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Discrepancies in lacustrine bacterial lipid
temperature reconstructionsexplainedby
microbial ecology
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Haichao Xie 1 , Juzhi Hou 1 , Ulrike Herzschuh 2,5,6 & Fahu Chen 1

Bacterial lipid branched glycerol dialkyl glycerol tetraethers (brGDGTs) are a valuable tool for
reconstructing past temperatures. However, a gap remains regarding the influence of bacterial
communities on brGDGT profiles. Here, we identified two distinct patterns of brGDGTs from the
surface sediments of 38 Tibetan Plateau lakes using an unsupervised clustering technique. Further
investigation revealed that salinity and pH significantly change bacterial community composition,
affecting brGDGT profiles and causing brGDGT-based temperatures to be overestimated by up to
2.7 ± 0.7 °C in haloalkaline environments. We subsequently used the trained clustering model to
examine thepatterns of bacterial assemblages in theglobal lacustrine brGDGTdataset, confirming the
global applicability of our approach. We finally applied our approach to Holocene brGDGT records
from theTibetanPlateau, showing that shifts in bacterial clusters amplified temperature variations over
timescales.Ourfindingsdemonstrate thatmicrobial ecology can robustly diagnose andconstrain site-
specific discrepancies in temperature reconstruction.

Quantitative estimates of terrestrial paleotemperature are crucial for deci-
phering Earth’s past climate history1. Reconstructions of global temperature
over the Holocene epoch remain a subject of debate, primarily due to dis-
crepancies between proxy-based reconstructions and climate model simu-
lations, known as the Holocene temperature conundrum2,3. Among the
wide range of temperature proxies, bacterial lipids called branched glycerol
dialkyl glycerol tetraethers (brGDGTs) have been extensively developed and
attracted increasing attention in the last decade due to their potential to
provide global, high-resolution, continuous records that are crucial for
reconstructing paleotemperatures across a broad range of environments4.
Despite the high potential of brGDGTs in paleotemperature reconstruc-
tions, challenges persist, particularly in mid-latitude regions where recon-
structions are frequently inconsistent5–7.

The unique and diverse environmental conditions of lakes, such as
seasonality8,9, in-situ production versus terrestrial input10,11 and specific
conditions like salinity7, oxygen12, and lake depth13, are recognized as pri-
mary factors influencing lacustrine bacterial lipids, complicating tempera-
ture reconstruction efforts. For example, in mid- and high-latitude regions,

brGDGT production rates decrease in colder seasons14–16. Therefore, cali-
brating brGDGTs to the mean temperatures of months above freezing
(MAF) instead of the mean annual air temperature may result in more
accurate reconstructions17,18. The complexity of factors influencing
brGDGT profiles highlights the need for innovative approaches to accu-
rately interpret brGDGT-based temperature reconstructions. Recent
advances in statistical and machine learning methods have effectively
addressed these complexities17–20. Machine learning calibrations enhance
the precision and reliability of temperature estimates by addressing the
complex, non-linear relationships between brGDGT distributions and
temperature that linear empirical calibrations may not fully capture17,20,21.
For instance, the lacustrine brGDGT random forest calibration model,
which categorizes brGDGTs into fourdistinct clusters basedon temperature
gradients and geographic locations, enhances predictive accuracy by
accounting for environmental diversity17. Additionally, themixed sourcesof
brGDGTs (i.e., both from the lake and the surrounding catchment) also
influence lacustrine brGDGT reconstructions. To this end, the recent
application ofmachine learningmethodshas helped disentangle the sources
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of brGDGTs from different depositional environments (soils, peats, and
sediments) worldwide18.

Advanced chromatography techniques have enabled the separation of
5-methyl and 6-methyl isomers of brGDGTs22,23. Studies have shown that
the degree of methylation of 5-methyl brGDGTs (MBT′5Me) has a stronger
correlationwith temperature compared to the traditionalMBT index,which
includes both 5- and 6-methyl isomers22. However, when the ratio of 6- over
5-methyl brGDGTs (IR6Me) exceeds 0.5, the association between MBT'5Me

orMBT’ and temperature becomesweaker in global soil datasets14,24. Recent
investigations have demonstrated that incorporating 6-methyl isomers in
empirical temperature calibrations can improve the performance of the
brGDGT paleothermometer in lacustrine25–27 and soil28 settings. The high
IR6Me ratio has been associated with significant uncertainty in the appli-
cation of the brGDGT proxy, whichmay be related to shifts in the bacterial
communities responsible for the production of these lipids29. Nevertheless,
the mechanisms underlying the effects of these isomers, particularly in
relation tobacterial communities, on thepaleothermometer remainunclear.
One of the main challenges is our limited understanding of brGDGT-
producing bacteria and their ecology, with only a few species having been
cultured or incubated30–33. Understanding how bacterial communities
respond to changing environmental factors beyond temperature is funda-
mental for accurately interpreting brGDGT distribution and developing
reliable brGDGT-based temperature reconstructions.

The Tibetan Plateau, the highest and largest plateau on Earth, hosts
numerous lakes that serve as unique archives for paleoclimate
reconstructions34. Recent studies of Holocene temperature reconstructions
using lacustrine brGDGTshave revealed diverse trends across this region5,34,
complicating our understanding of past temperature variations. More
importantly, even after applying different brGDGT-temperature calibra-
tions—including the latest machine learning-based random forest calibra-
tion (RF)17—regional Holocene temperature reconstructions continue to

show significant discrepancies (Fig. 1). For example, applying the subset-
specific brGDGT8 and Bayesian (BayMBT)9 calibrations to lakes on the
Tibetan Plateau, such as Bangong Co (BGC), Gahai (GH), and Ngamring
Co (NG), reveals substantial temperature variations ranging from 9 °C to
12 °C over theHolocene. Similarly, the application of RF calibration to these
lakes also indicates considerable variability, around 9 °C. In contrast, other
lakes in the region exhibit significantly smallerfluctuations, regardless of the
calibration method applied (Fig. 1). These discrepancies in temperature
reconstructions persist across different lakes and calibrations, suggesting
that the calibration approach alone may not be sufficient to account for the
observed variability. This raises a critical question: even with advanced
machine learning calibration, can brGDGTs reliably reconstruct past tem-
peratures over long timescales? The variations observed across different
lakes emphasize the need to explore additional factors, such as ecological
shifts or environmental changes, that may be influencing these recon-
structions. Crucially, this issue is not unique to the Tibetan Plateau, as
similar discrepancies have been found in other regions36,37, further
emphasizing the complexity of brGDGT-based temperature
reconstructions.

In this study, we investigate bacterial compositional changes upon
environmental factors (e.g., lake depth, Secchi depth, water temperature,
salinity, pH, oxygen, and chlorophyll a) by combining brGDGT and DNA
analysis of modern samples (n = 38) from the Tibetan Plateau and assess
their impact on Holocene temperature reconstructions. We focus on the
MBT′5Me and simplified IR6Me (IR) indices as MBT′5Me reflects bacterial
physiological adaptation to temperature changes38, while IR accounts for
variations in 6-methyl brGDGT production, which can complicate tem-
perature reconstructions29, particularly in alkaline or saline lakes where
elevated concentrations of 6-methyl isomers are frequently observed7,25,26.
We then integrate these data into an unsupervised probabilistic machine
learning clustering model (Gaussian Mixture Models; GMM), which we
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Fig. 1 | Comparison of Holocene mean temperatures of months above freezing
(MAF) from lakes on the Tibetan Plateau. The three columns represent three
different global lacustrine brGDGT-MAF calibrations: Bayesian calibration
(BayMBT; a, b)9, subset-specific brGDGT calibration (c, d)8, and random forest
calibration (RF; e, f)17. The top row (a, c, e) illustrates reconstructions from lakes
above 3600 m a.s.l., while the bottom row (b, d, f) shows lakes below 3600 m a.s.l.
Temperatures are adjusted to 3600 m a.s.l. using a lapse rate correction of 6 °C/km.
Meteorological data from Lhasa (3600 m a.s.l.) indicate an MAF of 10.0 °C from

1981 to 2020. The right-side ridgeline plots (g, h) display temperature anomalies,
calculated as the deviation of reconstructed temperatures from the averaged MAF
for each lake, highlighting Holocene temperature variation among the different
calibrations (BayMBT: blue; subset-specific: orange; RF: red). The numbers on the
ridgeline plots represent the altitudes of the lakes. Lake abbreviations: Cuoqia lake
(CQ), Tiancai lake (TC), Bangong Co (BGC), Ngamring Co (NG), Tengchong-
qinghai lake (TCQH), Lugu lake (LG), Qinghai lake (QH), and Gahai lake (GH).
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trained to examine the relationship between MBT′5Me and IR indices. The
GMM algorithm is an unsupervised learning method that clusters data
based solely on brGDGT indices, without incorporating any environmental
factors. This approach can yield amore accurate and unbiased classification
of the data39. We identified two clusters indicating distinct biases in
brGDGT-temperature reconstruction, each correlated with specific bac-
terial communities (i.e., haloalkaliphilic and freshwater). Therefore, we
named this cluster model the brGDGT-GMM bacterial assem-
blages’estimator (brGMM-BAE). The brGMM-BAE model also accurately
predicts the distribution patterns of bacterial assemblages in global modern
surface sediments (n = 415), showing results that are consistent with lake
environmental conditions. Finally, we apply the brGMM-BAE model to
eight Holocene sediment cores from the Tibetan Plateau and find that the
large discrepancies in temperature reconstruction over the past 12,000 years
originate from shifts in bacterial assemblages due to changes in lake salinity
and pH. Overall, our research introduces a novel and holistic study
approach integrating advancedmachine learning with brGDGTs andDNA
analysis. This allows us to gain deeper insights into the environmental
factors driving changes in brGDGT profiles, achieve a more precise inter-
pretation of brGDGT temperature reconstruction, and enhance the accu-
racy of paleotemperature reconstruction.

Results
BrGDGT occurrence in lake sediments clusters with distinct
bacterial communities
We performed brGDGT data analysis on 38 lake surface sediments from
the Tibetan Plateau (Fig. 2a) to investigate the distribution of IR and MBT
′5Me using Gaussian mixture model (GMM) algorithm. The GMM identi-
fied two distinct clusters (Fig. 2b). Cluster 1 is characterized by higher MBT
′5Me (0.3–0.7) and IR values (0.6–1.0), with a positive correlation between
MBT′5Me and IR. In contrast, the indices in cluster 2 are only marginally
positively correlated due to the large spread of IR values (0.4–0.7).

To reconstruct themean temperatures ofMAF, we applied three of the
most used global lacustrine calibrations: RF calibration17, Bayesian MAF
calibration (BayMBT)9, and subset-specific brGDGT calibration8. They all
showed discrepancies between reconstructed and observed temperatures.
We chose the RF calibration to reconstruct brGDGT-based temperature in
lake sediments in this study because it resulted in smaller temperature offset
between reconstruction and observation (ΔMAF) than the others (Sup-
plementary Fig. 1).Weobserved that brGDGT-basedMAF is overestimated
in both clusters identified by the GMM, but with distinct differences
between them. The warm bias is larger in cluster 1 with ΔMAF values
ranging from 3.8 to 9.6 °C. The estimated bias of cluster 2 predominantly
ranges from −2.4 to 5.2 °C. On average, cluster 1 overestimated the tem-
perature by 2.7 ± 0.7 °C compared to cluster 2. The biaswas calculated as the
median difference in reconstructed temperature bias (ΔMAF) between the
two clusters, with uncertainty (±0.7 °C) represented as the standard error
(SE) of the median (Fig. 2c).

Bacterial DNA data support brGDGT clusters
We then integrated DNA analysis to assess bacterial community compo-
sition from all 38 lakes and its contribution to brGDGT profiles (Fig. 3).
Comparing the 50most abundant taxa at the family level in our two clusters
showed that some bacteria in cluster 1were absent ormuch less abundant in
cluster 2. In particular, cluster 1 contained many bacteria known for their
tolerance of high salinity and alkaline environments, including Pro-
chlorococcaceae, Synthrophomonadaceae, Saprospiraceae and Spir-
ochaetaceae (Fig. 3). In some genomes we identified the presence of GDGT
synthase protein (tetraether synthase, Tes), a key enzyme in the biosynthesis
of archaeal isoGDGTs35 and then further applied to the study of bacterial
brGDGTs40. This finding supports the hypothesis that these organisms, as
potential brGDGT producers, could influence brGDGT profiles. The
model, trainedonTibetan lake surface sediments, successfully identified two
distinct bacterial communities and revealed the relationship between the IR

Fig. 2 | Analysis of lake surface sediments from
Tibetan Plateau. aMap of 38 lake surface samples
(yellow dots) and Holocene sample sites (blue stars)
examined in this study (see Supplementary data for
more details on the lakes); b Application of the
Gaussian Mixture Model (GMM) clustering algo-
rithm on isomer ratio (IR) and the degree of
methylation (MBT′5Me) data from Tibetan surface
sediments, resulting in the identification of two
distinct clusters. Kernel density plots illustrate the
relationship between MBT′5Me and IR ratio for the
sediments, with cluster 1 in blue and cluster 2 in red.
The regression lines represent the relationship
between MBT′5Me and IR for each cluster. The his-
tograms at the top and right of the plot show the
distributions of MBT′5Me and IR, respectively. c The
corresponding offsets (ΔMAF), defined as the dif-
ference between the reconstructed MAF based on
brGDGTs and the observed MAF, were calculated
for both clusters. The gray dashed lines indicate the
median values for each cluster, with a difference of
2.7 °C between them.
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and MBT′5Me indices. Consequently, we have named this trained GMM
model the brGDGT-GMM bacterial assemblages’ estimator (brGMM-
BAE) model.

Environmental variables and bacterial communities influence
brGDGT compositions
The distribution patterns of brGDGT compounds substantially differ
between our two clusters (Fig. 4a). Tetramethylated brGDGTs (Ia, Ib, and
Ic) aremore abundant in cluster1 (19%) than in cluster 2 (12%).Conversely,
hexamethylated brGDGTs (IIIa, IIIb, IIIc, IIIa′, IIIb′, and IIIc′) are more

abundant in cluster 2 (48%) compared to cluster 1 (34%). Similarly,
5-methyl pentamethylated brGDGTs (IIa, IIb and IIc) also show a higher
relative abundance in cluster 2 (18%) versus cluster 1 (11%). In contrast,
6-methyl pentamethylated brGDGTs (IIa′, IIb′, and IIc′) aremore abundant
in cluster 1 (35%) than in cluster 2 (22%).

Furthermore, the two clusters behave differently in response to salinity,
pH, and dissolved oxygen levels at the bottom water of lakes (DObottom)
(Fig. 4b). Cluster 1 shows preference for brackish to saline (1–133 g/L) and
alkaline (pH from 8 to 10) conditions, withDObottom ranging widely from 1
to 10mg/L. In contrast, cluster 2 shows a tendency for freshwater lakes with

●●●
●
●●
●
●
●
●
●
●●
●
●
●
●●
●
●
●
●
●●
●●
●
●
●●
●●
●●
●●
●●
●
●●
●●
●●
●
●
●●
●
●
●●
●
●
●
●●
●●
●
●●
●
●●
●
●
●●
●●
●

Uncultured Deltaproteobacteria NB1−j bacterium
Anaerolineaceae
Planococcaceae
Burkholderiaceae
Flavobacteriaceae
Clostridiales Family XII
Gaiellales uncultured bacteria
Micrococcaceae
Sulfurimonadaceae
Moraxellaceae
Clostridiaceae
Gaiellaceae
Thiomicrospiraceae
Bacillaceae
Bacteriovoracaceae
Pirellulaceae
Alteromonadaceae
Steroidobacteraceae
Carnobacteriaceae
Caldilineaceae
Desulfobacteraceae
Microbacteriaceae
Hydrogenophilaceae
Ilumatobacteraceae
Geminicoccaceae
Nitriliruptoraceae
Peptostreptococcaceae
Solirubrobacterales bacterium 67−14
Bacteroidetes vadinHA17
Pseudomonadaceae
Syntrophomonadaceae
Cyclobacteriaceae
Trueperaceae
Prochlorococcaceae
Paracoccaceae
Halomonadaceae
Saprospiraceae
Spirochaetaceae
Woeseiaceae
Balneolaceae
Bacteroidetes BD2−2
Oscillospiraceae
ML635J−40 aquatic group
Uncultured organism
Ectothiorhodospiraceae
Uncultured Chloroflexi bacterium
Clostridiales Family XIV
Microscillaceae
Izimaplasmataceae
Coleofasciculaceae

Cluster 1 Cluster 2

Tes

Phylum
Actinobacteria
Bacteroidetes
Chloroflexi
Cyanobacteria

Deinococcus−Thermus
Epsilonbacteraeota
Firmicutes
Planctomycetes

Proteobacteria
Spirochaetes
Tenericutes

Absent

Present

●

●

Relative abudance (%)

Tes Homologs

0 20 40 60

Phy

Fig. 3 | Bacterial diversity and Tes homolog presence in surface sediments. The
top 50 most abundant bacterial species at the family level were identified in surface
sediments from the Tibetan Plateau. The two clusters were identified using the
brGMM-BAE model, based on the MBT′5Me and IR values of each sample. The
leftmost section of the figure employs a binary color scheme to denote the presence

(black) or absence (white) of Tes homolog genes within these taxa, providing
insights into the genetic traits and potential metabolic capabilities of the microbial
communities in these sediments. A color bar along the side labels each species by its
corresponding phylum. The heatmap shows the relative abundance of bacteria at the
family level.
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low salinity (around 0.2 g/L) and low alkalinity (pH from 7 to 9), and
dissolved oxygen levels around 5mg/L.

To identify which environmental factors may influence brGDGT
indices MBT′5Me and IR, we employed a Structural EquationModel (SEM)
(Fig. 4c). We found that the MBT′5Me index is positively influenced by
changes in the bacterial community (standardized effect size: β = 0.78,
p < 0.001) and air temperature (β = 0.21, p < 0.1). While lake temperature,
salinity, and pH impact MBT′5Me indirectly through their effects on the
bacterial community, both salinity (β = 0.41, p < 0.05) and pH (β = 0.37,
p < 0.05) have direct effects on the bacterial community, explaining 32% of
its variation. In contrast, the IR index is primarily influenced by the bacterial
community (β = 0.78, p < 0.001). Air temperature directly impacts lake
water temperature (β = 0.56, p < 0.001), which in turn affects salinity
negatively (β =−0.44, p < 0.05).

Validating brGDGT clusters to global surface samples
Wethen appliedour brGMM-BAEmodel todetermine if similar patterns of
bacterial assemblages could be predicted in global lake surface sediments
based on MBT′5Me and IR indices, which were used as input data for the
model. Using these indices, the model predicted whether the bacterial
communities were associated with haloalkaliphilic or freshwater

assemblages, and these predictions were then compared with measured
salinity and pH values of lakes for validation. Results were classified into
three categories: “both match” (both salinity and pH correctly predicted),
“partial match” (either salinity or pH correctly predicted), or “no match”
(both incorrectly predicted). Given the model’s capability to accurately
predict freshwater-low/neutral pH and saline-high pH environments, we
further examined cases where only one parameter matched. For instance, a
lake observed as freshwater-alkaline but predicted as a haloalkaliphilic
cluster is considered a partial match. We obtained a “both match” in ~59%
of the predictions, a “partial match” in 24%, and “no match” in only 17%
compared to themeasured lake conditions (Fig. 5a). Specifically, for salinity,
the model correctly predicted freshwater and saline species with accuracies
of 66% and 80%, respectively (Fig. 5b). For pH, the accuracies were 60% for
acidic/neutral lakes and 74% for alkaline lakes (Fig. 5c).

The brGDGT-derived temperatures from global lake surface sedi-
ments using lacustrine RF calibration17 indicate that the average ΔMAF
across the four types (freshwater, brackish/saline, acidic/neutral, alkaline
lakes) is approximately 0 °C (Fig. 5d). However, for haloalkaline lakes,
temperatures reconstructed using brGDGTs show a large bias, with a
standard deviation of ~3.1 °C (Fig. 5d). Additionally, the brGMM-BAE
model predicted that lakes with haloalkaliphilic bacterial assemblages also

Fig. 4 | Profiles of brGDGTs, environmental
variables, and modeling of biotic and abiotic
variables affecting brGDGT indices in lakes from
Tibetan Plateau. a The relative abundance of
brGDGT compounds across two clusters identified
in the Tibetan Plateau, with illustrations of brGDGT
simplified structures. b A boxplot of environmental
factors (salinity, pH, and dissolved oxygen of lake
bottom water (DObottom)) shows a significant
impact on the clusters. The comparison of corre-
sponding brGDGT compounds and environmental
variables between the two clusters is made using the
Kruskal-Wallis test, assessing whether samples from
these clusters are derived from the same distribu-
tion. c Structural Equation Model (SEM) applied to
the surface lake sediment datasets from Tibetan
Plateau, showing standardized coefficients to illus-
trate the relationships among response variables and
predictors. The relationships are represented by
arrows, indicating the direction and strength of
associations. The thickness of the paths (arrows) is
scaled to the magnitude of their significance. Sig-
nificance levels across all plots are denoted by
symbols: ‘***’ for p < 0.001, ‘**’ for p < 0.01, ‘*’ for
p < 0.05, and ‘.’ for p < 0.1.
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have a large temperature bias compared to those with freshwater bacterial
assemblages, which have a standard deviation of ~2.9 °C (Fig. 5e).

We hypothesize that patterns predicted by modern brGDGT-based
bacterial assemblages can be used to infer changes in bacterial community
dynamics over time. To test this hypothesis, we extended our approach to
Holocene lacustrine brGDGT records from the Tibetan Plateau (Fig. 2a).
We analyzed brGDGTs from a Holocene lake sediment core (~11.6 ka)
collected from Bangong Co (BGC), along with previously published
paleorecords from other lakes in the Tibetan Plateau (n = 7; ~12 ka)7,41–45.
Throughout the Holocene, lakes NG, QH, and LGwere concentrated in the
higher IR values, while lakes TCQH,GH,CQ, andTCweremainly found in
the lower IR values. During the early and middle Holocene, lake BGC was
primarily concentrated in the moderate IR values, whereas in the late
Holocene, lake BGC was concentrated in the higher IR values (Fig. 6).

We input the brGDGT indices MBT′5Me and IR from these cores into
the trained brGMM-BAEmodel to identify the different bacterial clusters in
each lake over time. Reconstructions of paleo-bacterial assemblages indi-
cated that lake QH was dominated by bacterial cluster 1 (haloalkaliphilic
type) throughout the Holocene, while lakes GH, CQ, LG, TC, and TCQH
were consistently dominated by cluster 2 akin to freshwater bacterial
assemblages (Figs. 6a, 7a). The reconstructed bacterial clusters from the
topmost sample of these lakes closely matched the current salinity condi-
tions (Fig. 6d). However, lake GH, which was incorrectly predicted to be a
freshwater lake with neutral to slightly acidic conditions, is actually char-
acterized by freshwater (salinity = 0.02 g/L) butwith ahigh pH (pH = 9.3). It
is clearly shown that the bacterial cluster in GH during the early and late
Holocene shifted from a community similar to the slightly acidic TCQH
(modern pH = 5.8) to communities more akin to the neutral TC (modern
pH= 7.5) and slightly alkaline BGC (modern pH = 8.2) (Fig. 6b, d).

The brGMM-BAE model reconstructed BGC was predominantly
inhabited by freshwater taxa (cluster 2) in the early and mid-Holocene,

shifting to more haloalkaliphilic taxa (cluster 1) in the late Holocene, and
reverting back to freshwater ones inmodern times (Figs. 6, 7a). NG lakewas
dominated by freshwater taxa (cluster 2) during the early and middle
Holocene but completely changed to haloalkaliphilic taxa (cluster 1) after
5 ka (Figs. 6, 7a).

Constraining temperature on shifts in bacterial assemblages in
Holocene records
Substantial variations were observed in Holocene temperature reconstruc-
tions across eight lakes (Fig. 1). Lakes NG, BGC, and GH exhibited tem-
perature shifts up to ~9 °C contrast to the other five lakes, where changes
were ~2 °C (Fig. 1). These findings were corroborated by predictions from
the brGMM-BAE model, which highlighted significant shifts in bacterial
communities specifically in NG and BGC. For example, NG showed a
community shift from cluster 2 (freshwater type) in themiddleHolocene to
cluster 1 (haloalkaliphilic type) in the lateHolocene (Fig. 6c, d), resulting in a
temperature rise of 4.3 °C (Fig. 1e). Similarly, BGC demonstrated a notable
community transition from cluster 2 (freshwater type) to cluster 1
(haloalkaliphilic type) ~1 ka (Fig. 6a), coinciding with a temperature
increase from7.5 °C to 13.7 °C (Fig. 1e). In the last century, GH transitioned
from conditions resembling themore acidic lake TCQH to those akin to the
more neutral and alkaline lakes TC and LG (Fig. 6d). Therefore, we assume
that this bacterial community shift correlates with the 8.4 °C temperature
rise observed in the last century (Fig. 1e). In contrast, the bacterial com-
munities in the other five lakes (QH, TC, CQ, LG, and TCQH) displayed
stability throughout the Holocene (Figs. 6, 7a), with temperature recon-
structions derived from brGDGTs showing consistent trends and magni-
tudes of change (Fig. 1).

Substantial temperaturefluctuations in the paleorecords were found to
relate to shifts in bacterial assemblages, highlighting the need to account for
the influence of bacterial communities on temperature reconstructions.
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Analysis of surface sediments from the Tibetan Plateau reveals that lakes
dominated by haloalkaliphilic bacterial assemblages consistently yielded
temperatures 2.7 ± 0.7 °C higher than those from freshwater-dominated
lakes (Fig. 2c). While this temperature overestimation related to cluster
shifts can be quantified, the community effects driven solely by pH- or
salinity-induced changes remain difficult to quantify. Therefore, we applied
a 2.7 °C constraint to the reconstructed temperatures only of BGC and NG
lakes, which experienced cluster shifts during Holocene (Fig. 7a). Before
constrained, the reconstructed temperatures were 13.9 °C at the topmost
sample ofNG (4304masl) and 10.9 °C at BGC (4224masl). By limiting the
bias from shifts in bacterial assemblages, the temperatures at both NG and
BGCwere ~11 °C (Fig. 7f, g). Both sites exhibit low temperatures during the
early Holocene. BGC shows temperature increases at ~8, 5, 3.5, 2, and 1 ka,
while NG primarily exhibits warming at around 5.5, 2, and 0.6 ka.

Discussion
ClusteringofMBT′5Meand IR indices revealsdistinct temperature
reconstructions linked to bacterial communities
Our study identified twodistinct clusters associated tobrGDGTdistribution
(based on the IR and MBT′5Me indices) and bacterial community compo-
sition (based on the 16S rRNA genes) in lake surface sediments from the
Tibetan Plateau (Figs. 2, 3). Both clusters overestimated the reconstructed
modern temperatures, with cluster 1 yielding much warmer temperatures

compared to observed temperatures than cluster 2. This implies that the
distributionof brGDGTsmay respond to factors other than air temperature,
such as bacterial community, salinity or pH, as has also been reported for
other saline lakes7,46.

Our results show that more haloalkaliphilic bacterial taxa were enri-
ched in cluster 1 (Fig. 3), suggesting that bacterial community composition
may play a role in causing the discrepancies observed in brGDGT-based
temperature reconstructions. Similarly, a study on soil brGDGT from
Tibetan Plateau has found that brGDGT distributions are influenced by
bacterial communities47. Also in marine sediments it was shown that bac-
terial communities exert a stronger influence on brGDGTcompounds, with
members of Gemmatimonadetes, Planctomycetes, and Proteobacteria
identified as potential brGDGT producers48.

Further support for the relationship between brGDGTs and bacterial
communities is provided by the detection of tetraether synthase (Tes) gene
homologs in the genomes of bacteria identified in the lake surface sediments
(Fig. 3). TheTes enzyme, essential for the production of archaeal isoGDGTs
through the condensation of two archaeal molecules35, has been found in
various bacterial genomes, including in Acidobacteria, highlighting its role
in bacterial brGDGT biosynthesis30,31,40. Our results show that lakes in
cluster 1 contain more haloalkaliphilic bacteria, and within these bacteria,
we found the presence of the Tes gene (Fig. 3). This suggests that changes in
bacterial communities are related to the distinct patterns of the two clusters
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predicted by the brGDGT indices from surface sediments. In addition, there
is growing evidence that the accuracy of brGDGT-based temperature
reconstruction is impacted by lake’s abiotic and biotic factors such as sali-
nity, pH, oxygen, and bacterial communities12,31,47,49. These findings
emphasize the key contribution of bacterial community composition in
shaping specific brGDGT profiles and prompt us to further consider the
influence of environmental conditions, given bacteria’s rapid response to
environmental changes.

Understanding the interactions between environmental factors,
bacterial community composition, and brGDGT profiles
The SEMmodel quantified the relative influence of abiotic and biotic factors
on brGDGT indices (Fig. 4c). Air temperature is widely recognized as a
primary driver of MBT′5Me index

22,50. The SEM analysis showed that air
temperature not only affectsMBT′5Me directly but also indirectly through its
influence on biotic components. Althoughwe tested all variables in the SEM
which may influence bacteria community or brGDGT indices, lake tem-
perature did not exhibit a significantly direct effect on them. This could be
due to salinity and pH that are dominant roles over other environmental
factors in controlling both bacterial communities and brGDGTproduction.
The SEM results also highlight a direct positive relationship between air
temperature and lake surface water temperature, which in turn inversely
affects lake salinity. Since meltwater is the primary source of these lakes in
Tibetan Plateau, increased meltwater influx from rising temperatures
reduces salinity, countering the traditional salinity increase from evapora-
tion at high temperatures.

Furthermore, the SEM model demonstrates that salinity and pH
impose selective pressure on the bacterial communities, with similar effects
observed at both regional51,52 and global scales53,54. Increased salinity and pH
result in high relative abundance of haloalkaliphilic bacteria, such as
members of the Bacteroidetes and Gammaproteobacteria phyla51 and the
familiesParacoccaceae, Saprospiraceae, and Spirochaetaceae55,56. Our results
are consistent with the other observations fromChinese lakes, which found
that salinity and pH are crucial factors in both water and sediments,
influencing bacterial diversity and community structure57,58.

Significant differences between the two clusters in our samples were
also found regarding the dissolved oxygen in lake bottom water (Fig. 4b).
Our results revealed a phenomenon similar to that observed in culture
experiments, where oxygen limitation can trigger the production of
brGDGTs31. However, the SEM analysis did not show a significantly direct
impact of dissolved oxygen on the bacterial communities or brGDGT
indices. Instead, a direct correlationwas identifiedbetweendissolvedoxygen
and salinity, which can be attributed to stratification driven primarily by
salinity gradients in this region. This salinity-induced stratification leads to a
decrease in dissolved oxygen at the bottom water of lake59, suggesting that
salinity gradients are the dominant driver influencing the ecological
dynamics of lakes at mid-latitude. Therefore, the relationship between lake
microbial communities and brGDGTs is more complex in lakes than
observed in culture.

Our findings further indicate that changes in bacterial communities in
response to lake salinity and pH, correlate with MBT′5Me indices and IR
values. This correlation with microbial trait distributions supports and
extends previous studies7,46, confirming that salinity and pH are critical
factors controlling brGDGT distributions. A recent study of soil samples in
the Okavango Delta found that all brGDGT concentrations increased with
decreasing pH, and 5-methyl brGDGTs increased faster than 6-methyl
brGDGTs in arid soils due to aridity-driven soil chemistry changes60. Taken
together, these results highlight the crucial role of abiotic environmental
factors, such as temperature, salinity, and pH, in shaping bacterial com-
munities and, consequently, the brGDGT compounds they produce.

Inferring spatial and temporal ecological changes of bacterial
assemblages using brGDGTs
The estimated bacterial assemblages based on the MBT'5Me and IR indices
from global surface sediments suggest spatial variations in lake salinity and
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pH (Fig. 5a). Although the brGMM-BAE model shows strong potential in
capturing spatial patterns of bacterial assemblages globally, it was primarily
trained on data from lakes on the Tibetan Plateau. However, its accuracy
couldbe further improvedby incorporatingmoremicrobiological data from
lakes across globally diverse environmental and ecological conditions. This
is emphasized by the finding that around 24% of the sites showed partial
matches, suggesting that some lakes may exhibit characteristics of either
halophilic-acidic or freshwater-alkaline conditions. These partial matches
highlight the intricate complexity and ecological diversity of lacustrine
environments52,57, which complicate the relationship between brGDGT
indices and bacterial communities.

Over temporal scales, we observed changes in bacterial assemblages
within lakes in the Tibetan Plateau, allowing us to reconstruct variations in
bacterial communities across various lakes during the Holocene period.
Lake QHwas dominated by haloalkaliphilic bacterial assemblages, aligning
with the salinity reconstruction inferred from the Sr/Ca ratios of fossil
ostracods (Fig. 7b)61. Lakes TC and LG are characterized by freshwater
bacterial assemblage (cluster 2) during the Holocene, which are consistent
with freshwater diatom species also identified (Fig. 7d, e)62,63.

Contrary to these stable conditions, lakes BGC and NG experienced
significant shifts from freshwater to brackish conditions during the Holo-
cene, which was reflected by the changes in bacterial communities derived
from different brGDGT clusters (Fig. 7a). These transitions are supported
by saline diatom assemblages from lake BGC64 (Fig. 7c) and current che-
mical properties measurements—0.5 g/L salinity and pH 8.2 in BGC65 and
5 g/L salinity and pH 9.5 in NG42. The topmost sample from lake BGC was
reconstructed as freshwater, indicating that the lake is undergoing a tran-
sition from haloalkaline to freshwater conditions. Significant changes in the
bacterial communities of the two lakesmaybe attributed to variations in lake
conditions, shifting from freshwater conditions to haloalkaline conditions.
It has been found that increases in salinity from freshwater habitats lead to
more significant shifts in bacterial community composition compared to
changes inhabitats already characterized byhigh salinity51.Our results show
strong correlations between bacterial assemblages and brGDGTs, revealing
specific transitions inmicrobial communities that correspond with changes
in freshwater and haloalkaline conditions. Modern spatial investigation of
lakes across theTibetanPlateauhas similarly shownmicrobial communities
adapting to changes in salinity52. These results highlight the adaptive cap-
abilities of bacteria to their surroundings and emphasize the need to
improve our understanding of the temporal dynamics that drive microbial
adaptation to a changing environment.

A potential limitation in reconstructing past bacterial communities
from sediment cores is the influence of active bacterial cells on ancient
signals, potentially leading to overprinting66. Previous study has shown that
lacustrine samples contain phosphohexose brGDGTs—a post-depositional
source of brGDGTs that can persist in sediments formillennia67. This raises
the possibility that in situ GDGT production in deeply buried sediments
may be linked to the cell membranes of active prokaryotes, a process that
cannot be entirely ruled out and could complicate the interpretation of
paleoenvironmental signals67,68. In our study, we compared brGDGT-
reconstructed bacterial assemblages with measured salinity and pH values
across various spatial and temporal scales.We found consistent correlations
between these environmental factors and the reconstructed microbial
communities. This alignment supports the interpretation that the bacterial
assemblages likely reflect past environmental conditions, though the
potential influence of in situ microbial activity remains a consideration.

Linking microbial ecology to Holocene temperature
reconstruction
The largest Holocene temperature fluctuations based on brGDGT data
originated from lakes NG, BGC, and GH (Fig. 1). It has been found that
temperature reconstructions based on soil brGDGTs in high-altitude
regions (>3000m) tend to overestimate temperatures21. To investigate
whether the large variations in reconstructed temperatures result from the
altitude amplification effect, we compared temperatures at similar altitudes.

For instance, a total temperature variation of 8.7 ± 2.1 °Cwas found in BGC
at 4224m throughout the Holocene, while other lakes at nearly the same
altitudes, such as TC (3898m) and CQ (3960m), exhibit much smaller
temperature changes of 4.2 ± 0.7 °C and 1.1 ± 0.2 °C, respectively (Fig. 1).
Even though the lakes are at similar altitudes, their temperature changes are
not the same.This suggests that the altitude amplification effect is unlikely to
be the primary factor causing the observed site-specific discrepancies in
reconstructed temperatures.

The reconstructed bacterial assemblages could explain the large
brGDGT-based temperature fluctuations in lakes during the Holocene.
Both BGC and NG exhibited pronounced species changes in response to
salinity and pH shifts, leading to reconstructed temperature variations that
were markedly greater than those reconstructed in other lakes (Figs. 1, 6).
Despite the reconstruction of a single freshwater bacterial assemblage
(cluster 2) in lake GH, large pH variations were still observed (Fig. 6d). This
suggests that anotherbacterial assemblage, possibly a freshwater-alkaliphilic
group,may have been present in the lake during the early and lateHolocene
(Fig. 6). The lake level reconstructed fromgrain sizes in the same core of lake
GH reveals significant fluctuations throughout the Holocene69. Lake GH
hadparticularly lower levels during the early and lateHolocene compared to
higher levels in the middle Holocene69, likely contributing to changes in pH
levels. It has been found that pH plays a critical role in freshwater lakes,
determining the interplay between niche-related processes and influencing
bacterial communities57.

Constraining the temperature based on shifts in bacterial assemblages
reduced the site-specific discrepancy of reconstructed temperatures in these
two lakes (Fig. 7f, g).Comparedwith the temperature stack from lakeswith a
single bacterial assemblage (Fig. 7h), the NG and BGC lakes exhibited
greater variation than the stack. BGC had a thermal maximum during the
earlyHolocene around8ka,whichalso appeared in temperature stack.Most
reconstructions have shown that therewas awarming period during Bronze
Age at around 3–4 ka, which was found also by summer temperature
reconstructed using alkenone from lake Sayram at the northeastern Tibetan
Plateau70. It has been found that humans settled at high altitudes on the
northeastern Tibetan Plateau during this period (~3.6 ka)71. Our tempera-
ture stack and newly reconstructed records provide further evidence that
favorable environmental conditions promoted expanded occupation of this
high-altitude plateau. Another warm interval was found in our recon-
structed temperature record around 1 ka, supported by pollen Artemisia/
Chenopodiaceae records indicating a warm and dry climate during this
period72. Additionally, diatom-based salinity records from BGC lake
(Fig. 7c)64, as well as ostracod-based (Fig. 7b)61 and alkenone %37:473,74

records in QH lake showed increased salinity, further supporting the
occurrence of higher evaporation caused by increased temperatures during
this period.

Previous studies on globally distributed lake surface sediments have
demonstrated substantial deviations in temperatures reconstructed from
brGDGTs in mid-latitude lakes5,7,9, raising concerns about the accuracy of
lacustrine brGDGTs for quantitative temperature reconstructions in this
region. Our findings suggest that lacustrine brGDGTs from mid-latitude
lakes remain a valuable tool for reconstructing temperature. By constraining
the biases caused by changes in lake bacterial ecology, we can effectively
diagnose and constrain discrepancies in reconstructed temperatures, lead-
ing to a more accurate temperature record.

Perspectives of future lacustrine brGDGT reconstruction
Early efforts in brGDGT-temperature calibration primarily relied on
advanced statistical methods, ranging from linear regression22,50 to more
sophisticated machine learning techniques17,19,20, to better delineate the
relationship between brGDGT compounds and temperature. For instance,
loess reconstructions using global soil Bayesian neural network calibration
have demonstrated improved accuracy, particularly during cold periods
such as the Last Glacial Maximum20. However, these calibrations focus
primarily on the correlation between temperature and brGDGTs, while
overlooking other critical factors such as microbial community shifts and
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environmental changes. For example, brGDGT-derived temperatures from
Qinghai Lake were overestimated by as much as 10 °C during the early to
mid-Holocene, likely due to changes in lake environments caused by shifts
in brGDGT producers adapting to environmental variations7.

To address these biases and improve the accuracy of lacustrine
brGDGT-based temperature reconstructions, we recommend using the
brGMM-BAE model, which is driven by the MBT′5Me and IR indices, to
assess shifts in bacterial communities throughout the reconstruction time-
scale. This model helps identify bacterial community shifts from freshwater
to haloalkaliphilic assemblages, which influence temperature reconstruc-
tions. To mitigate this bias, we recommend applying a 2.7 ± 0.7 °C correc-
tion to the reconstructed temperatures during transition from freshwater to
haloalkaliphilic assemblages. It should be noted that this method is limited
by its focus on species shifts between haloalkaliphilic and freshwater
assemblages, andwe are still unable to isolate the specific community effects
driven solely by salinity or pH on brGDGT-based reconstructions. Future
research should not only focus on developing advanced statistical calibra-
tions but also integrating ecological insights to refine the accuracy of
paleoclimate reconstructions. Combining these ecological insights with AI-
enhanced calibration offers a powerful approach to capturing the complex
interactions between environmental variables and brGDGT distributions,
significantly improving temperature reconstructions across diverse
ecosystems.

Materials and methods
Surface sediments and temperature reconstructions from Tibe-
tan Plateau and global sites
We collected 38 lake surface sediment samples in the Tibetan Plateau
(longitude 63°-105°E and latitude 20°-45°N), each lake containing relative
abundances of brGDGTs, limnological data, and DNA dataset (Supple-
mentary data)26,46,75. Temperature reconstruction for these lake surface
sediment samples was conducted using three calibrations: RF calibration17,
Bayesian MAF (BayMBT) calibration9, and full-set MAF calibration8.

To verify whether the pattern we discovered on the Tibetan Plateau is
also present globally, we collected a total of 965 surface lake sediment
brGDGT datasets from published papers spanning from 2017 to 2024
(Supplementary data)6–9,11–13,16,17,25,26,43,50,76–86. However, only 415 of these
included both salinity (or conductivity) and pHdata, sowe used this dataset
for global validation. Conductivity (μS/cm) was converted to salinity (g/L)
using an empirical formula by multiplying it by 0.00065.We used a salinity
threshold of 0.2 g/L to differentiate between brackish/saline and freshwater
lakes87, and a pH threshold of 8 to classify lakes as acidic/neutral or alkaline.

Regional Holocene temperature compilation
We spatially focused on Holocene records from the Tibetan Plateau, which
were derived from this study and previously published studies. The lakes
were carefully selected based on several criteria, including: 1) they were
alpine lakes situated on the Tibetan Plateau, 2) the records from these lakes
were analyzed both 5-methyl and 6-methyl brGDGTs, and 3) these records
were continuous throughout theHolocene. Among the lakes that met these
criteria, we analyzed eight of them: Bangong Co (BGC, this study), Cuoqia
Lake (CQ)45, Gahai Lake (GH)41, Lugu Lake (LG)43, Ngamring Co (NG)42,
Qinghai Lake (QH)7, Tengchongqinghai Lake (TCQH)43 and Tiancai Lake
(TC)44. Geographical and limnological data for these eight lakes are pro-
vided in Supplementary Table 1. The chronology of BGC was based on
studies of the same core88,89, while the chronology of the other seven lakes
was based on published papers41–45. These recordswere reanalyzed using the
same global random forest calibration17 to reconstruct Holocene
temperatures.

To create the temperature stack used in this study, we re-ran the Bacon
age model for these lakes. To ensure robust comparison and synthesis, we
integrated the uncertainties from the age-depth models to interpolate
reconstructed temperature values at regular 100-year intervals. Using a
MonteCarlo framework,we sampled age and temperature values from their
respective distributions for each sample, accounting for a wide range of

possible scenarios.We then calculated the density of these scenarios for each
100-year time slice, to estimate climate reconstructions with associated
uncertainties. Finally, we employed curve stacking to enhance the signal-to-
noise ratio and reduce uncertainties from individual records90. The tem-
perature stack was adjusted to the average altitude of 3600m using an
assumed constant lapse rate of 6 °C/km. Lhasa, a city inTibet (3600ma.s.l.),
with ameteorologicalMAF of 10.0 °C (average from 1981 to 2020)91 is used
as the reference point.

Lipid extraction and analyses
Approximately 5–6 g of freeze-dried sediments from BGC were ultra-
sonically extracted for 15min three times with dichloromethane (DCM):
methanol (MeOH; 9:1, v/v) to obtain a total lipid extract (TLE). The TLE
was separated over an Al2O3 column, employing n-hexane:DCM (9:1, v/v)
and DCM:MeOH (1:1, v/v) as eluents for isolating nonpolar and polar
fractions, respectively. The polar fraction, containing lipid GDGTs, was
filteredusing a 0.45 µmPTFEfilter prior to analysis usinghigh-performance
liquid chromatography atmospheric pressure chemical ionization–mass
spectrometry (HPLC-APCI–MS), according to previously published
methods92. BrGDGTs were separated over three silica columns in sequence
(100 × 2.1 mm, 1.9 μm; Thermo Fisher Scientific, USA) with a flow rate of
0.2ml/min. For each sample, 10 μl was injected. Themobile phase consisted
of 84% n-hexane and 16% ethyl acetate. The chromatography of separation
was compared with two columns according to ref. 23 and provided in the
Supplementary Fig. 5. Detection was performed in selected ion monitoring
(SIM) mode via [M+H]+ at m/z 744 for the internal standard, and 1050,
1048, 1046, 1036, 1034, 1032, 1022, 1020,1018 for brGDGTs. Peaks were
identified manually, and peak areas were integrated manually.

The methylation index of branched tetraethers was developed
(MBT'5Me)

22:

MBT 0
5Me ¼

Iaþ Ibþ Ic
Iaþ Ibþ Icþ IIaþ IIbþ IIcþ IIIa

ð1Þ

The ratio of 6- over 5-methyl brGDGTswas initially proposed as IR6Me

ratio22, which was later simplified as IR93:

IR ¼ IIa0 þ IIIa0

IIaþ IIIaþ IIa0 þ IIIa0
ð2Þ

Bioinformatics analyses
The taxonomic assignment was performed using the SILVA database
(version 132 NR) and extract Operational Taxonomic Unit (OTUs) with
>97% similarity94. To eliminate the influence of rareOTU in the analysis, we
focused on the OTUs that were detected in at least two lakes and with a
relative abundance above 0.01%. Approximately a total of 8000 OTUs were
selected in each lake and used for further analysis.

BLASTP searches for tetraether synthase (Tes) homologs were con-
ducted in the NCBI’s non-redundant protein sequences (nr) database using
the Tes (MA_1486) sequence of Methanosarcina acetivorans C2A as the
search query and default parameters40. BLASTP was performed against the
top 50 species we identified (e-value < 1e− 50, identity >20%, length >400
aa). The findings are presented in Fig. 3.

Statistic methods
GMM clustering, which is an unsupervised learning method capable of
clustering without providing environmental factors other than brGDGT
indices, was used to discover the distinct patterns in lake surface sediments
from the Tibetan Plateau. The GMM accounts for the probabilistic dis-
tribution of the dataset by modeling the data as a combination of multiple
Gaussian distributions, thereby capturing the data characteristics more
effectively95. This property is especially suitable for nonlinear data dis-
tributions. GMM clustering method has been successfully employed in
identifying thermal behaviors of archaeal glycerol dialkyl glycerol
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tetraethers39.We used theGaussianMixture() function from the Scikit-learn
package in Python to perform the GMM analysis96. The GMM process
iteratively estimates multiple Gaussian distributions to model the joint
distribution of IR andMBT′5Me indices, ensuring the best fit to the data.We
assessed GMMs by testing cluster counts varying from 2 to 10. For each
model, the Bayesian Information Criterion (BIC) and the silhouette score
were computed to evaluate clustering quality. The optimal clustering dis-
tinctness, indicated by the highest silhouette score and the lowest BIC value,
was observed at two components (Supplementary Fig. 2). Therefore, we
selected to divide these lakes into two clusters based on theGMMclustering
result for further analysis.

The non-parametric Kruskal-Wallis test was used to determine whe-
ther environmental variables and relative abundance of brGDGT com-
pounds had significantly different distributions between the two clusters.
We conducted a Kruskal-Wallis test on data from 38 lakes using the krus-
kal.test() function from the stats package in R. This test is recommended
when predictor variables are not normally distributed or are spatially
autocorrelated.

The structural equation model (SEM) analysis employed a piecewise
SEM97 to assess the direct and indirect influences of environmental factors
and bacterial community on the brGDGT indices (MBT′5Me and IR). SEMs
require the definition of a priori model that specifies the directionality of
potential relationships between variables. Air temperature and lake envir-
onmental variables were considered as exogenous variables, as they directly
influence both bacterial communities and brGDGT indices, with bacterial
communities also acting as an intermediary that affects brGDGT indices.
We initially characterized the environment with 15 variables, including
depth, Secchi depth (SD), pH, salinity, surface water DO (DOupper), bottom
water DO (DObottom), averaged lake water column DO (DOaverage), surface
water Chlorophyll a (chl asurface), bottom water Chlorophyll a (chl abottom),
averaged water Chlorophyll a (chl aaverage), lake surface water temperature
(LST), lake bottom water temperature (LBT), averaged lake water tem-
perature (LMT), mean annual air temperature (MAT), and mean tem-
peratures of months with temperatures above 0 °C (MAF). To minimize
collinearity, we reduced these to seven statistically independent variables
using a pairwise correlationmatrix (Supplementary Fig. 3). Further, we also
evaluated these variables using the Kruskal-Wallis test, selecting those with
significant differences for inclusion in our model. The environmental
variables MAF, LST, salinity, pH, and DObottom were thus included in our
SEMmodel.

We employed linear discriminant analysis (LDA) to reduce the
dimensionality of our bacterial dataset, which included the 50 most abun-
dant bacterial species at the family level, and represented changes in the
bacterial communities (Supplementary Fig. 4). Unlike principal component
analysis (PCA), which identifies linear combinations of input variables that
best explain the variance in the data without considering cluster labels, LDA
explicitly uses these cluster labels to model and highlight differences
between groups. This approach has been previously used to evaluate the
relationship between environmental factors and bacterial community
structure98. Our classifications were derived from GMM model, which
grouped the species into two distinct clusters that reflect variations in bac-
terial community compositions. The LDA scores, calculated using the lda()
function from theMASS package in R, facilitated a quantitative comparison
of the community structures between the two distinct bacterial groups99.

Finally, we utilized the gls() (Generalized Least Squares) function
within the piecewiseSEMpackage in R100 on strictly filtered data to establish
SEM model. Our SEM model was developed with a series of structured
equations, specified through linear modeling functions in R, enabling them
to handle non-normal distributions, hierarchical structures, and a variety of
estimation procedures. The lacustrine brGDGT indices were potentially
affected by air temperature, lake water temperature, DObottom, pH, salinity,
and bacterial communities. For the bacterial communities, we assumed a
potential causal effect of DObottom, pH, and salinity. The goodness-of-fit
tests for both the full and component models included calculating Akaike’s
information criterion (AIC) scores, returning scaled parameter estimates,

plotting partial correlations, and generating predictions. We evaluated
model fit using Fisher’s C and AIC statistic, which assesses all directed
separation tests. The model also aided in identifying missing paths, leading
to a more exploratory approach due to the absence of prior hypotheses for
these paths. AIC-based model selection confirmed that our model, con-
sidering specific environmental factors and bacterial community, provided
the best prediction of the mechanism of how these variables influence
brGDGT indices.

Data availability
The dataset collected and compiled in this study is available in the Figshare
repository: https://doi.org/10.6084/m9.figshare.26521102.v1.

Code availability
The code used for this manuscript is available in the following GitHub
repository: https://github.com/jieliangbio/brGMM_BAE. For users unfa-
miliar with Python, we also provide a graphical user interface (GUI) for the
brGMM-BAE model in the Figshare repository, enabling predictions
without the need to install or run Python code: https://doi.org/10.6084/m9.
figshare.27643836.v1.

Received: 21 May 2024; Accepted: 21 November 2024;

References
1. Tierney, J. E. et al. Past climates inform our future. Science 370,

eaay3701 (2020).
2. Liu, Z. et al. TheHolocene temperature conundrum.Proc. Natl Acad.

Sci. 111, E3501–E3505 (2014).
3. Kaufman, D. S. & Broadman, E. Revisiting the Holocene global

temperature conundrum. Nature 614, 425–435 (2023).
4. Raberg, J. H., Miller, G. H., Geirsdóttir, Á. & Sepúlveda, J. Near-

universal trends in brGDGT lipid distributions in nature. Sci. Adv. 8,
eabm7625 (2022).

5. Lin, T. et al. Sedimentary brGDGTs in China: an overview of modern
observations and proposed land Holocene paleotemperature
records. Earth-Sci. Rev. 250, 104694 (2024).

6. Zhao, B. et al. Evaluating global temperature calibrations for
lacustrine branched GDGTs: seasonal variability, paleoclimate
implications, and future directions. Quat. Sci. Rev. 310, 108124
(2023).

7. Wang, H. et al. Salinity-controlled isomerization of lacustrine
brGDGTs impacts the associated MBT5ME’ terrestrial temperature
index. Geochim. Cosmochim Acta 305, 33–48 (2021).

8. Raberg, J. H. et al. Revised fractional abundancesandwarm-season
temperatures substantially improve brGDGT calibrations in lake
sediments. Biogeosciences 18, 3579–3603 (2021).

9. Martínez-Sosa, P. et al. A global Bayesian temperature calibration
for lacustrine brGDGTs. Geochim. Cosmochim. Acta 305, 87–105
(2021).

10. Weber, Y. et al. Identification and carbon isotope composition of a
novel branched GDGT isomer in lake sediments: Evidence for
lacustrine branchedGDGTproduction.Geochim. Cosmochim. Acta
154, 118–129 (2015).

11. Wang, H. et al. Biomarker-based quantitative constraints on
maximal soil-derived brGDGTs in modern lake sediments. Earth
Planet. Sci. Lett. 602, 117947 (2023).

12. Weber, Y. et al. Redox-dependent niche differentiation provides
evidence for multiple bacterial sources of glycerol tetraether lipids in
lakes. Proc. Natl Acad. Sci. 115, 10926–10931 (2018).

13. Stefanescu, I. C., Shuman, B. N. & Tierney, J. E. Temperature and
water depth effects on brGDGT distributions in sub-alpine lakes of
mid-latitude North America. Org. Geochem. 152, 104174 (2021).

14. Naafs, B. D. A., Gallego-Sala, A. V., Inglis, G. N. & Pancost, R. D.
Refining the global branched glycerol dialkyl glycerol tetraether

https://doi.org/10.1038/s43247-024-01925-3 Article

Communications Earth & Environment |           (2024) 5:759 11

https://doi.org/10.6084/m9.figshare.26521102.v1
https://github.com/jieliangbio/brGMM_BAE
https://doi.org/10.6084/m9.figshare.27643836.v1
https://doi.org/10.6084/m9.figshare.27643836.v1
www.nature.com/commsenv


(brGDGT) soil temperature calibration. Org. Geochem. 106, 48–56
(2017).

15. Raberg, J. H. et al. BrGDGT lipids in cold regions reflect summer soil
temperature and seasonal soil water chemistry. Geochim.
Cosmochim Acta 369, 111–125 (2024).

16. Cao, J., Rao, Z., Shi, F. & Jia, G. Ice formation on lake surfaces in
winter causes warm-season bias of lacustrine brGDGT temperature
estimates. Biogeosciences 17, 2521–2536 (2020).

17. O’Beirne M. D., Scott W. P., Werne J. P. A critical assessment
of lacustrine branched glycerol dialkyl glycerol tetraether
(brGDGT) temperature calibration models. Geochim. Cosmochim.
Acta (2023).

18. Martınez-Sosa P., et al. Development and application of the
branched and isoprenoid GDGT machine learning classification
algorithm (BIGMaC) for paleoenvironmental reconstruction.
Paleoceanogr. Paleoclimatol. 38, e2023PA004611(2023).

19. Véquaud, P. et al. FROG: A global machine-learning temperature
calibration for branched GDGTs in soils and peats. Geochim.
Cosmochim. Acta 318, 468–494 (2022).

20. Häggi, C. et al. GDGT distribution in tropical soils and its potential as
a terrestrial paleothermometer revealed by Bayesian deep-learning
models. Geochim. Cosmochim. Acta 362, 41–64 (2023).

21. Pérez-Angel, L. C. et al. Soil and air temperature calibrations using
branched GDGTs for the tropical Andes of Colombia: toward a pan-
tropical calibration. Geochem. Geophys. Geosyst. 21,
e2020GC008941 (2020).

22. DeJonge,C. et al.Occurrenceandabundanceof 6-methyl branched
glycerol dialkyl glycerol tetraethers in soils: implications for
palaeoclimate reconstruction. Geochim. Cosmochim. Acta 141,
97–112 (2014).

23. Hopmans, E. C., Schouten, S. & Sinninghe Damsté, J. S. The effect
of improved chromatography on GDGT-based palaeoproxies. Org.
Geochem. 93, 1–6 (2016).

24. Dang, X., Yang, H., Naafs, B. D. A., Pancost, R. D. & Xie, S. Evidence
of moisture control on the methylation of branched glycerol dialkyl
glycerol tetraethers in semi-arid and arid soils. Geochim.
Cosmochim. Acta 189, 24–36 (2016).

25. Dang, X. et al. Different temperature dependence of the bacterial
brGDGT isomers in 35 Chinese lake sediments compared to that in
soils. Org. Geochem. 119, 72–79 (2018).

26. Liang, J. et al. Calibration and application of branched GDGTs to
Tibetan lake sediments: the influenceof temperatureon the fall of the
Guge Kingdom in western Tibet, China. Paleoceanogr.
Paleoclimatol. 37, e2021PA004393 (2022).

27. Bittner, L. et al. A Holocene temperature (brGDGT) record from
Garba Guracha, a high-altitude lake in Ethiopia. Biogeosciences 19,
5357–5374 (2022).

28. Wang, H., An, Z., Lu, H., Zhao, Z. & Liu, W. Calibrating bacterial
tetraether distributions towards in situ soil temperature and
application to a loess-paleosol sequence. Quat. Sci. Rev. 231,
106172 (2020).

29. Wang, H., Liu, Z., Zhao, H., Lu, H. & Liu, X. New calibration of
terrestrial brGDGT paleothermometer deconvolves distinct
temperature responses of two isomer sets. Earth Planet. Sci. Lett.
626, 118497 (2024).

30. Chen, Y. et al. The production of diverse brGDGTs by an
Acidobacterium providing a physiological basis for paleoclimate
proxies. Geochim. Cosmochim. Acta 337, 155–165 (2022).

31. Halamka, T. A. et al. Production of diverse brGDGTs by
Acidobacterium Solibacter usitatus in response to temperature, pH,
and O2 provides a culturing perspective on brGDGT proxies and
biosynthesis. Geobiology 21, 102–118 (2022).

32. Martínez-Sosa, P. & Tierney, J. E. Lacustrine brGDGT response to
microcosm andmesocosm incubations.Org. Geochem. 127, 12–22
(2019).

33. Martínez-Sosa, P., Tierney, J. E. & Meredith, L. K. Controlled
lacustrine microcosms show a brGDGT response to environmental
perturbations. Org. Geochem. 145, 104041 (2020).

34. Chen, F. et al. Climate change, vegetation history, and landscape
responses on the Tibetan Plateau during the Holocene: a
comprehensive review. Quat. Sci. Rev. 243, 106444 (2020).

35. Zeng, Z. et al. GDGT cyclization proteins identify the dominant
archaeal sources of tetraether lipids in the ocean. Proc. Natl Acad.
Sci. 116, 22505–22511 (2019).

36. Acharya, S. et al. Environmental controls on thedistributionofGDGT
molecules in Lake Höglwörth, Southern Germany. Org. Geochem.
186, 104689 (2023).

37. Martin, C. et al. Impact of human activities and vegetation changes
on the tetraether sources in Lake St Front (Massif Central, France).
Org. Geochem. 135, 38–52 (2019).

38. Naafs, B. D. A., Oliveira, A. S. F. & Mulholland, A. J. Molecular
dynamics simulations support the hypothesis that the brGDGT
paleothermometer is basedonhomeoviscousadaptation.Geochim.
Cosmochim. Acta 312, 44–56 (2021).

39. Rattanasriampaipong, R., Zhang, Y. G., Pearson, A., Hedlund, B. P.
& Zhang, S. Archaeal lipids trace ecology and evolution of marine
ammonia-oxidizing archaea. Proc. Natl Acad. Sci. 119,
e2123193119 (2022).

40. Zeng, Z. et al. Identification of a protein responsible for the synthesis
of archaeal membrane-spanning GDGT lipids. Nat. Commun. 13,
1545 (2022).

41. Hou, X. et al. BrGDGTs-based seasonal paleotemperature
reconstruction for the last 15,000 years from a shallow lake on the
eastern Tibetan Plateau. Clim. Discuss 2023, 1–34 (2023).

42. Sun, Z. et al. Potential winter-season bias of annual temperature
variations in monsoonal Tibetan Plateau since the last deglaciation.
Quat. Sci. Rev. 292, 107690 (2022).

43. Zhao, C. et al. Possible obliquity-forced warmth in southern Asia
during the last glacial stage. Sci. Bull. 66, 1136–1145 (2021).

44. Feng, X. et al. Evidence for aRelativelywarmmid‐to late holoceneon
the Southeastern Tibetan Plateau. Geophys. Research. Lett. 49,
e2022GL098740 (2022).

45. Zhang C., et al. Seasonal imprint of Holocene temperature
reconstruction on the Tibetan Plateau. Earth-Sci. Rev. 226, 103927
(2022).

46. Kou, Q. et al. Influence of salinity on glycerol dialkyl glycerol
tetraether-based indicators in TibetanPlateau lakes: implications for
paleotemperature and paleosalinity reconstructions. Palaeogeogr.
Palaeoclimatol. Palaeoecol. 601, 111127 (2022).

47. Liang, J. et al. Branchedglycerol dialkyl glycerol tetraether (brGDGT)
distributions influenced by bacterial community composition in
various vegetation soils on the Tibetan Plateau. Palaeogeogr.
Palaeoclimatol. Palaeoecol. 611, 111358 (2023).

48. Chen, Y. et al. Potential influence of bacterial community structure
on the distribution of brGDGTs in surface sediments from Yangtze
River Estuary to East China Sea. Chem. Geol. 647, 121934 (2024).

49. Wu, J. et al. Variations in dissolved O2 in a Chinese lake drive
changes in microbial communities and impact sedimentary GDGT
distributions. Chem. Geol. 579, 120348 (2021).

50. Russell, J. M., Hopmans, E. C., Loomis, S. E., Liang, J. &
SinningheDamsté, J. S. Distributions of 5-and 6-methyl branched
glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake
sediment: Effects of temperature, pH, and new lacustrine
paleotemperature calibrations. Org. Geochem. 117, 56–69 (2018).

51. Rath, K. M., Fierer, N., Murphy, D. V. & Rousk, J. Linking bacterial
community composition to soil salinity along environmental
gradients. ISME J. 13, 836–846 (2019).

52. Liu, Y. et al. Salinity impact on bacterial community composition in
five high-altitude lakes from the Tibetan Plateau, Western China.
Geomicrobiol. J. 30, 462–469 (2013).

https://doi.org/10.1038/s43247-024-01925-3 Article

Communications Earth & Environment |           (2024) 5:759 12

www.nature.com/commsenv


53. Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity.
Proc. Natl Acad. Sci. 104, 11436–11440 (2007).

54. Shaffer, J. P. et al. Standardizedmulti-omics of Earth’smicrobiomes
reveals microbial and metabolite diversity. Nat. Microbiol. 7,
2128–2150 (2022).

55. Song, T. et al. Salinity gradient controls microbial community
structure and assembly in coastal solar salterns. Genes 13, 385
(2022).

56. Gao, L. et al. Paracoccus salsus sp. nov., a novel slightly halophilic
bacterium isolated from saline lake sediment. Int. J. System. Evol.
Microbiol. 72, 005473 (2022).

57. Ren, L. et al. pH influences the importance of niche-related and
neutral processes in lacustrine bacterioplankton assembly. Appl.
Environ. Microbiol. 81, 3104–3114 (2015).

58. Yang, J. et al. Distinct co-occurrence patterns of prokaryotic
community between thewaters and sediments in lakeswith different
salinity. FEMS Microbiol. Ecol. 97, fiaa234 (2021).

59. Liang, C. et al. Salinization mechanism of lakes and controls on
organic matter enrichment: from present to deep-time records.
Earth-Sci. Rev. 251, 104720 (2024).

60. Lattaud, J., Gondwe, M. J., Griepentrog, M., Helfter, C. & De Jonge,
C. Soil chemistry effect on GDGT abundances and their proxies in
soils of the Okavango Delta. Org. Geochem. 195, 104847 (2024).

61. Zhang, P., Zhang, B., Qian, H., Li, G. & Xu, L. The study of
paleoclimatic parameter of Qinghai Lake since Holocene.Quat. Sci.
14, 225–238 (1994).

62. Wang,Q., Yang, X., Anderson, N. J. & Dong, X. Direct versus indirect
climate controls on Holocene diatom assemblages in a sub-tropical
deep, alpine lake (LuguHu, Yunnan, SWChina).Quat. Res. 86, 1–12
(2016).

63. Chen, X. et al. Diatom response to Asian monsoon variability during
the Late Glacial to Holocene in a small treeline lake, SW China.
Holocene 24, 1369–1377 (2014).

64. Gasse, F., Fontes, J. C., Van Campo, E. & Wei, K. Holocene
environmental changes in BangongCobasin (Western Tibet). Part 4:
discussion and conclusions. Palaeogeogr., Palaeoclimatol.,
Palaeoecol. 120, 79–92 (1996).

65. Wang, M., Hou, J. & Lei, Y. Classification of Tibetan lakes based on
variations in seasonal lake water temperature. Chin. Sci. Bull. 59,
4847–4855 (2014).

66. Capo, E. et al. Environmental paleomicrobiology: using DNA
preserved in aquatic sediments to its full potential. Environ.
Microbiol. 24, 2201–2209 (2022).

67. Raberg, J. H. et al. Intact Polar brGDGTs in Arctic lake catchments:
implications for lipid sources and paleoclimate applications. J.
Geophys. Res.: Biogeosci. 127, e2022JG006969 (2022).

68. Lengger, S.K.,Hopmans,E.C., SinningheDamsté, J. S. &Schouten,
S. Fossilization and degradation of archaeal intact polar tetraether
lipids in deeply buried marine sediments (Peru Margin). Geobiology
12, 212–220 (2014).

69. Wang,N. et al. Palynological evidence reveals anarid earlyHolocene
for the northeast Tibetan Plateau. Clim 18, 2381–2399 (2022).

70. Jiang, Q. et al. Exceptional terrestrial warmth around 4200–2800
years ago in Northwest China. Sci. Bull. 67, 427–436 (2022).

71. Chen, F. et al. Agriculture facilitated permanent human occupation
of the Tibetan Plateau after 3600 BP. science 347, 248–250 (2015).

72. Jiang, Q. et al. Holocene vegetational and climatic variation in
westerly-dominated areas of Central Asia inferred from the Sayram
Lake in northern Xinjiang, China. Sci. China Earth Sci. 56, 339–353
(2013).

73. Wang, Z., Liu, Z., Zhang, F., Fu, M. & An, Z. A new approach for
reconstructing Holocene temperatures from a multi-species long
chain alkenone record from Lake Qinghai on the northeastern
Tibetan Plateau. Org. Geochem. 88, 50–58 (2015).

74. Hou, J. et al. Large Holocene summer temperature oscillations and
impact on the peopling of the northeastern Tibetan Plateau.
Geophys. Res. Lett. 43, 1323–1330 (2016).

75. Yan, Q. et al. Distinct strategies of the habitat generalists and
specialists in sediment of Tibetan lakes. Environ. Microbiol. 24,
4153–4166 (2022).

76. Bauersachs, T., Schubert, C. J., Mayr, C., Gilli, A. & Schwark, L.
Branched GDGT-based temperature calibrations from Central
European lakes. Sci. Total Environ. 906, 167724 (2024).

77. Dang, X., Xue, J., Yang, H. & Xie, S. Environmental impacts on the
distribution of microbial tetraether lipids in Chinese lakes with
contrasting pH: implications for lacustrine paleoenvironmental
reconstructions. Sci. China Earth Sci. 59, 939–950 (2016).

78. Dugerdil, L. et al. Climate reconstructions based on GDGT and
pollen surface datasets fromMongolia and Baikal area: calibrations
and applicability to extremely cold–dry environments over the Late
Holocene. Climate 17, 1199–1226 (2021).

79. Li, J. et al. Distribution of branched tetraether lipids in ponds from
Inner Mongolia, NE China: insight into the source of brGDGTs. Org.
Geochem. 112, 127–136 (2017).

80. Miller, D. R., Habicht, M. H., Keisling, B. A., Castañeda, I. S. &
Bradley, R. S. A 900-year New England temperature reconstruction
from in situ seasonally produced branched glycerol dialkyl glycerol
tetraethers (brGDGTs). Climate 14, 1653–1667 (2018).

81. Ning, D. et al. Holocene mean annual air temperature (MAAT)
reconstruction based on branched glycerol dialkyl glycerol
tetraethers from Lake Ximenglongtan, southwestern China. Org.
Geochem. 133, 65–76 (2019).

82. Qian, S. et al. Rapid response of fossil tetraether lipids in lake
sediments to seasonal environmental variables in a shallow lake in
central China: Implications for the use of tetraether-based proxies.
Org. Geochem. 128, 108–121 (2019).

83. Wu J., et al. BrGDGT-based quantitative reconstructions of
paleotemperature in lakes: regional vs. site-specific calibrations.
Quat. Sci. Rev. 322, 108416 (2023).

84. Yao, Y. et al. Correlation between the ratio of 5-methyl
hexamethylated to pentamethylated branched GDGTs (HP5) and
water depth reflects redox variations in stratified lakes. Org.
Geochem. 147, 104076 (2020).

85. Zhao, B. et al. Development of an in situ branched GDGT calibration
in Lake 578, southern Greenland. Org. Geochem. 152, 104168
(2021).

86. Lei, Y. et al. Regional vs. global temperature calibrations for
lacustrineBrGDGTs in theNorthAmerican (sub)tropics: Implications
for their application in paleotemperature reconstructions. Org.
Geochem. 184, 104660 (2023).

87. HammerU. T.Saline Lake Ecosystems of theWorld (Springer, 1986).
88. Wang,M. et al. Internal feedback forcedMiddleHolocene cooling on

the Qinghai-Tibetan Plateau. Boreas 50, 1116–1130 (2021).
89. Hou, J., D’Andrea,W. J.,Wang,M., He, Y. & Liang, J. Influence of the

Indian monsoon and the subtropical jet on climate change on the
Tibetan Plateau since the late Pleistocene. Quat. Sci. Rev. 163,
84–94 (2017).

90. Chevalier, M. & Chase, B. M. Southeast African records reveal a
coherent shift from high- to low-latitude forcing mechanisms along
the East African margin across last glacial–interglacial transition.
Quat. Sci. Rev. 125, 117–130 (2015).

91. Menne,M. J.,Durre, I., Vose,R.S.,Gleason,B.E.&Houston,T.G.An
overview of the global historical climatology network-daily
database. J. Atmos. Ocean. Technol. 29, 897–910 (2012).

92. Yang, H. et al. The 6-methyl branched tetraethers significantly affect
the performance of the methylation index (MBT′) in soils from an
altitudinal transect atMount Shennongjia.Org. Geochem. 82, 42–53
(2015).

https://doi.org/10.1038/s43247-024-01925-3 Article

Communications Earth & Environment |           (2024) 5:759 13

www.nature.com/commsenv


93. De Jonge, C. et al. The influence of soil chemistry on branched
tetraether lipids in mid- and high latitude soils: Implications for
brGDGT-based paleothermometry. Geochim. Cosmochim. Acta
310, 95–112 (2021).

94. Quast, C. et al. The SILVA ribosomal RNA gene database project:
improved data processing andweb-based tools.Nucleic Acids Res.
41, D590–D596 (2012).

95. Bishop C. M., Nasrabadi N. M. Pattern Recognition and Machine
Learning (Springer, 2006).

96. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J.
Mach. Learn. Res. 12, 2825–2830 (2011).

97. Lefcheck J., Byrnes J., Grace J. Package ‘piecewiseSEM’. R
package version 1 (2016).

98. HeS., et al Nitrogen loading effects on nitrification anddenitrification
with functional gene quantity/transcription analysis in biochar
packed reactors at 5 °C. Sci. Rep. 8, 9844 (2018).

99. Ripley, B. et al. Package ‘mass’. Cran r. 538, 113–120 (2013).
100. Lefcheck, J. S. piecewiseSEM: piecewise structural equation

modelling in r for ecology, evolution, andsystematics.MethodsEcol.
Evol. 7, 573–579 (2016).

101. Fan, H. et al. Holocene environmental changes in BangongCo basin
(Western Tibet). Part 3: biogenic remains. Palaeogeogr.
Palaeoclimatol. Palaeoecol. 120, 65–78 (1996).

Acknowledgements
We are grateful for the insightful comments from Dr. Lina Pérez‐Angel, the
two anonymous reviewers, and editors Dr. Yiming Wang and Dr. Carolina
Ortiz Guerrero. We also extend our gratitude to Prof. H. Wang for providing
the chronology and original brGDGT data for QH Lake. Additionally, we
thank Prof. C. Zhao, Dr. C. Zhang, Dr. Z. Sun, and Dr. X. Hou for sharing the
original brGDGT data from TCQH, LG, CQ, NG, and GH lakes. Our thanks
also go to Prof. X. Chen and Q. Wang for providing the diatom data for TC
and LG lakes, and to Dr. S. Gao for maintaining the LC-MS. This work was
supported by the National Natural Science Foundation of China BSCTPES
project (GrantNo. 41988101); National Natural Science Foundation ofChina
(Grant No. 42101158). J.L. acknowledges support from the Helmholtz-
OCPC Postdoctoral Fellowship. The German Research Foundation (DFG)
under project Grant No. 462858357. The German Federal Ministry of Edu-
cation and Research (BMBF), through the PalMod project (subproject
01LP2308B) from the Research for Sustainability initiative (FONA).

Author contributions
J. Liang: Conceptualization, methodology, investigation & writing-original
draft.M.Chevalier:Methodology&visualization.K.Liu:Resources&writing-

original draft. A. Perfumo: Conceptualization & writing-original draft. M.
Wang:Methodology, writing-original draft. J. Hou, H. Xie, U. Herzschuh and
F. Chen: Conceptualization, writing-original draft, supervision, project
administration & funding acquisition.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43247-024-01925-3.

Correspondence and requests for materials should be addressed to
Jie Liang, Haichao Xie, Juzhi Hou or Ulrike Herzschuh.

Peer reviewinformationCommunicationsEarth&Environment thanksLina
Pérez‐Angel and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. Primary Handling Editors: Yiming Wang and
Carolina Ortiz Guerrero. [A peer review file is available.]

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article's Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s43247-024-01925-3 Article

Communications Earth & Environment |           (2024) 5:759 14

https://doi.org/10.1038/s43247-024-01925-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsenv

	Discrepancies in lacustrine bacterial lipid temperature reconstructions explained by microbial ecology
	Results
	BrGDGT occurrence in lake sediments clusters with distinct bacterial communities
	Bacterial DNA data support brGDGT clusters
	Environmental variables and bacterial communities influence brGDGT compositions
	Validating brGDGT clusters to global surface samples
	Constraining temperature on shifts in bacterial assemblages in Holocene records

	Discussion
	Clustering of MBT′5Me and IR indices reveals distinct temperature reconstructions linked to bacterial communities
	Understanding the interactions between environmental factors, bacterial community composition, and brGDGT profiles
	Inferring spatial and temporal ecological changes of bacterial assemblages using brGDGTs
	Linking microbial ecology to Holocene temperature reconstruction
	Perspectives of future lacustrine brGDGT reconstruction

	Materials and methods
	Surface sediments and temperature reconstructions from Tibetan Plateau and global sites
	Regional Holocene temperature compilation
	Lipid extraction and analyses
	Bioinformatics analyses
	Statistic methods

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




