

〈aΣ〉clim +2σ〈aΣ〉clim have been computed with the annual sums from 1991 until 2020. B: Histogram

of the annual accumulation in cm at ’Süd’ from 1991 until 2023.

snow accumulation, the accumulation rate has risen to its absolute maximum in 2024. 150 cm more

snow has accumulated than climatologically expected.

Several periodicities can be identified. From the first local minimum in 1995 to the next in 2005 it

took 10 years, followed by 3 years of an absolute minimum. From 2008 to the next local minimum

in 2018 it took again 10 years. A second periodicity seems close to 3.5 years. This will be further

analyzed in section 3.2.1.

Smoothing intra-annual and short-term inter-annual variability, Figure 3.7 illustrates the 5-year rolling

mean andmedian of the residuals’ time series. The variability can be deduced from the shaded quar-

tiles’ range (IQR), while the curve is truncated for the first and last 2.5 years to avoidmisinterpretation.

The scatter points indicate that accumulation during these periods is strongly positive, with the snow

surface rising up to 150 cm above the expected surface based on climatological accumulation rates.

In this context, ’below-average’ and ’above-average’ refer to deviations from the climatological ac-

cumulation rate derived from the OLS trend, which serves as a baseline for comparison.

The slope of the curve provides key information: negative (positive) slopes indicate phases of below-

average (above-average) snow accumulation rates, highlighted in red (green). Periods with nearly

zero slopes, highlighted in blue, represent phases of near-climatological accumulation rates.

The first noticeable increase in the mean and median values starting around 1996 suggests a shift

towards increased snow accumulation until 1999/2000 when accumulation rates return to climato-

logical averages. Variability is low during the above-average accumulation phase, increasing when

rates return to average. A phase of below-average accumulation, accompanied by high variability,

occurs between 2001 and 2006. During this period, the cumulative accumulation drops by up to 1 m
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Fig. 3.6: A: Time series of the cumulative accumulation in cm at ’Süd’ from 1991 until 2024 as

green dots. The red line is the OLS linear regression. B: Time series of the residuals (green dots

minus red line) in cm.
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Fig. 3.7: Time series of residuals in cm (blue dots), the 5-year running mean (median) is depicted

as a green (dashed) line. The blue-shaded area around the time series illustrates the range

between the first and third quartile at ’Süd’ 1991–2024. Phases of below-average (above-average)

snow accumulation rates are highlighted in red (green). Blue highlighted periods represent phases

of near-climatological accumulation rates. The curve is truncated for the first and last 2.5 years to

avoid misinterpretation.
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below the climatological (see Figure 3.6 B). Variability narrows as the minimum is approached, in-

dicating reduced inter- and intra-annual fluctuations in this near-climatological phase. The following

5 years (2007–2012) are characterized by above-average accumulation with moderate variability.

Afterward, a 5-year phase of near-climatological accumulation followed, interrupted by a single year

of below-average accumulation in 2014. Variability during this period is especially low and stable.

From 2017 onwards, accumulation rates are continuously above climatological averages with regard

to the running mean, accompanied by increased variability. The running median indicates a weaker

slope of above-average accumulation rates, as it gives less weight to the very high accumulation

rates in 2021 but to the near-climatological accumulation rates in 2019, 2020, and 2022. The IQR

narrows during this period. The analysis of the three above-average accumulation periods further

reveals that the duration of these periods has increased. The first period spans 3 years, the second

5 years, and the most recent period, based on extrapolation of the rolling mean to the present day,

suggests an ongoing above-average accumulation lasting for 7 years. Additionally, the slope of the

current above-average period is steeper than in the previous two periods, indicating that the rate at

which accumulation increases, and thus deviates from the average (climatological) accumulation,

has accelerated compared to the earlier periods.

e) Spectral Characteristics of Time Series

The time series of accumulation rates and residuals both indicate temporal periodicities. In the

following, these periodicities will be analyzed with the help of Fourier-Transformation and Wavelet-

Analysis.

Fourier-Analysis:

Given the available dataset of 400 months, the maximum interpretable period has a length of 100

months. This is based on the criterion that at least four data points are needed to accurately represent

a wave and its amplitude. Periods longer than 100 months may not be reliable, as the dataset lacks

sufficient length to support them. Therefore, amplitudes corresponding to lower frequencies (higher

periods) beyond 100 months should be interpreted with caution. Figure 3.8 shows the amplitude

of the residuals’ Fourier-transformed values across periodicities of 3.3 months to 100 months. In

general, one can observe that more power lies in the low frequencies decreases as 1/f. Therefore,

the time series can be categorized into the red-noise-spectrum. Peaks in the plot indicate dominant

frequencies or periodicities in the residuals, with a maximum at a periodicity of 40 months (3.3 years).

This finding underscores the observations from the rolling mean analysis. There is also a peak at

12–15 months, which suggests the presence of a nearly intra-annual cycle.

Analyzing the monthly average accumulation rates (Figure 3.9) in contrast yields different aspects

of periodicities in the accumulation time series. The spectrum is more evenly distributed, depicting

a white noise spectrum. Here maximal amplitude is found for a period of 6 months, followed by a

second maximum with a period of 12 months suggesting an intra-annual cycle.

The Fourier transform of the residuals, which represent the accumulation data after removing the

mean accumulation rate, reveals different characteristics compared to the raw accumulation data.

By detrending the time series, the dominant periodicities on shorter, intra-annual timescales are
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diminished, as they are primarily captured by the removed climatological mean. This is evident in the

residuals’ power spectrum, where lower frequencies corresponding to longer-term variability (e.g.,

40-month cycles) become more pronounced, while shorter periods, such as monthly cycles, are less

prominent. In contrast, the Fourier spectrum of the raw accumulation data reflects a more evenly

distributed white noise pattern, where the energy is more uniformly spread across frequencies. This

indicates that the raw accumulation rates retain significant intra-annual variability.

Wavelet Analysis:

Using aMorlet mother wave, Figure 3.10 B illustrates the similarities of this mother wave with different

periodicities (y-axis) to the time series of the residuals over time (subplot A). The power of the wavelet

transform is color-coded, with a lighter hue representing strong periodic components. For the 95%

confidence level (blue contour), a background power spectrum equivalent to a Fourier red noise

spectrum is assumed. The edge effects are represented by the Cone of Influence (COI, grey hatched

area in Figure 3.10), and results outside this region should be interpreted with caution. Since we

know from the Fourier analysis that more power lies in the low-frequency regime, it is obvious that

the colors will become lighter towards this low-frequency / long-periodicity regime. Still, areas of

interest are those, where lighter colors are surrounded by darker colors. With the help of the blue

contour, we can additionally apply statistical significance, where periodicities significantly differ from

the background spectrum.

Wavelet analysis of the residuals over a period from 1992 to 2024 reveals that the most significant

periodic feature is again the 40-month cycle. The analysis is statistically robust within the 95%

confidence niveau. Yet, this feature is not significant or present throughout the entire time. The signal

ceases from 2008–2018, afterwards the power in this frequency area increases again. During the

time, where the 40-month cycle is weak, shorter cycles with periodicities of 20–30 months become

more dominant (lighter area starting 2012 with a periodicity of approx. 28 months). This lighter area

shifts with time slightly towards the dominant 30–40 months regime.

The intra-annual cycle of approximately 12 months strengthens and becomes more continuous from

2010 onward. Prior to 2010, intra-annual cycles were infrequent and typically short-lived, occurring

for no more than 2–3 consecutive years (24–36 months).

The long periodicities of 100months (8 years and longer) have a high power, however, the time series

only provides a short window where a mother wave with an extent of > 100 months is unperturbed

by edge effects. The observations from the time series visually suggest a periodicity of roughly 9–10

years (108–120 months), yet a longer measurement period is needed to confirm this indication.

The wavelet analysis of the accumulation rates reveals also significant periodicities throughout the

time series (Figure 3.11 B). As for the residuals, a prominent 40-month cycle emerges as a strong

feature, particularly between 1998 and 2006. The power of this cycle diminishes afterward. With in-

termittent significance from 2018 onwards a periodic signal on a slightly shorter timescale of 30–35

months emerges. This recurring pattern aligns with findings from the residuals’ wavelet analysis,

underscoring its persistence across the different methods.

Shorter periodicities between 10 to 20 months also become evident. The intra-annual 12-month

cycle is often present throughout the measurement period, especially from 2010 onwards, where it

appears with greater intensity and continuity.
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where the power surpasses a background red noise Fourier spectrum at a significance niveau of

95%. The grey hashed area depicts the cone of influence
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Between 2008 and 2016, cycles with periodicities of 6 months also emerge as significant, although

they also occur less significant and less continously before 2008.

Finally, periodicities exceeding 50 months (4 years and beyond), show significant power, particularly

at the beginning and end of the time series. However, due to the limited data length and the pres-

ence of edge effects, the significance of these long-term cycles should be interpreted with caution.

Nonetheless, the observation hints at potential long-term trends or cycles that may require a longer

dataset for further verification.
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Fig. 3.11: As for Figure 3.10 but for monthly accumulation rates

f) Interannual Variability

For the analysis of interannual variability, we apply three measures: 1. interannual variability (as

the standard deviation of annual accumulation rate anomalies a∑ − a∑), 2. the temporal standard

deviation across monthly accumulation rates of a year, and 3. the absolute difference between two

consecutive annual accumulation sums.

Figures 3.12 and Figure 3.13 characterize interannual variability. Subplot A of Figure 3.12 shows the

53



RESULTS

1
9

9
1

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

2
0

1
1

2
0

1
3

2
0

1
5

2
0

1
7

2
0

1
9

2
0

2
1

2
0

2
3

Year

80

60

40

20

0

20

40

60

80

[c
m

]

Std: 33.6 cm/year

A

Interannual Variability

1
9

9
1

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

2
0

1
1

2
0

1
3

2
0

1
5

2
0

1
7

2
0

1
9

2
0

2
1

2
0

2
3

Year

0

2

4

6

8

10

12

[c
m

/m
o
n
th

]

B

Temporal Standard Deviation

Variability of Annual Accumulation

Fig. 3.12: A: Time series of annual accumulation anomalies of the accumulation in cm at ’Süd’,

1991–2024. B: As for A but for the annual temporal standard deviation of the monthly accumulation

rates within the year σ〈a〉annual
.

Absolute Differences of Consecutive Annual Accumulation Rates

Fig. 3.13: The absolute difference in annual sums between consecutive years in cm.
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fluctuation of annual accumulation rates aΣ around the average annual accumulation rate 〈aΣ〉. Pos-
itive values indicate years above average accumulation, while negative values indicate years with

lower than average accumulation. The anomalies range from –80 cm to 80 cm, indicating substan-

tial deviations from the annual mean of 1 m/year. Especially in the second half of the measurement

period, the sign of the anomaly changes latest after 2 years, suggesting strong year-to-year fluctua-

tions. Positive anomalies become more frequent over time, additionally their magnitude increases.

Negative anomalies are more frequent during the first half of the measurement period. While their

frequency decreases over time, their magnitude does not significantly reduce, except for the most

recent years where negative anomalies show smaller amplitudes. The last four to six years are char-

acterized by especially high interannual variability: firstly, the sign changes each year, secondly, the

difference to the previous year has never been this high before (Figure 3.13). With a mean annual

accumulation rate of 99.5 cm/year and a standard deviation of 33.6 cm/year, the interannual vari-

ability is considerably high, as the standard deviation accounts for approximately one-third of the

annual accumulation rates.

The annual temporal standard deviationmeasures the variability of accumulation within the individual

years. This quantity does not suggest a change over time (see subplot B of Figure 3.12). Further-

more, values vary between 4 and 12 cm between the years, such that the inter-annual change is

rather small. Changes in the temporal annual standard deviation can nevertheless be very influential,

as the annual standard deviation is often of the same order of magnitude as the mean.

3.2.2 Snow Accumulation at the Seasonal Scale

The following analysis aims to delve deeper by focusing on the seasonal scale. Residuals cannot be

used for this analysis, as artifacts resulting from their cumulative nature would influence the results.

I, therefore, focus on the analysis of monthly accumulation rates.

Seasonal contributions to the Annual Total

Figure 3.14 illustrates the seasonal differences in accumulation rates from the annual average over

the period from 1991 to 2023. Summer accumulation rates are predominantly below the annual aver-

age, often correlated to autumn rates being above the annual average. Over time, negative summer

anomalies have become more frequent and exhibit greater magnitudes, while positive anomalies in

autumn have also increased in frequency and magnitude. In contrast to summer and autumn, which

suggest a regular and stable contribution to annual accumulation (summer contributes the least and

autumn the most), the contributions from winter and spring vary a lot across the years. The mag-

nitude of contributions from winter and spring are rather close to the annual average. There is no

tendency towards becoming a positive or negative anomaly or increase in magnitude. Furthermore,

they do not show any correlation to the interannual course of one of the other seasons. Winter

contributions can be correlated to autumn contributions from 1996–2000 and anti-correlated from

2005–2010. Spring contributions do not seem to show any (anti-)correlation to any season over

years to multi-year cycles. Spring contributions can sporadically be large both in the positive and

negative direction. We can deduce that usually the difference in accumulation from one season to
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the next within a year is largest from the summer season to the autumn season.
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Fig. 3.14: Time series of the differences from seasonally averaged accumulation rates to annually

averaged accumulation rates (’Süd’, 1991–2023) for (A) summer (DJF), (B) autumn (MAM), (C)

winter (JJA), and (D) spring (SON).

Figure 3.15 presents the 5-year rolling mean of the seasonal deviations from the annual mean ac-

cumulation rate, observed from 1993 to 2022 (it is truncated for the first and last two years because

of the edge effects of a 5-year rolling mean). Again, the most striking feature is an inverse relation-

ship between autumn and summer accumulation rates, which we already have seen in Figure 3.14.

A trend in their dynamics can be deduced: As the system increasingly shifts towards an autumn-

dominated state, the contribution from summer diminishes correspondingly. In contrast, winter and

spring accumulation rates are consistently closer together, each frequently contributing their ’quar-

ter’ of the total accumulation. During the first half of the measurement period, up to approximately

2007, all four seasonal contributions are relatively close to each other. This proximity suggests a

less distinct seasonal cycle, where the differences between the seasonal contributions are minor.

From 2007 onwards, the divergence between autumn and summer becomes more pronounced,

while winter and spring remain relatively unchanged. A seasonal cycle emerges in this period. The
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Fig. 3.15: As for 3.14 but computed with 5-year running mean.

wavelet analysis supports this observation, indicating the absence of a consistent climatological an-

nual cycle before 2007. However, from 2009 onwards, a clearer seasonal pattern with a period

of approx. 12 months becomes more prominent in the Wavelet-Figure (3.10), coinciding with the

observed divergence in the contributions of autumn and summer.

Distributions of Seasonal Accumulation Rates

Figure 3.16 presents the histogram of monthly average accumulation rates by season, each season

contributes three values (one for eachmonth of the season). Panel (A) shows the accumulation rates

for summer, which experiences the most significant and frequent mass loss events (accumulation

< 0). The mean accumulation rate for summer is the lowest across all seasons with 0.16 cm/day.

The standard deviation of 0.28 cm/day is very high in comparison to the other seasons and to the

mean summer accumulation rate. This indicates a high variability in summer and/or large extrema

(as seen by the the long but flat tail of the summer histogram). Panel (B) illustrates the autumn

season, which has the highest mean accumulation rate of 0.40 cm/day and the equally large stan-

dard deviation of 0.28 cm/day as summer. The histogram illustrates that autumn has seen the two

strongest accumulation events in addition to many medium-strong accumulation events (different

amounts of accumulation occur with an equal frequency). Panels (C) and (D) represent winter and

spring, respectively, with winter having a mean accumulation rate of 0.26 cm/day and a standard

deviation of 0.21 cm/day, while spring shows a mean of 0.29 cm/day and a standard deviation of

0.24 cm/day. Notably, winter and spring have very similar distributions, staying both in the range of

monthly mean accumulation rates from -0.13 cm/day to 1 cm/day. Mass loss on the monthly scale

occurs relatively seldom in winter, spring, and autumn in small magnitudes.
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Cumulative Accumulation per Season

Figure 3.17 displays the cumulative accumulation of the four seasonal subsets. Again, it becomes

obvious that in autumn most accumulation occurs, followed by nearly equally strong accumulation in

winter and spring, and the least accumulation in summer. Similar to the de-trending of the cumulative

annual accumulation as the sum of the accumulation from the four season, each season can be

de-trended individually to obtain the climatologically balanced accumulation rate per season. OLS

regressing yields the climatological accumulation rate per season (Table 3.1). Their sum gives the

annual accumulation rate. Their residuals sum up to the annual residuals.
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Fig. 3.17: Time series of the cumulative accumulation by season in cm (’Süd’, 1991-2023).

Tab. 3.1: Average accumulation rates for each season, calculated over a three-month period.

Season Accumulation Rate [cm/(3 months)]

summer 14.3

autumn 36.2

winter 23.3

spring 25.9

The de-trended time series for each season is shown in Figure 3.18. It appears that the residuals

for autumn and summer are negatively correlated. Unlike the contributions of each season to the
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Fig. 3.18: Time series of the de-trended seasonal cumulative accumulation in cm at ’Süd’,

1991-2024. Blue-shaded areas represent areas where the seasonal cumulative accumulation was

above the climatological regression line. (A) summer, (B) autumn, (C) winter and (D) spring.
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annual accumulation, where spring accumulation did not correlate with any other seasonal accu-

mulation, the anomalies in their own climatological balance are closely related to the interannual

course of accumulation in autumn. Both autumn and spring show above-average accumulation at

the beginning and end of the measurement period (1990–1999 and 2016/17–2023). Additionally,

springtime accumulation is above average in 2001/02 and 2011–2015. It is noteworthy that these

two non-sequential seasons display a similar trend, suggesting that a short-term positive anomaly

cannot explain the increased contributions, as winter, which separates autumn and spring, would

also be affected by such an anomaly.

Winter accumulation anomalies seem to follow a similar pattern as spring and autumn accumula-

tion. The first two years and the last six years have exhibited above-average winter accumulation.

Additionally, winter accumulation is above climatological balance in 1998–2003.

Interestingly, when the de-trended cumulative accumulation of the total year is in its negative

anomaly phase (from 2005–2013), all seasons except for summer are below their climatological

balance. This raises the question of whether there has been a change in climate dynamics, leading

to below-average accumulation but with a shift towards more accumulation in the summer months.

Never before have all seasons been above their climatological balance throughout any period, ex-

cept for 2022/2023 (Figure 3.18).

Snow Accumulation on the Monthly Scale

The accumulation rates at ’Süd’ exhibit high variability on both interannual and intraannual scales,

without a clear recurring pattern (see Figure 3.19). However, certain trends are notable: January has

the most frequent and strongest ablation events, followed by December, though it also recorded the

third-highest accumulation rate in January 2005. December experienced high net accumulation in

both 1995 and 2021. Across all months, January and December have the lowest mean accumulation

rates but the highest standard deviations (Panel C). For other months, approximately two-thirds

of the net accumulation rates are positive, with a general peak in autumn (MAM), albeit with high

interannual variability (Panel A), and decreased accumulation and variability in winter. October and

November represent a secondary accumulation maximum.

Summer sees the most frequent net ablation months, although February, April, August, September,

October, November, and December have also occasionally had ablation months. Only March, May,

June, and July show no net ablation. Panel B illustrates annual mean accumulation rate fluctuations,

showing no clear trend over time. The error bars indicate high intra-annual variability, with the mean

accumulation rate often tied to extreme monthly events, which drive both mean accumulation and

its variability.

3.2.3 Extrema

Figure 3.20 Panel A illustrates the intra-annual variability in the occurrences of minima and max-

ima. The data indicate that most maxima occur during the autumn months of March, April, and May.

For the initial four years, maxima consistently appeared in these autumn months; however, in the

subsequent years, there has been increasing year-to-year variability in the timing of maxima. Over
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the entire observation period, there is no indication of a trend towards more extreme maxima. No-

tably, 2021 recorded the highest annual accumulation rate; however, this does not correspond to

significant maxima, as the monthly accumulation rates themselves were not unusually high. Minima

predominantly occur in summer, with less variability in the timing of occurrence compared to max-

ima. In contrast, the minima show a discernible increase in magnitude over time, accompanied by

a higher frequency of stronger minima. Panel B in Figure 3.20 further complements the analysis by

showing that minima are significantly more extreme during summer months, whereas the magnitude

of maxima exhibits minimal variability. The highest monthly accumulation rate was observed in May

2013, whereas the lowest was recorded in January 2011. Further investigation into the causes of

these extreme events will be addressed in the discussion.
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4 DISCUSSION

4.1 Impact of Snow Density on SMB variability

A limitation of this study is that density measurements have not been combined with height mea-

surements to calculate SMB directly. Nevertheless, this section aims to demonstrate that changes

in snow height serve as a reliable proxy for SMB variability.

The time series of annual density measurements at the stake farm ’Süd’ is derived from the densities

for a profile depth of z = 1 meter, as presented in Hecht (2022). A depth of z = 1 meter is chosen

because, on average, 1 meter of snow accumulates annually at ’Süd’. From these values, the mean

and standard deviation of annual density are computed. Additionally, the mean and standard devi-

ation of the annual accumulation rates are computed. To estimate the contribution of density and

accumulation variability to the interannual variability of SMB, the following formula is employed:

(σM
M

)2
=

(
σρ
ρ

)2

+
(σV
V

)2
, (4.1)

where σM is the standard deviation of SMB, M is the mean SMB, σρ and ρ are the standard devi-

ation and mean of density, and σV and V are the standard deviation and mean of accumulation (in

dimensions of a volume), respectively. On the right-hand side, the first term
(
σρ

ρ

)2
represents the

relative contribution of density, while the second term
(
σV
V

)2
corresponds to the relative contribution

of accumulation rate to the interannual variability of mass. This equation is appropriate because

SMB is the product of density and height change (volume) over a year, and the variability of a prod-

uct of independent variables can be approximated as the sum of their squared relative uncertainties.

Using these relative contributions from equation 4.1, the interannual variability of SMB is primarily

driven by the variability in accumulation rates, with an 8.7% contribution, while the contribution from

density variability is significantly smaller, at only 0.3%. These findings align with those of Ekaykin

et al. (2023), who reported that, at the Vostok stake farm, over 90% of the interannual SMB vari-

ability is explained by changes in snow height, with less than 10% due to snow density variability,

although their results are based on correlation analysis, indicating a similar proportion but using a

different methodological approach. This highlights the dominant role of atmospheric processes over

processes within the snowpack in influencing SMB. Following this analysis, the temporal variability

in snow density (from measurement to measurement) appears negligible in its contribution to SMB

variability. Consequently, it may be unnecessary to account for density fluctuations at this level of

frequency, and it could even be considered to discontinue monthly density measurements at NM.
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4.2 Spatial Variability

RQ1: How does the spatial variability of snow accumulation within the stake farm behave?

The spatial standard deviation within the stake farm was calculated from the deviation (i.e. the differ-

ence ai−a) of each stake’s accumulation from the mean accumulation since the last reading, without

further homogenization to v3. The spatial variability is highly sensitive to both the averaging interval

and the amount of accumulation. Due to this sensitivity, I was unable to normalize spatial variability

based on the time between consecutive measurements or the accumulation rate. Attempts to do

so yielded unrealistic values that were either strongly dependent on accumulation amounts or the

number of measurements within the interval.

A rolling time series on the irregular grid was biased by the number of measurements. For instance,

before 2010, a rolling window of one year included 12 nearly monthly values, while after 2010, it in-

cluded around 24 values with shorter intervals. When resampled and interpolated to a regular grid,

the spatial variability exhibited a clear dependence on the number of measurements. Normalizing

the standard deviation with the mean accumulation amount, as proposed by Goodwin (1991), often

resulted in very high coefficients of variation (CV), particularly when accumulation rates were less

than one, which distorted the variability. Normalizing the standard deviation by the number of days

between measurements also showed a strong correlation with the number of measurements.

Further analysis methods need to be explored to address this issue. Normalizing the spatial standard

deviation by the square root of the number of days between measurements appeared to scale the

values more reasonably, though additional validation is required. For now, the standard deviations

on measurement days provide an indication of the surface roughness within the stake farm, which

can become significant (up to 18 cm per measurement interval).

Such high spatial variability suggests that the mean value from these measurements is represen-

tative for a localized area only. The substantial spatial variation indicates that fine-scale, localized

processes influence snow accumulation, complicating the generalization of mean values to larger

regions. Even temporal averages over periods as long as 10 years may only be representative for

relatively small areas (a few square kilometers) (Eisen et al. 2008).

Furthermore, significant spatial variation in annual snow accumulation rates has been observed at

scales as small as 10 m in Greenland (Kuhns et al. 1997). Due to time constraints, I was unable

to perform a similar analysis. However, it is reasonable to assume that spatial variation within this

stake farm is similarly significant.

The time series of spatial standard deviation does not indicate a long-term trend, which is consistent

with the assumption that spatial variability is stable in time (Eisen et al. 2008).
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4.3 Mean Accumulation from the Stake Farm

4.3.1 Intra-Annual Accumulation

RQ2: Is there an intra-annual cycle evident in the dataset of accumulation and its temporal variance?

Typical Intra-Annual Cycle

The accumulation rates do not exhibit a significant intra-annual cycle on a monthly basis. While

wavelet analysis occasionally reveals a signal at a 12-month period, such patterns are not consis-

tent. However, on a seasonal scale, climatological differences are evident over the measurement

period (Figure 3.16). Analysis of the first moment, i.e., the mean accumulation, indicates that accu-

mulation rates peak during the autumn months (March, April, and May). Winter and spring seasons

show similar accumulation rates, which are lower than those in autumn. Summer accumulation rates

are the lowest on a climatological scale.

In terms of the secondmoment, i.e., temporal variability measured by standard deviation, the autumn

and summer months display the highest variability, whereas spring and winter exhibit less variabil-

ity. For all seasons the variability is as high as the first moment, indicating high inter- and intra-

annual variability. The high variability could stem from the fact that accumulation is largely driven

by extreme precipitation events (EPEs), which are known to have significant temporal and spatial

variability (Turner et al. 2019). Models estimate that 50–55% of annual precipitation originates from

EPEs in coastal DML, with just 20–30 days per year accounting for 50% of total precipitation (Turner

et al. 2019). Simon et al. (2023) provides a detailed regional analysis of the seasonality of extreme

precipitation events (EPEs) as a percentage of total annual precipitation in DML. The study shows

that at Mizuho and NM stations, seasonal peaks in EPEs contribute to intra-annual accumulation

maxima. For example, at Mizuho station in eastern DML, Simon et al. (2023) identifies autumn as

the season with the highest EPE contribution to the annual cycle, as shown in their Figure 3. This

aligns with earlier findings by Fujii and Ohata (1982), who reported accumulation peaks in Febru-

ary and March at Mizuho station. Similarly, for the stake farm ’Süd’, located near NM, this finding

aligns well with the observed maximum accumulation occurring in autumn. The influence of EPEs

on accumulation will be further discussed in section 4.3.2. However, since the analysis presented in

this master thesis relies on monthly to bi-weekly stake measurements, it cannot be verified whether

high accumulation rates are indeed caused by EPEs. This limitation highlights the challenges of

obtaining long-term, reliable snow accumulation measurements in Antarctica. Although sonic height

rangers mounted on AWSs provide high temporal resolution, they currently cover only shorter time

periods (van den Broeke et al. 2004). However, regular meteorological observations at NM could

be leveraged for additional analyses to supplement data from sonic height rangers.

On a seasonal scale, summer ablation becomes prominent. Ekaykin et al. (2023) suggests that

the higher summer temperatures enhance snow compaction and sublimation, contributing to this

seasonal pattern. According to Jakobs et al. (2019), temperatures at NM can sporadically reach

the melting point in February, therefore, melt is primarily attributed to the continuous input of short-
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wave radiation during the polar day. At NM, melt occurs only between November and February and

amounts to 50 mm water equivalent on average but with high interannual variability (Gorodetskaya

et al. 2020). Jakobs et al. (2019) used surface energy balance modeling to determine melt pat-

terns and found high interannual variability. Similarly, my analysis reveals high variability in summer

ablation, likely driven by absorbed shortwave radiation. Jakobs et al. (2019) also highlighted the im-

portance of the snowmelt-albedo feedback, whereby fresh snow with high albedo reflects sunlight,

but as melting begins, the albedo decreases, allowing for increased absorption of radiation and fur-

ther melt.

Furthermore, van den Broeke et al. (2010) found that sublimation at NM is on average higher than

melt. Since sublimation is primarily temperature-driven, it is almost exclusively a summer phe-

nomenon (van den Broeke et al. 2010), though weak sublimation occurs year-round at various sites

in DML (van den Broeke et al. 2004). Therefore, both sublimation and melt likely contribute to the

observed summer ablation. Without density measurements or meteorological variables like dew

point, temperature, and wind speed (which enhances sublimation), the primary ablation mechanism

cannot be determined.

Another factor affecting summer accumulation rates is the reduced cyclonic activity during summer,

meaning fewer EPEs influence accumulation in coastal areas (Turner et al. 2019). This will be further

discussed in the next section.

Patterns and Shifts in Seasonal Contributions to Annual Total

Results suggest an increasing frequency andmagnitude of negative summer anomalies, where sum-

mer accumulation contributes less than a quarter of the annual total. This could result from either

more frequent ablation events or reduced precipitation. Modeled melt time series for NM (Jakobs

et al. 2019) can only partly explain these negative anomalies. Additional processes, such as stronger

sublimation, wind erosion, or compaction, could be contributing factors. For the latter, Hecht (2022)

indicated a minor but insignificant increase in the density of the uppermost 15 cm of snow at ’Süd’

between 2002 and 2019, which may also play a role.

Moreover, the analysis suggests a shift towards autumn-dominated accumulation at the expense of

summer contributions. It can be hypothesized whether a seasonal or intra-annual cycle may develop

over time as a result of an increasing gradient between summer and autumn accumulation rates.

Welker et al. (2014) found that the frequency of EPEs at Halvfarryggen, an ice ridge approx. 100 km

southeast of NM, is highest in autumn and lowest in summer, a finding confirmed by Simon et al.

(2023) for the entire coastal region of western DML. Additionally, Simon et al. (2023) demonstrated

a significant increase in both the number and precipitation contribution of EPEs over the past 40

years. These EPEs are often accompanied by blowing snow due to high wind speeds. However, it

remains unclear whether especially autumn EPEs have shown a stronger increase in recent years,

which could explain the shift towards autumn-dominated accumulation.

Simon et al. (2023) and Turner et al. (2019) also demonstrate a connection between the frequency of

EPE days, particularly in autumn, and the semi-annual oscillation (SAO) of mean sea level pressure.

The SAO is marked by peaks in baroclinic and cyclonic activity during autumn and spring, leading
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to the contraction and expansion of the circumpolar low-pressure belt twice per year and increased

number of landfalling cyclones during autumn and spring. Since the mid-1970s, the weakening of

the SAO has contributed to cooling in coastal Antarctica, especially during May and June (Mayewski

et al. 2009).

Additionally, Simon et al. (2023) note that the SAO drives air export to lower latitudes in summer and

winter, which results in fewer EPEs during these seasons. The frequency analysis of accumulation

rates at ’Süd’ also revealed a 6-month periodicity, potentially linked to the SAO. This suggests that

the SAO could affect the seasonal accumulation measured at ’Süd’, potentially influencing a shift

towards autumn-dominated accumulation.

Additionally, in years where the annual de-trended cumulative accumulation is below-average, sum-

mer accumulation appears to be above-average, while accumulation during all other seasons re-

mains below-average with respect to their seasonal averages.

Thus, it can be hypothesized that in annual below-average accumulation years, there may be a shift

towards increased summer accumulation. However, summer does not become the dominant accu-

mulation season, i.e. it does not contribute more than a quarter to the annual accumulation. This

observation suggests that summer accumulation might have been, or could still be, representative

of annual accumulation in certain contexts. As this phenomenon has not been linked to any estab-

lished literature, further investigation is needed to identify potential relationships with atmospheric

conditions or parameters.

Comparison to Modeled Seasonal Cycle of Accumulation

A comparison with results from Schlosser et al. (2002), who simulated the seasonal cycle of ac-

cumulation (precipitation minus sublimation) using the regional atmospheric model (RACMO) data

near NM, shows qualitative agreement with my findings. According to the model, precipitation peaks

during austral autumn (MAM), with a secondary maximum in November. Sublimation, most intense

in summer, removes approximately 12% of annual precipitation. Thus, net accumulation closely fol-

lows precipitation, with the lowest values in summer due to the combination of minimum precipitation

and maximum sublimation.

Both my analysis and the RACMO1 model (with updates up to 1999) indicate a minimum in accu-

mulation during December and January, and a maximum in autumn. While my data suggest May as

the peak accumulation month, Schlosser et al. (2002) identified March as the highest. Despite this

discrepancy, the overall seasonal patterns align well.

Schlosser et al. (2002) validated themodeledmonthly accumulation rates by comparing it to 14 years

of stake farm measurements at NM, a separate site from ’Süd’. While monthly accumulation did not

show significant correlation in every year, the model accurately captured most major precipitation

events, indicating it effectively represents synoptic conditions. Although the model generally under-

estimates accumulation compared to observations, the consistency in seasonal patterns suggests

that the modeled cycle provides a reasonable depiction of the temporal distribution of accumulation.
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4.3.2 Long-Term Trends and Variability in Accumulation

In this section, the following key points regarding the long-term snow accumulation at NM are ad-

dressed: (1) the accumulation rates exhibit periodic fluctuations, (2) the distribution of accumulation

rates, (3) the high level of interannual variability, (4) the challenges associated with detecting trends

due to this high interannual variability. However, I will address the long-term trends in mean ac-

cumulation in the context of RQ 5 ”Is there evidence in the time series that corresponds to Global

Climate Warming?”

RQ3: What is the temporal evolution of snow accumulation at NM over the past 33 years?

Periodic Fluctuations in Accumulation Rates

In the analysis of accumulation rates, a periodic fluctuation of 3–4 years was observed. Wavelet

analysis indicated that this signal emerges as significant but can disappear at times (e.g., from 2010

to 2017). Two major modes of natural climate variability influencing the Antarctic climate are SAM

and ENSO (King et al. 2023b). Notably, strong El Niño and La Niña events have coincided with both

above-average and below-average accumulation rates at ’Süd’. For instance, the strong El Niño of

1997/98 occurred during a period of above-average accumulation, whereas the strong El Niño in

2015/16 coincided with the second-lowest annual accumulation rate recorded. Similarly, the strong

La Niña in 1999/2000 took place during a period of average accumulation, while the La Niña events

in 2007/08 and the triple-dip La Niña from 2020 to 2023 were associated with above-average accu-

mulation rates. Based on this preliminary analysis, a clear relationship between accumulation rates

and ENSO cannot be established.

According to Naik et al. (2010), SAM is known to exhibit a periodicity of approximately four years.

However, the Fast Fourier Transform of the monthly resolved SAM index during the period of accu-

mulation measurements did not reveal a dominant cycle within this timeframe (results not shown).

Moreover, similar to ENSO, the SAM has experienced positive phases during both below-average

and above-average accumulation periods.

Fischer et al. (2004) identified that sea salt aerosol deposition on the plateau of DML displays a 3–4

year periodicity over the last two millennia, which they attribute to the Antarctic Circumpolar Wave

(ACW). The ACW is characterized by a system of coupled anomalies propagating eastward due to

atmosphere-ocean interactions (White and Peterson 1996). These anomalies pertain to (sea level)

pressure, wind stress, sea surface temperature, and sea ice extent. A warm sea surface tempera-

ture anomaly lags a high sea level pressure anomaly by approximately one year (around 90°) and is

associated with a southward meridional wind stress anomaly onshore, as well as a negative anomaly

in sea ice extent. This warm sea surface anomaly serves as a site of deep convection, leading to

a positive precipitation anomaly along the fall-winter-spring sea ice edge (White et al. 2004). Fis-

cher et al. (2004) also observed periods of a diminishing ACW cycle over their two-millennial study

period. To better quantify the exact periodicity of accumulation rates, longer records of monthly

resolved measurements are necessary. However, the ACW may be a plausible candidate for influ-
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encing accumulation rates in coastal regions of DML. To my knowledge, no study has specifically

investigated this relationship.

To further explore the influence of the ACW on accumulation rates measured at NM, a correlation

analysis could be conducted between accumulation rates and detrended sea level pressure in the

primary source region of air masses affecting NM. To investigate the impacts of ENSO, SAM, and

ACW on accumulation rates at NM, their indices can be utilized in their original form, or they may be

treated cumulatively or with lagged effects. The individual effects of these three climatic phenom-

ena should be analyzed, potentially by isolating phases of strong individual modes. Additionally, the

indices could be combined to determine whether their effects amplify or cancel each other out.

Distribution of Accumulation Rates

The distribution of accumulation rates at ’Süd’ over the climatological period 1991–2020 provides

valuable insights into the underlying processes affecting snow accumulation. Although the histogram

of annual accumulation sums conforms to a gaussian distribution, the monthly data diverge from both

student-t and gaussian distributions. This discrepancy can potentially be attributed to the central limit

theorem, which posits that the sum of a large number of independent random variables tends to ex-

hibit a normal distribution, regardless of the original distribution of the variables. In this context, the

annual accumulation is the sum of monthly accumulation rates, leading to a gaussian approximation

when evaluated over longer time periods.

Furthermore, the monthly accumulation rates are more strongly influenced than annual rates by

several factors, including seasonal weather patterns, extreme precipitation events, and other SMB

processes (including erosion, sublimation, transport, melt, deposition), which may introduce sub-

stantial variability and may be non-gaussian processes themselves. This complexity can lead to a

non-gaussian distribution on amonthly basis. The findings are further supported by previous studies,

such as those by Ekaykin et al. (2023) and Medley et al. (2018), which also demonstrate gaussian

distributions for annual accumulation rates. On the monthly scale, however, also Ekaykin et al.

(2023)’s analysis indicates a deviation from a gaussian distribution.

Furthermore, Medley et al. (2018)’s analysis is based on ice core data, whereas Ekaykin et al.

(2023)’s is based on measurements taken at the stake farm at Vostok. Annual accumulation rates

derived from ice cores may be less subject to or less able to capture the variability observed on

smaller time scales. This suggests that the method of data collection may influence the resulting

distribution patterns.

Interannual Variability in Accumulation

The interannual variability in snow accumulation rates has remained consistently high throughout

the entire measurement period for both annual and seasonal accumulation rates. However, it has

been particularly pronounced in the last 4–6 years, where the sign of annual anomalies relative to the

climatological mean has shifted each year, and the magnitude of positive anomalies has increased

significantly. Additionally, the differences in annual accumulation rates between consecutive years

have reached their maximum during this time.
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Turner et al. (2019) identifies EPEs as the primary factor controlling the interannual variability in ac-

cumulation for the whole continent. In line with this, the present analysis focuses on snowfall as the

primary driver of this variability, given that snowfall constitutes the largest component of accumula-

tion (Medley et al. 2018; Schlosser et al. 2010). Other processes, such as blowing snow events, can

also result in substantial accumulation in localized areas. However, Turner et al. (2019) notes that

these are generally isolated large SMB events, particularly in steep glacier valleys. Over the long

term and in ice shelf settings, precipitation dominates as the main factor rather than redistribution.

Sublimation mainly occurs during the summer, while deposition is more common in winter (van den

Broeke et al. 2010). Changes in snow density and compaction explain only a minor portion of the

interannual variability in SMB, as discussed in section 4.1. Therefore, it is assumed that much of the

high interannual variability in accumulation is driven by variability in snowfall itself.

Turner et al. (2019) also emphasizes that Antarctic snowfall variability is driven largely by EPEs.

Simon et al. (2023) identified an increase in EPEs in DML over the past 40 years, while Wille et al.

(2021) reported similarly high variability in atmospheric rivers (ARs). Although AR frequency has

increased in DML over the last 40 years, this trend is smaller in magnitude than the observed inter-

annual variability in AR occurrence.

According to Turner et al. (2019), EPEs are also linked to specific phases of major climate modes

that influence atmospheric circulation, such as SAM and ENSO, which are similarly characterized

by interannual variability. However, Turner et al. (2019) argues that in the context of snowfall, the

number of EPEs accounts for over 90% of interannual variability in coastal DML, outweighing the in-

fluence of SAM and ENSO. On decadal timescales and in terms of total ice mass, King et al. (2023b)

found that SAM and ENSO primarily explain variability. However, this signal is spatially inconsistent,

particularly in the vicinity of NM.

It is important to note that many studies on EPEs are limited by in-situ observations and are primarily

based on model outputs (Turner et al. 2019). While the analysis presented in this thesis is able to

quantify interannual variability, it cannot fully address the underlying causes or capture smaller-scale

variability due to the low temporal resolution of the measurements. Both the timing and magnitude

of accumulation events are critical, but this information is unavailable at the temporal scale of the

current dataset.

To mitigate this limitation, I have divided the accumulation by the number of days in the measure-

ment interval. While this approach may be misleading —since most accumulation may occur during

a single event — it allowed me to incorporate the probability of event timing into the analysis. How-

ever, this method does not allow to verify or refute the dominance of EPEs in determining interannual

variability, as the contribution of (non-)EPE accumulation to the total cannot be quantified.

To potentially extract more insight from the dataset, one could apply the method proposed by

Schlosser et al. (2002), using SYNOP observations from NM station. SYNOP measurements are

standard meteorological observations taken every three hours, including measured variables such

as air temperature, pressure, wind speed, and direction. in addition to observer-recorded elements,

often termed “eye observations,” such as cloud cover, visibility, snowfall, and snowdrift (Schlosser

et al. 2002). If snowfall or drift is reported, those days would be considered accumulation days, while

all other days would be assigned zero accumulation. The total measured accumulation could then
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be divided by the number of accumulation days to better estimate the timing and amount of accumu-

lation events. However, I decided against this approach, as NM station was relocated three times

during the measurement period at the stake farm, resulting in an inconsistent time series. Moreover,

the stake farm ’Süd’ is not situated close enough to NM to assume that SYNOP observations from

NM always apply to the conditions at ’Süd’.

4.3.3 Challenges in Trend Detection under High Interannual Variability

The required number of years (n) for the significant detection of a trend in annual accumulation rates

given the interannual variability σ is calculated using the formula (Lettenmaier 1976):

NT =
T ′n1/2

2σ
(4.2)

To express this relationship in terms of n, equation 4.2 is rearranged to:

n =

(
NT 2σ

T ′

)2

, (4.3)

where NT is defined by:

1− β = F (NT − t1−α/2,ν). (4.4)

Here, F denotes the cumulative distribution function of a standard Student’s t-distribution.

In this context, T ′ represents the expected step trend, defined as T ′ = |µ1 − µ2|, where µ1 and µ2

are the mean values of the process for the first and second halves of the data record, respectively.

The equation must be adapted to accommodate the detection of a linear trend represented by T .

The modified formula for determining the sample size for a linear trend results as:

n ≈
(
NT

√
12σ

)2
T 2

. (4.5)

In this analysis, σ is the known standard deviation of the annual accumulation rates, which is 33

cm/year. A significance level of α = 0.05 was chosen, ensuring a 5% probability of erroneously

rejecting the null hypothesis of no trend. Additionally, a statistical power of 1−β = 0.80 was selected

to maintain a high probability of detecting a true trend, should it exist. Consequently, the value of

NT is determined to be:

NT = F−1(1− β)︸ ︷︷ ︸
0.84

+ t1−α/2︸ ︷︷ ︸
1.96

= 2.8 (4.6)

For a step change of 1 cm/year, it is estimated that approximately 34,151 years of observations are

necessary, while a linear trend requires even more than 100,000 years. This analysis highlights that
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the interannual variability in snow accumulation rates is so high that the detection of small changes

requires an unrealistically large number of observations. Notably, as the magnitude of the trend T

increases, the required sample size decreases.

In this calculation, it has not been accounted for serial dependence and used an estimated value of

σ without knowledge of the population’s actual standard deviation.

4.4 Extrema

RQ4: What are the extrema observed in the snow accumulation, and what underlying causes are

addressed in the literature?

The year 2021 stands out as the highest annual accumulation rate recorded, although this peak

does not correspond to remarkable maxima in monthly accumulation rates. Notably, the monthly

accumulation rates observed in 2021 align with the typical distribution of monthly accumulation rates

derived from climatological data. This suggests that either the number of months with above-average

accumulation increased in 2021 or the amount per month has exhibited a slight increase across all

months. The monthly accumulation rates reached their maximum in May 2013.

A number of studies have examined the synoptic situation that led to extreme snowfall and accumula-

tion events in DML: Schlosser et al. (2010); Boening et al. (2012); Wang et al. (2023); Gorodetskaya

et al. (2014); Lenaerts et al. (2013). They all agree that a sea-saw pattern of a low- and high-pressure

system was located in the South Atlantic sector. The pressure system intersected with the continent,

with the high-pressure system blocking the movement of the low-pressure system. Consequently, a

strong pressure gradient was established across DML together with a poleward flow along the west-

ern flank of the high. The presence of ARs, particularly when a cyclone is blocked by a high-pressure

ridge, has also been documented as a key driver of extreme snowfall events (Gorodetskaya et al.

2014). Moist and warm air is transported towards the continent. As the air rises onto the ice shelf,

clouds form, leading to extreme precipitation. The longer the blocking, the more snowfall occurs.

Lenaerts et al. (2013) proposed that a weaker-than-usual low-pressure system in the South Atlantic

sector, combined with anomalous low pressure in the Weddell Sea, results in a southward flow of

air. When subtropical and subpolar sea surface temperatures are anomalously high and these at-

mospheric conditions persist for several days, extreme snowfall events are likely to occur.

Boening et al. (2012) noted that the atmospheric blocking over the Atlantic sector and increased

poleward moisture transport lead to significant precipitation events in 2009 and 2011. However,

these reported maxima do not align with the extremes observed in this thesis. The maximal monthly

accumulation rate in May 2013 needs to be examined for similar atmospheric patterns as outlined

above to confirm their influence. The year 2021 as the maximum annual accumulation rate can be

investigated regarding the frequency of such synoptic situations.

The lowest annual accumulation rate was recorded in 2004, while the minimum monthly accumu-

lation rate was observed in January 2011. The existing literature on the synoptic-scale analysis of

minimum accumulation events is limited. It may be worthwhile to examine whether the absence of

previously described atmospheric patterns contributes to these observed minima.
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Furthermore, investigating the atmospheric conditions that facilitate ablation processes—such as

melting and sublimation—could yield valuable insights, particularly when establishing a climatolog-

ical baseline in comparison to the conditions during January 2011. Key factors to consider include

sunshine duration, cloud cover fraction, and temperature, as well as profiles of turbulent sensible

and latent heat fluxes, wind speeds, and directions. Additionally, katabatic winds, which are often

associated with drier conditions, may significantly influence snow transport and ablation.

4.5 Global Warming and the Recent Development of Snow Accumulation at Stake

Farm ’Süd’

RQ5: Is there evidence in the time series of snow accumulation that corresponds to global climate

warming?

In a warming climate, increased humidity is transported poleward, leading to enhanced precipitation

over the Antarctic continent (Wille et al. 2021; Medley et al. 2018). Furthermore, Bengtsson et al.

(2006) demonstrated that a warmer climate causes a poleward shift of Southern Hemispheric storm

tracks, resulting in significant changes in the spatial distribution of precipitation. Model projections

suggest that synoptic transport mechanisms, including cyclones and ARs, will continue to be the

dominant factors driving the rise in snowfall across the entire Antarctic continent (Dalaiden et al.

2020). This increase in precipitation is expected to partially offset the dynamic mass loss of the AIS

by the end of the 21st century (Dalaiden et al. 2020). Additionally, the shift of the SAM towards

its positive phase, due to greenhouse gas forcing, is projected to influence future SMB trends with

some degree of predictability (King et al. 2023b).

The analysis of the detrended snow accumulation time series reveals a notable departure from

the climatological mean in recent years, with the snow surface rising significantly above expected

levels. The most recent accumulation shows a deviation of 150 cm above the climatological norm,

which is 75 cm greater than the second-largest deviation in the last 33 years. This sharp increase,

primarily driven by the high annual accumulation in 2021 and 2023, might suggest a shift in snow

accumulation. However, the time series also displays pronounced variability on decadal timescales.

Decadal variability is difficult to assess given the limited length of the time series, which further

complicates identifying long-term trends. Therefore, it is impossible (given this database only)

to determine whether this deviation represents natural decadal variability or a potential onset of

long-term departure from past climatology. Further monitoring is required to distinguish between

these possibilities.

Recent studies have reported an increase in accumulation in DML (Medley et al. 2018; Philippe

et al. 2016), which has contributed to periods of net mass gain (Wang et al. 2023). However,

disentangling the influence of natural variability from long-term trends remains challenging (Medley

et al. 2018; Lenaerts et al. 2013). The inherent difficulty arises from the high interannual variability

in snowfall, making it hard to determine whether anomalous years reflect natural fluctuations or the

beginning of a sustained trend (Lenaerts et al. 2013).
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FARM ’SÜD’

There are arguments both for and against the hypothesis that the recent anomalies signal a regime

shift in snow accumulation:

• The recent increase in accumulation, while not unprecedented, is longer and steeper compared

to previous increases in the time series.

• For the first time in the record, all four seasons have contributed above their respective long-

term average accumulation rates in the last two years. This could point to a more systematic

increase in accumulation, rather than isolated extreme events.

• Positive anomalies in accumulation rates are becoming more frequent, and their magnitude is

increasing, indicating a potential change in the distribution of accumulation events. A widening

and/or shifting of the distribution could signal a regime shift.

• The annual accumulation rates of 2021 and 2023 are statistically rare, exceeding 2σ from the

climatological mean. While these events are exceptional, their recurrence within two years

underscores the hypothesis of the onset of a new regime rather than isolated extremes. On

the other hand, on a decadal scale, the snow accumulation system might currently be in an

above-average phase. If this is the case, two positive anomalies of otherwise typical magni-

tude could push the total accumulation outside the 2-sigma threshold, without indicating a true

regime shift. This would suggest that the extreme values recorded in 2021 and 2023 may sim-

ply represent an interaction between natural variability and an already elevated decadal state,

rather than an unprecedented departure from past climatology. Furthermore, these fluctua-

tions, though notable, are not significant within the context of interannual variability. Moreover,

the limited length of the time series prevents any determination of decadal variability.

• Similar regime shifts have already been documented elsewhere in DML. For example, a sig-

nificant shift in accumulation trends has been observed at Kohnen Station, most likely repre-

sentative for the polar plateau in DML (Medley et al. 2018). However, models used by Medley

et al. (2018) do not capture this shift, suggesting that they may underestimate current realities

in the region.

• Philippe et al. (2016) have identified increasing SMB, particularly over the last 50 years, in an

ice core drilled in a coastal region of eastern DML. This trend, though not widely observed in

other ice cores until recently, supports the notion of increasing snow accumulation in DML.

• Trends in Precipitation minus Evaporation (P −E) were positive in the western coastal regions

of DML over a 20-year period (1989–2009) compared to 1989 (Nicolas and Bromwich 2011).

The study by Nicolas and Bromwich (2011), using several reanalysis products, found a clear

correspondence between trends in P-E and trends in the meridional wind at 500 hPa, with

stronger meridional winds toward the shore correlating with increased P-E.

• An increase in the frequency and intensity of EPEs and ARs has been documented, which is

the key climatic driver of snow accumulation on the annual scale (Simon et al. 2023; Turner

et al. 2019; Wille et al. 2021).

Retrospective analysis will be required to make a more informed conclusion.
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5 CONCLUSIONS

In this study, snow accumulation rates from stake farm measurements over the past 33 years were

analyzed. These accumulation rates, when combined with density measurements, can be used to

derive SMB, one of themost critical variables for assessing themass balance of the AIS. Understand-

ing the (surface) mass balance is essential for quantifying the ice sheets’ contribution to sea-level rise

(Rignot et al. 2011). Snow accumulation can be seen as temporary storage of sea-level equivalent

mass, effectively delaying its contribution to sea level rise (Medley and Thomas 2019). To accu-

rately predict whether sea level rise will reach the levels projected by CMIP6 models (Seroussi et al.

2024), it is vital to quantify how much of this sea-level equivalent is currently stored. Glaude et al.

(2024) emphasize the need to investigate SMB’s response to projected climate warming, noting that

SMB estimates for the Greenland Ice Sheet by 2100 vary by a factor of two. Even small changes in

accumulation rates can cause significant uncertainties in projected AIS mass balance (Medley et al.

2018), underscoring the necessity of improved model guidance informed by observations.

While remote sensing methods are increasingly available, reliable estimates of SMB still heavily rely

on on-site measurements. However, the remoteness and climate of Antarctica limit the availability

of these direct measurements (Dahe et al. 2004). This study, which provides a statistical analysis

of on-site accumulation measurements, can serve as a benchmark framework that can complement

remote sensing products.

If regional climate models fail to reproduce the accumulation time series and distributions identified

in this study, it could indicate that physical processes are either missing or incorrectly implemented

in the models. This concern is further supported by the findings from Medley et al. (2018), which

also show that the models do not accurately replicate the accumulation patterns observed at Kohnen

Station. Alternatively (or additionally) the initial conditions may not be adequately captured. Wirths

et al. (2024) emphasizes the importance of accurately quantifying SMB, as projected contributions

to Antarctic sea level rise depend on the choice of present-day SMB baseline forcing.

Additionally, this study has shown that snow accumulation is influenced by natural climate variability,

such as a 3–4-year cycle, but also by longer-term processes that are not fully captured in the limited

period of measurements. To address this, the underlying processes, especially those driving the

recent high accumulation years in 2021 and 2023 must be analyzed and better understood. Models

must be assessed to determine whether they capture these anomalies in accumulation and their

underlying processes. Once these processes are successfully represented in models, these models

can be used to make future predictions. A key contribution of this analysis is its higher temporal

resolution compared to other datasets used for benchmarking (e.g., ice or firn cores, which go far-

ther back in time on the decadal to centennial-scale at annual resolution than direct observations).
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Models tend to perform better on snow accumulation processes at longer timescales, making it cru-

cial to evaluate whether they can reproduce the intra-annual dynamics of snow accumulation, such

as whether monthly accumulation rates derived from climate models match the observed distribu-

tion (Medley and Thomas 2019). Another important aspect concerns the current hypothesis that the

observed positive trend in the East Antarctic mass balance may not reflect ongoing increases in ac-

cumulation but could instead be a dynamic response to enhanced accumulation during the Holocene

(Zwally et al. 2015). Therefore, contextualizing recent SMB trends is vital to reducing uncertainties

in the ice sheet’s mass balance.

This study has revealed recent positive changes in snow accumulation that deviate from climatology:

annual accumulations in 2021 and 2023 exceeded the climatological mean by more than two stan-

dard deviations. Philippe et al. (2016) reported a positive SMB trend in the eastern DML plateau,

and studies by Medley and Thomas (2019) and Medley et al. (2018) suggest that this trend may also

extend to the western DML. The findings of this thesis indicate that the substantial positive anoma-

lies observed in 2021 and 2023 could be early evidence of a similar trend emerging in coastal DML.

This suggests a potential mitigating effect on SLR through increased snowfall across large parts of

DML that is not fully captured by current climate models (Medley et al. 2018). These results under-

score the central argument: robust SMB analyses are crucial for improving projections of future SLR.

77



CONCLUSIONS

The analysis of results presented in this thesis can be summarized in the following key points:

Longterm Trend

• Accumulation rates show periodic fluctuations of roughly 3.3 years with the last 3 oscillations

increasing in accumulation rates (both minima and maxima are reaching higher values) (Figure

3.3)

• Frequency analysis reveals dominant periods of 6 months, 12 months, and 40 months (Figures

3.9 and 3.11)

• No long-term trends in annual accumulation rates, but 2021 and 2023 were the years with the

largest annual rates of the whole record (Figure 3.5)

• The cumulative accumulation shows a climatological balance, as indicated by an OLS regres-

sion with a slope of 99.7 cm per year (Figure 3.6)

• Since 2017 surface mass balance has been in an above-average cumulative accumulation

state (Figure 3.7)

• High interannual variability with positive anomalies is becoming more frequent with increasing

magnitude (Figure 3.12)

Intraannual Analysis

• Mass loss mainly during summer (Figure 3.16)

• Negative summer anomalies are becoming more frequent and increasing in magnitude, mean-

ing that summer contributes less than a quarter to the annual accumulation. These anomalies

are anti-correlated with autumn accumulation rates (Figure 3.14).

• There is a systematic shift towards a more autumn-dominated accumulation pattern (Figure

3.15).

• Winter and spring accumulation rates are close to the annual average accumulation rate with

no significant trend over time (Figure 3.15).

• When the total de-trended cumulative accumulation is in a below-average state, summer tends

to be in an above-average state, while all other seasons are below average (Figure 3.18).

• For the first time, in two years (i.e., 2022 and 2023), all four seasons have contributed above

their respective long-term average accumulation rates (Figure 3.18).

• Accumulation is characterized by high inter- and intra-annual variability; therefore, no consis-

tent and significant intra-annual cycle is evident (Figure 3.19).

• Higher variability in summer and autumn accumulation rates than in winter and spring (Figure

3.16)
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NOMENCLATURE

Accumulation Measures

ȧ Monthly mean of daily homogenized accumulation rates [cm/day]

a Cumulative snow accumulation over one month [cm/month]

aΣ Cumulative snow accumulation over one year [cm/year]

Spatial Averages and Standard Deviations

i Subscript: stake index i = 1, . . . , 16; when a quantity is denoted without subscript i, it is

averaged over all stakes

σ̃ Spatial standard deviation across all stakes, in contrast to σ, which denotes temporal standard

deviation

Time Series Data

tj,irreg Time point at measurement index j on the irregular time axis of observations

j Temporal measurement index j = 1, . . . , 621

tm,reg Time point at measurement index m on the regular (monthly) time axis

m Temporal index of the monthly interpolated measurements, m = 1, . . . , 400

∆tj Number of days between consecutive measurements ȧv0(tj−1,irreg) and ȧv0(tj,irreg)

td Daily time axis, i.e. time axis is spaced out by a period of one day.

ȧv0 Accumulation rate time series on an irregular time axis [cm/∆t], where∆t denotes the number

of days between consecutive measurements

av1 Time series of monthly snow accumulation using interpolation method v1 [cm/month]

av2 Time series of monthly snow accumulation using interpolation method v2 [cm/month]

av3 Time series of monthly snow accumulation using interpolation method v3 [cm/month]; here-

after simplified to a (see next entry):

a Time series of monthly snow accumulation using interpolation method v3 [cm/month]
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NOMENCLATURE

ȧv3 Monthly mean of daily snow accumulation rates using interpolation method v3 [cm/day]; here-

after simplified to ȧ (see next entry):

ȧ Monthly mean of daily snow accumulation rates using interpolation method v3 [cm/day]

Single Values of Time Series

ȧv0(tj,irreg) j-th value of the original, irregularly spaced time series ȧv0, [cm/∆t]; for simplicity: ȧv0

ȧv3(tm,reg) m-th value of the regular, monthly interpolated time series ȧ, [cm/day]; for simplicity: ȧ

Temporal Averages and Standard Deviations

〈ȧ〉 Mean accumulation rate (v3) over the entire dataset [cm/day]

σ〈ȧ〉 Temporal standard deviation of the mean accumulation rate (v3) over the entire dataset

[cm/day]

〈ȧ〉clim Mean accumulation rate (v3) over the 30-year climatological period (1991-–2020) [cm/day]

σ〈ȧ〉clim Temporal standard deviation of the mean accumulation rate (v3) over the 30-year climato-

logical period (1991–-2020) [cm/day]

〈ȧ〉annual Mean daily accumulation rate (v3) over one year [cm/day]

σ〈ȧ〉annual
Temporal standard deviation of the mean daily accumulation rate (v3) over one year

[cm/day]

〈a〉annual Mean monthly cumulative accumulation (v3) over one year [cm/month]

σ〈a〉annual
Temporal standard deviation of the mean monthly cumulative accumulation (v3) over one

year [cm/month]
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DATA AVAILABILITY

The original data (v0) and the quality-checked, homogenized data (v3) will be available from the

PANGAEA data portal. All additional data, figures, and the Jupyter notebook containing the com-

plete data processing, interpolation, and analysis are accessible in the following GitLab account

(accessible only to UIBK members): GitLab.
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