
 1 

 1 

 2 

 3 

 4 

Pilot, Matthias; Schlindwein, Vera (2024) 5 

A Practical Approach to Automatic Earthquake Catalog Compilation in Local OBS 6 

Networks using Deep-Learning and Network-Based Algorithms. Seismological 7 

Research Letters, 95 (4), 2124-2140. 8 

https://doi.org/10.1785/0220230182 9 

 10 

The attached document is the accepted manuscript version of the publication above 11 

and is published in accordance with §38(4) UrhG twelve months after the original 12 

publication. 13 

 14 

 15 

 16 

 17 

Institutional Repository: 18 

https://epic.awi.de/ 19 

  20 

https://doi.org/10.1785/0220230182


 2 

A Practical Approach to Automatic Earthquake Catalog Compilation in Local OBS Networks 21 

using Deep-Learning and Network-Based Algorithms 22 

Matthias Pilot*,1,2, Vera Schlindwein1,2 23 

 24 

1 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 25 

26, 27568 Bremerhaven, Germany 26 

2 Also at: University of Bremen, Faculty of Geosciences, Klagenfurter Straße 2-4, 28359 27 

Bremen, Germany 28 

* Corresponding author. Adress: Alfred Wegener Institute, Helmholtz Centre for Polar and 29 

Marine Research, Am Alten Hafen 26, 27568 Bremerhaven, Germany; E-mail: 30 

matthias.pilot@awi.de; ORCID iD: https://orcid.org/0000-0003-1704-5443 31 

 32 

Declaration of Competing Interests 33 

The authors declare that they have no competing interests. 34 

 35 

  36 

mailto:matthias.pilot@awi.de


 3 

Abstract 37 

In land-based seismology modern automatic earthquake detection and phase picking 38 

algorithms have already proven to outperform classic approaches, resulting in more complete 39 

catalogs while only taking a fraction of the time needed for classic methods. For marine-based 40 

seismology similar advances have not been made yet. For Ocean Bottom Seismometer (OBS) 41 

data additional challenges arise, such as a lower signal-to-noise ratio and fewer labelled 42 

datasets available for training deep-learning models. However, the performance of available 43 

deep-learning models has not yet been extensively tested on marine-based datasets. Here, 44 

we apply three different modern event detection and phase picking approaches to a ~12-45 

months local OBS dataset and compare the resulting earthquake catalogs and location results. 46 

Additionally, we evaluate their performance by comparing different sub-catalogs of manually 47 

detected events and visually revised picks to their automatic counterparts. The results show 48 

that seismicity patterns from automatically compiled catalogs are comparable to a manually 49 

revised catalog after applying strict location quality control criteria. However, the number of 50 

such well-constrained events varies between the approaches and catalog completeness can 51 

not be reliably determined. We find that PhaseNet is more suitable for local OBS networks 52 

compared to EQTransformer and propose a pick-independent event detection approach, such 53 

as Lassie, as the preferred choice for an initial event catalog compilation. Depending on the 54 

aim of the study different schemes of manual re-picking should be applied, as the automatic 55 

picks are not yet reliable enough for developing a velocity model or interpreting small-scale 56 

seismicity patterns.  57 

  58 
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Introduction 59 

In passive seismology, data typically consist of continuous recording of ground motion by 60 

seismometers in three spatial directions. Catalogs of reliably located earthquakes are 61 

compiled from these time series which are subsequently used for, e.g., geological 62 

interpretation, hazard assessment or earthquake tomography (Douilly et al., 2016; Parnell-63 

Turner et al., 2020; Meier et al., 2022; Yaroshenko et al., 2022). Within the processing 64 

workflow a number of steps, including considerable manual work, have to be accomplished. 65 

Events first need to be identified by their characteristic waveforms and the onset times of P 66 

and S phases need to be accurately determined. Classic methods such as the short-term 67 

average to long-term average ratio (STA/LTA) approach (Allen, 1978), the use of kurtosis-68 

based characteristic functions (Baillard et al., 2014) and template matching approaches 69 

(Gibbons and Ringdal, 2006) have reduced the amount of time needed by seismologists to 70 

detect earthquakes and pick phases. To reduce the influence of misidentified or missing phase 71 

picks inherent in these automatic approaches, strict quality control criteria are applied after 72 

location, restricting the events in a catalog to, e.g., events that have phase picks at a minimum 73 

number of stations while producing a low root-mean square (RMS) residual (e.g., Parnell-74 

Turner et al., 2020). In recent years, automatic event detectors and phase pickers, including 75 

deep-learning approaches, have received increasing interest (Mousavi and Beroza, 2022). Due 76 

to this fast-evolving field much of the time-consuming manual work in classic seismological 77 

workflows can potentially be saved in future. Additionally, the use of deep-learning methods 78 

has resulted in more complete earthquake catalogs (Seydoux et al., 2020; Majstorović et al., 79 

2021; Park et al., 2022; Wu et al., 2022; Scotto di Uccio et al., 2023). With the ever-increasing 80 

amount of data available, e.g., due to the recent use of fiber optic cables for earthquake 81 

detection (Lindsey and Martin, 2021; Spica et al., 2022), automated methods will be essential 82 
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for the future. However, due to the black-box nature of deep-learning approaches, a better 83 

understanding of the limitations and effects on the results is necessary (Mousavi and Beroza, 84 

2022; Park et al., 2023), especially when applying these methods to datasets with 85 

characteristics that differ from the underlying training datasets. 86 

Additional challenges arise with Ocean Bottom Seismometer (OBS) recordings. So far, deep-87 

learning models have been trained on land-based earthquake catalogs (Ross et al., 2018; Zhu 88 

and Beroza, 2019; Mousavi et al., 2020). Past attempts to train the models on OBS data did 89 

not show significant improvements yet (Chen et al., 2022) or are currently underway 90 

(Bornstein et al., 2023, prepr.). While the land-based catalogs are large, the performance of 91 

the trained models strongly depends on the datasets they are applied on (Münchmeyer et al., 92 

2022). Compared to land-based datasets, OBS datasets typically show a lower signal-to-noise 93 

ratio. In addition, they are subject to region-specific noise such as induced tremor by ocean-94 

bottom currents (Hilmo and Wilcock, 2020; Essing et al., 2021), abundance of short-duration 95 

events (SDE) (Tary et al., 2012; Domel et al., 2022), OBS self-noise (Stähler et al., 2018), marine 96 

mammal vocalisations (Brodie and Dunn, 2015), and anthropogenic noise related to seismic 97 

surveying and ship noise (Trabattoni et al., 2023). The resulting plethora of seismic signals 98 

have a similar frequency range and duration as earthquake signals and cause abundant false 99 

detections of, e.g., STA/LTA detectors (Williams et al., 2010) and even modern deep-learning 100 

models have difficulties in correctly identifying earthquakes in marine data sets (Domel et al., 101 

2023). Instead, OBS surveys often either rely on classic methods (Chen et al., 2023), resample 102 

the input data to better fit the training datasets (Gong et al., 2022), or return to manual phase 103 

picking (Meier et al., 2021). While Wu et al. (2022) developed a workflow including deep-104 

learning methods for OBS data, the effects of different automatic approaches on the resulting 105 

earthquake catalog remains unclear. 106 
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Here, we evaluate to what extent modern event detection and phase picking approaches can 107 

be used to automatically compile a consistent earthquake catalog from local OBS networks. 108 

For this purpose, we use data from a ~12-months OBS deployment in the Norwegian-109 

Greenland Sea in a seismically active area of the Knipovich Ridge (Figure 1, a). The network 110 

consists of eight OBS with an instrument spacing of 5-8 km (Figure 1, b). We compare different 111 

sub-catalogs of manually detected and picked events to their automatic counterparts to 112 

evaluate their performance and the effect of manual re-picking on the resulting earthquake 113 

catalog. Additionally, we test three different automatic approaches, show their limitations, 114 

and evaluate the resulting earthquake catalogs and location results after applying quality 115 

control criteria. Thus, this study provides a practical approach on how to employ deep-116 

learning and network-based earthquake detection and phase picking algorithms for similar 117 

marine seismological datasets, showing their specific limitations and highlighting where 118 

manual re-evaluation is still necessary.  119 

Data and Methods  120 

For this study we used the Loki dataset, consisting of eight four-channel OBS which were 121 

deployed around Loki’s Castle hydrothermal vent field and an active fault zone (Johansen et 122 

al., 2019) at the Mohn-Knipovich Ridge bend (Figure 1) between July 2019 and July 2020. All 123 

OBS were equipped with Trillium Compact broadband seismometers, HighTech Inc 124 

hydrophones, and K.U.M. 6D6 data loggers (Schmidt-Aursch and Haberland, 2017) and 125 

sampled at 100 Hz for all stations except LOK01 and LOK06 which sampled at 250 Hz. A 126 

geological interpretation of the data is subject of a different manuscript, here we will solely 127 

focus on the automatic approaches to yield an earthquake catalog.  128 

 129 
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 130 

Figure 1: a): Overview map showing the study area (red square) in the Norwegian-Greenland 131 
Sea. MR = Mohns Ridge, KR = Knipovich Ridge. b): Bathymetry of the Mohn-Knipovich Ridge 132 
bend including the positions and numbers of the OBS stations (yellow triangles) and the 133 
position of Loki’s Castle (red star). Bathymetry data from Kartverket (www.kartverket.no). 134 

Event Detection 135 

From this ~12-months continuous recording we selected 11 days, evenly distributed 136 

throughout the deployment duration, to manually create a reference event database (Figure 137 

2, a, left; Figure S1 in Supplement). The reference days were manually screened for 138 

earthquakes by looking at 3-15 Hz bandpass filtered seismic traces of all components and 139 

stations using SEISAN (Havskov and Ottemöller, 1999; Havskov et al., 2020). If an earthquake 140 

signal was observed at three or more stations an event was registered into the reference 141 

database. This served as a “ground-truth” database of locatable earthquakes for later 142 

comparison. Typically the event waveform was manually cut ~15 s before and ~30 s after the 143 

first arrival unless another event was within this time window, then it was cut shorter. For all 144 

days we marked the most prominent events that were visible at seven or eight stations. In 145 
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addition, for a single day (Figure S2 in Supplement), we counted the number of stations with 146 

discernible signal amplitude for all manually detected events.  147 

 148 

Figure 2: Schematic workflows used for this study. a): For event detection we used a subset of 149 
11 control days and compared a manually compiled event catalog to the event detections of 150 
three automatic detectors (Lassie, PhaseNet/GaMMA, and EQTransformer (EQT)/GaMMA). 151 
b): From the continuous dataset three automatically detected and picked event catalogs were 152 
compiled (top box, right). A sub-catalog of Lassie detected and PhaseNet picked, best- 153 
constrained events was manually re-picked for comparison with the original PhaseNet picks 154 
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(top box, left). For event location, both sub-catalogs (bottom box, left) and the three 155 
automatically compiled catalogs (bottom box, right) were located and location quality-control 156 
criteria were applied before comparing the location results. Numbers in squares refer to the 157 
corresponding figures.  158 
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The same 11 control days were then used for the automatic event detection approaches 159 

(Figure 2, a, right) to compile event catalogs and compare them to the manually compiled 160 

event catalog. First, we used the migration-based Lassie earthquake detector (Heimann et al., 161 

2017). Lassie computes a characteristic function for each station individually which is then 162 

back-shifted by the expected travel time within a grid covering the seismic network. The 163 

characteristic function of each station is then stacked to obtain an image function for each 164 

possible source location. An event is detected if the detection threshold of the image function 165 

is exceeded. For Lassie we used a preliminary velocity model that is based on seismic profiles 166 

from the study area (Jeddi et al., 2021). By comparison with the manually detected events, 167 

we found that a detection threshold of 36 is high enough to not detect continuous noise as 168 

events (Figure S3, d, in Supplement) but low enough to not exclude smaller events.  169 

Additionally, we used the GaMMA associator (Zhu et al., 2022) in combination with the deep-170 

learning-based PhaseNet (Zhu and Beroza, 2019) and EQTransformer (Mousavi et al., 2020) 171 

to automatically pick P and S phases on the 11 control days and associate them to seismic 172 

events. We chose these models due to their good cross-domain performance (Münchmeyer 173 

et al., 2022). For PhaseNet we used the model which was trained on the Northern California 174 

Earthquake Catalog and kept the default P and S detection thresholds of 0.3. The data from 175 

stations LOK01 and LOK06 was resampled to 100 Hz. For EQTransformer we used the original 176 

model and a detection threshold of 0.3, a P threshold of 0.3 and a S threshold of 0.5. The 177 

general detection threshold is used to detect earthquake signals within the data while the P 178 

and S thresholds are used for phase picking (Mousavi et al., 2020). For the subsequent 179 

association of phases to seismic events with the GaMMA associator, a constant P velocity of 180 

6 km/s and Vp/Vs 1.75 was assumed and we required at least three associated P picks for an 181 
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event detection (further settings in Table S1). Comparable to the Lassie detection value, 182 

GaMMA calculates a probability value (GaMMA score) for each associated event. 183 

To evaluate the performance of the automatic event detection procedures we compared the 184 

origin times of the automatically detected events to start times of the waveforms in the 185 

manually created reference dataset. Events were considered as matched if origin times 186 

occurred between 5 s before to 20 s after the start of the waveform, equivalent to origin times 187 

20 s before to 5 s after the roughly determined first arrivals in manual screening.  188 

Phase Picking and Velocity Model  189 

For the subsequent evaluation of the phase picking and location results, we ran the three 190 

automatic approaches on the ~12-months continuous dataset (Figure 2, b) with the same 191 

settings as described in the previous chapter. We cut event waveforms from the continuous 192 

data with a time window of 45 s around the Lassie and GaMMA origin times (- 15 s, + 30 s). 193 

We operated PhaseNet to pick phases in all Lassie-detected events. As PhaseNet often picked 194 

more than one P or S phase on a single station for the same event, we only kept picks that 195 

were within ± 2 s of the theoretical Lassie phase arrival times. For the two GaMMA catalogs 196 

phase picking was already done in the previous step (PhaseNet, EQTransformer; Figure 2, b, 197 

top box).  198 

The events from the Lassie catalog were located with HYPOSAT (Schweitzer, 2001, 2018) using 199 

the preliminary velocity model. From this catalog we selected a subset of best-constrained 200 

events which had picks at seven or eight stations, were within the network (gap ≤ 120 °) and 201 

had a RMS ≤ 0.2 s. This resulted in a sub-catalog of 1534 events which were then manually re-202 

picked and compared to the sub-catalog with the original PhaseNet phase picks (Figure 2, b, 203 

top box, left).  204 
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To find an appropriate velocity model and station correction terms we selected strong, well-205 

observed events within the network from the manually re-picked sub-catalog, using the Lassie 206 

detection value as a proxy. A value of ≥ 130 yielded 386 events, which were inverted by 207 

PyVelest (Kissling et al., 1995) in an iterative approach. From 1900 randomly created velocity 208 

models the best fitting model was chosen based on the minimum total RMS. Station 209 

correction terms were determined by locating the subset of 386 events with NonLinLoc 210 

(Lomax et al., 2000, 2009) iteratively. The mean station corrections of a location run were 211 

used as a priori station corrections for the subsequent location run. Since the lowest RMS 212 

solution does not necessarily represent a stable, optimal solution to the inverse problem 213 

(Schlindwein, 2020), we also considered the average length of the three axes of the error-214 

ellipsoid (abbreviated as error-ellipsoid length from here on), the average hypocenter depth, 215 

the average difference between maximum likelihood and expectation hypocenter 216 

(abbreviated as hypocentral spread from here on) and the difference between S and P phase 217 

station correction terms in the selection of the final station correction terms. These 218 

parameters stabilized after three NonLinLoc location iterations and yielded the final station 219 

correction terms which were used in combination with the minimum RMS velocity model for 220 

all subsequent earthquake locations.  221 

Event Location and Quality Control Criteria 222 

For event location (Figure 2, b, bottom box) we used NonLinLoc with the Oct-Tree sampling 223 

algorithm (Lomax and Curtis, 2001) and the least square GAU_ANALYTIC inversion approach 224 

(Tarantola and Valette, 1981). For both sub-catalogs (Figure 2, b, bottom box, left) we used a 225 

velocity grid with 551 x 551 x 421 (x,y,z) nodes with a spacing of 0.1 km in each direction. We 226 

used a search grid with 222 x 222 x 161 (x,y,z) nodes with a spacing of 0.25 km in each 227 
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direction. As some initial event locations from the three automatically compiled event 228 

catalogs (Figure 2, b, bottom box, right) were outside of this grid, the grid size for the these 229 

approaches on the continuous dataset was increased to 2551 x 2551 x 421 nodes with a 230 

spacing of 0.1 km in each direction (search grid with 1021 x 1021 x 161 (x,y,z) with a spacing 231 

of 0.25 km spacing in each direction). In an automated catalog compilation procedure, cut-off 232 

thresholds are typically applied to discard poorly located events containing potentially mis-233 

identified or mis-picked phases (e.g., Parnell-Turner et al., 2020). For all approaches we 234 

applied the same location quality control criteria for well-constrained events. After inspection 235 

of the individual frequency distributions of the sub-catalogs and catalogs, we chose as 236 

thresholds for this study a maximum RMS residual of 0.2 s, a maximum average error-ellipsoid 237 

length of 1.6 km, and a maximum hypocentral spread of 0.6 km.  238 

Magnitude Calculation  239 

To calculate the magnitudes for all catalogs we used the Automag routine of SEISAN. It 240 

automatically picks event amplitudes on Wood-Anderson simulated data from both 241 

horizontal components within a 5 s window length around the picked S phase. Amplitudes 242 

were only kept if the signal-to-noise ratio was at least 1.5. The local magnitude (ML) was 243 

calculated after the equation by Hutton and Boore (1987), using the hypocentral distance 244 

instead of the epicentral distance:  245 

𝑀𝐿 =  log10(𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒) +  1.11 · log10(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) +  0.00189 ·  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 2.09 (1) 246 

For the calculation of the magnitude of completeness (Mc) we used the maximum curvature 247 

and goodness-of-fit methods (Wiemer and Wyss, 2000). 248 

Results 249 
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Automatic Event Detection of Manual Reference Database  250 

Within the 11 screened days a total of 1746 reference events were manually found. 251 

Comparing the event detections from the automatic approaches with the manual reference 252 

database shows that Lassie performs best at detecting the reference events with clear signal 253 

at ≥ 7 stations (≥ 98 %, Table 1). From these events Lassie missed only regional earthquakes 254 

which were not targeted. Lassie and EQTransformer in combination with the GaMMA 255 

associator also detected a considerable number of events that are not part of the reference 256 

events (Figure 3, d; Table 1, see also Figure S4 in Supplement). For Lassie, most of these 257 

detections have image function values just above the threshold of 36 (see also Figure S5 in 258 

Supplement) and could be removed by raising the threshold value, e.g., to 38, which would 259 

however remove some reference events (Figure 3, d). Among the additional events Lassie 260 

detected very weak events with discernible arrivals at two stations which were not included 261 

in the reference database. The majority of the additional detections were SDEs that reached 262 

detection values of up 70 (Figure S3 in Supplement). These signals are visible as high-263 

amplitude, impulsive arrivals on a single station only (Figure S3 in Supplement). Therefore, in 264 

the subsequent location procedure SDEs will effectively be removed from the catalog due to 265 

the requirement of a minimum of four phase picks. Only in a few cases, Lassie detected events 266 

that were missed in the reference database. Most of these earthquakes occurred shortly 267 

before, after, or in between two larger events and can easily be missed during manual 268 

screening (Figure S6 in Supplement).  269 

Table 1: Overview of the performance of the automatic event detection approaches for the 11 270 
reference days. Detection rate (det. rate) refers to the percentage of detected events from the 271 
1746 manually detected reference events. Detection rates for the reference events with signal 272 
at 7 and 8 stations are also indicated. Additional detections are events not present in the 273 
reference events and in parentheses their proportion relative to the total number of automatic 274 
detections. 275 
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 Total 
detections 

Overall det. 
rate [%] 

Det. rate for 
7 stations [%] 

Det. rate for 
8 stations [%] 

Additional 
detections 

Lassie 2634 57% 98% 99% 1632 (62%) 

PhaseNet + 
GaMMA 

707 38% 88% 96% 50 (7%) 

EQTransformer 
+ GaMMA 

2317 62% 92% 95% 1228 (53%) 

 276 

While the EQTransformer/GaMMA approach has the highest overall detection rate of 62 %, 277 

less reference events with clear signal at ≥ 7 stations were detected compared to Lassie 278 

(Figure 3, f; Table 1). The number of false detections (for example see Figure S7 in 279 

Supplement) among the additional 1228 events is larger compared to Lassie, where many of 280 

the additional detections are SDEs that will be removed during event location. Using the 281 

GaMMA score as a proxy to remove most of the potential false detections (e.g., ≥ 8) would 282 

result in many reference events being removed (Figure 3, f). PhaseNet in combination with 283 

the GaMMA associator detected only 50 events that were not part of the reference database 284 

(Figure 3, b; Table 1). Both events from the single test day that were not included in the 285 

reference database (Figure 3, e) are true events that were missed manually. However, 286 

PhaseNet’s overall detection rate of reference events is lowest out of all approaches (38 %, 287 

Table 1), with most events visible at < 6 stations not being detected (Figure 3, h).  288 
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 289 

Figure 3: Single day comparison of the three different event detection approaches with the 290 
reference event database. (a-c): Number of events automatically (green bars) and manually 291 
detected (black line, reference database) at ≥ 3 stations over time. (d-f): Number of 292 
automatically detected events that are also in the reference database (black line,) and 293 
additional events (orange bars) in relation to the Lassie detection value or GaMMA score. OUT 294 
indicates the number of manually detected event above the shown values. (g-i): Number of 295 
automatically detected events (green bars) that are part of the reference database (black line) 296 
in relation to the number of stations where the event was seen. 297 

  298 
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Manual Re-Picking of the PhaseNet Picked Lassie Sub-Catalog 299 

During the manual re-picking of the PhaseNet picked Lassie sub-catalog of the 1534 best-300 

constrained events, spanning the entire study period (Figure 2, b, top box, left), we observed 301 

systematic mis-picks of the P and S phases at station LOK03. Most prominently, PhaseNet 302 

often picked the P phase around 0.2 to 0.6 s too late (Figure 4, a, e). Additionally at this 303 

station, 13.6 % of the PhaseNet S picks and 4.2 % of the P picks had to be deleted as incorrect. 304 

For the other stations the number of incorrectly picked phases ranged between 0.2 to 2.7 % 305 

for the S phases and 0.3 to 3.6 % for the P phases (Figure 4, c-e). Of all final PhaseNet P picks 306 

0.7 to 8.8 % (11 to 101 picks) were manually added during repicking, most notably at stations 307 

LOK05 and LOK07 (Figure 4, g, i). Overall, only a few S picks were added manually (0 to 1.8 % 308 

or 0 to 13 picks). Most of the manually re-evaluated P and S phase picks are within ± 0.1 s of 309 

the original PhaseNet picks and thus only minor or no adjustments of these picks were done 310 

assuming that PhaseNet picks the onset of a correctly identified phase arrival in a more 311 

systematic manner throughout the dataset than a human analyst.  312 

For the continuous dataset, PhaseNet picked 673,342 P and 929,836 S phases, while 313 

EQTransformer picked 1,679,108 P and 370,696 S phases. Both pickers had issues with the P 314 

phases at station LOK03, but no other general trends could be observed. While sometimes 315 

PhaseNet picked a phase correctly, EQTransformer missed it or vice versa. Also, they 316 

sometimes both picked one phase correctly and mis-picked the other (Figure 4, b). 317 

 318 
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 319 
 320 
Figure 4: (a-b): Example showing the automatic (PN = PhaseNet, EQT = EQTransformer) and 321 
manual P and S phase picks at station LOK03. Data is 8-25 Hz bandpass filtered and amplitude 322 
is scaled to the maximum trace value. (c-j): Time difference between the manual and PhaseNet 323 
P (red) and S (green) phase picks for each station (bin width 0.1 s). O: Number of picks outside 324 
the shown x-limits, K: Percentage of PhaseNet picks that were kept unchanged, D: Percentage 325 
of deleted PhaseNet picks, A: Percentage of manually added picks in final picks. 326 

 327 
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The Effect of Manual Re-Picking on Location Quality, Magnitude Distribution, and Seismicity 328 

Pattern 329 

To assess the effect of manual re-picking on the quality of the location results we located the 330 

sub-catalog of 1534 events both with the original PhaseNet picks and the manually refined 331 

picks. The effect of the manual re-picking on the quality of the location results is most 332 

significant for the resulting RMS residual distribution (Figure 5 a,b). Apart from a single event, 333 

the location RMS residual is below 0.2 s for the re-picked phases, with the histogram 334 

maximum around 0.05 s. When using the original PhaseNet picks, the RMS residual 335 

distribution is much broader with many RMS residuals between 0.1 and 0.2 s. When applying 336 

location quality control thresholds to select well-constrained events, the manually re-picked 337 

dataset retains 1391 events while 968 events are left for the PhaseNet picked catalog (Figure 338 

5). Two of the automatically picked events are missing in the manual catalog as too many 339 

erroneous picks were deleted for these events to be located by NonLinLoc. Manual re-picking 340 

of the sub-catalog does not have a significant effect on the magnitude of completeness 341 

(Figure 5, g, h). The difference from the maximum curvature method is only marginal as for 342 

each catalog the number of events in the non-cumulative 1.0 and 1.2 bins is very close to each 343 

other. The goodness-of-fit method gives the same magnitude of completeness for both 344 

catalogs (Mcg = 1.0). However, after applying the quality control thresholds to the sub-345 

catalogs, the number of PhaseNet picked events with ML ≥ 1.0 is only 581 compared to 1028 346 

events within the manually refined sub-catalog such that a catalog completeness above Mc 347 

1.0 appears unlikely for the PhaseNet picked event catalog. Judging from the similar 348 

completeness estimates, it seems that erroneous picks in the PhaseNet picked event catalog, 349 

that result in failing to meet the location quality control thresholds, are not limited to small 350 
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magnitudes but occur throughout the entire range of magnitudes (see also Figure S8 in 351 

Supplemental Material).  352 

 353 

Figure 5: Statistics for the NonLinLoc location results comparing the catalogs based on 354 
automatic PhaseNet picks (a,c,e,g) and manual re-picks (b,d,f,h). Shown are the RMS residual 355 
(a,b, bin width 0.01 s), average error-ellipsoid length (c,d, bin width 0.05 km), hypocentral 356 
spread (e,f, bin width 0.02 km), and local magnitude ML (g,h, bin width 0.2, Mcg = goodness 357 
of fit; Mcc = maximum curvature) distributions after applying the location quality control 358 
thresholds (dashed lines). Black bars show the histogram distributions after applying 359 
thresholds. OUT indicates the number of events above the shown range. Nthr. = number of 360 
events below thresholds. 361 
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Plotting both sub-catalogs and comparing the resulting seismicity patterns shows that the 362 

main features of the manually re-picked sub-catalog are also visible when using the automatic 363 

PhaseNet phase picks: A central main band of seismicity, two clusters of events towards the 364 

Northwest and sparse seismicity Southeast of it (Figure 6, a, c). Similarly both cross-sections 365 

show two distinct clusters of seiscmicity at depths of ~3-7 km. However, seismicity around 366 

these main features appears more scattered in the automatically created sub-catalog 367 

compared to the sharp boundaries of these features in the manually re-picked sub-catalog 368 

(Figure 6, b, d, Figure S9 in Supplement).  369 
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 370 

Figure 6: Close-up map and cross-section of well-constrained earthquake locations of the 371 
PhaseNet picked (a-b, 968 events) and the manually re-picked sub-catalogs (c-d, 1391 events). 372 
Yellow triangles indicate the OBS stations. Cross-sections include earthquakes within 1 km 373 

distance of the profiles in (a) and (c). 1-uncertainty in map view is the average uncertainty 374 
of the error-ellipses of all plotted events, for the cross-sections it is the average of the vertical 375 
error of all events.  376 

Although the differences between the PhaseNet and manual picks are mainly within the range 377 

of ± 0.1 s (Figure 4, c-h), there are overall more well-constrained events with a significantly 378 

lower RMS residual after manual re-picking (Figure 5, a-b). Therefore, a geological 379 

interpretation from the manual re-picks would be able to describe features more precisely 380 

(e.g., more accurate dipping angle of seismicity or spatial cluster characteristics). 381 
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Fully Automatic Earthquake Catalog Compilation 382 

Here, we compare the located earthquake catalogs from the three automatic approaches, 383 

each applied to the ~12-months continuous dataset. We imposed the same quality control 384 

criteria after location that were applied to the sub-catalogs (Figure 5). For both approaches 385 

using PhaseNet as a phase picker, we see similar results in location quality (Figure 7). When 386 

using Lassie as an event detector and subsequently only retaining PhaseNet picks on the 387 

detected events that can be associated with the theoretical arrival times calculated by Lassie, 388 

a total of 20,626 Lassie-detected events with a sufficient number of phase picks could be 389 

located out of a total of initial 112,315 Lassie detections. 2745 events are considered as well-390 

constrained according to the quality thresholds (Figure 7, a). Using PhaseNet followed by the 391 

GaMMA associator yielded a total of 19,450 events of which 19,031 events could be located 392 

and 3011 are left as well-constrained events (Figure 7, b). Using EQTransformer followed by 393 

the GaMMA associator, NonLinLoc located 36,021 of initially 70,722 detected events with 394 

1769 of them being left as well-constrained events (Figure 7, c). The RMS residual distribution 395 

of the located events from EQTransformer and GaMMA catalog is much broader compared 396 

to the other two approaches and 8966 events have RMS residuals beyond the shown x-limit 397 

of 0.6 s (Figure 7, c). However, the average error ellipsoid length and hypocentral spread do 398 

not show such a broad distribution with many events below the applied thresholds (Figure 7, 399 

f, i) suggesting that the RMS residual criterium contributes most to the quality control. 400 
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 401 

Figure 7: Same as Figure 5 but for the automatic catalog compilation approaches ran on the 402 
~12-months continuous dataset: Lassie with PhaseNet (a,d,g,j), PhaseNet with GaMMA 403 
(b,e,h,k), and EQTtransformer with GaMMA (c,f,i,l). 404 

Similar to the observations between the automatically and manually re-picked sub-catalogs, 405 

the three automatic approaches result in a magnitude of completeness of ML = 1.0. The only 406 

difference being the goodness-of-fit method for the EQTransformer and GaMMA approach 407 

(Mcc = 0.8), where the difference to the ML = 1.0 bin is small (Figure 7, l). After applying the 408 

quality control thresholds on the three catalogs, the number of events with ML ≥ 1.0 is 1510 409 

for the Lassie and PhaseNet catalog, 2037 for the PhaseNet and GaMMA catalog, and 947 for 410 
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the EQTransformer and GaMMA catalog. As observed in Figure 5, e-f, this shows that neither 411 

approach seems to systematically dismiss or favor small or large magnitude events and 412 

location quality control criteria affect events of all magnitudes (see also Figure S8 in 413 

Supplement). 414 

From the resulting seismicity patterns based on the well-constrained events of the automatic 415 

approaches (Figure 8) we can see similar features as for the manually refined sub-catalog 416 

(Figure 6): a central, clearly dipping main band of seismicity and a cluster of seismicity towards 417 

the Northwest (Figure 8). However, for the EQTransformer and GaMMA approach, the 418 

clusters appear more scattered compared to the PhaseNet picked approaches. The RMS 419 

residuals of all three approaches hardly differ. 420 
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 421 

Figure 8: Similar to Figure 6 but shown here are the well-constrained events from the 422 
automatic catalog compilation approaches: (a-b) Lassie and PhaseNet, (c-e) PhaseNet and 423 
GaMMA, (e-f) EQTransformer and GaMMA.   424 
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Discussion  425 

In this study we showed how modern deep-learning and network-based alogrithms can 426 

effectively be utilized in workflows for automatic earthquake catalog compilation from local 427 

OBS datasets. Implementing Lassie, PhaseNet, and the GaMMA associator into the workflow 428 

can save a lot of time compared to the manual work while resulting in interpretable seismicity 429 

after applying strict location quality control criteria (Figure 8, a-d). However, finding the 430 

suitable approach depending on the dataset and aim of the study requires extra care. The 431 

performance of the automatic approaches can vary strongly, the limits of interpretable 432 

seismicity have to be considered, and manual re-evaluation of automatic detections and picks 433 

can still be necessary. 434 

Performance of Automatic Approaches in Catalog Compilation 435 

With the strongly dataset-dependent performance of deep-learning phase pickers (H. Chen 436 

et al., 2022, J. Chen et al., 2023; Münchmeyer et al., 2022) and the wide range of noise 437 

conditions in OBS datasets (Stähler et al., 2018; Trabattoni et al., 2023), using an event 438 

detection algorithm that does not rely on phase pickers is favorable. In this study both deep-439 

learning approaches resulted in either a catalog with many additional detections and poor 440 

pick quality (EQTransformer and GaMMA) or a catalog that systematically excludes smaller 441 

events (PhaseNet and GaMMA). Both approaches share in common, that the initial processing 442 

step is performed on single stations without using the concurrent record of waveforms by a 443 

seismic network and therefore entirely rely on accurate phase picking at this stage. The 444 

network-based Lassie detector in turn first exploits the contribution of the wave amplitudes 445 

of several seismic stations of a network to a joint detection function without having to rely on 446 

accurate phase picks. With Lassie, we thus obtained an unpicked catalog of 112,315 events. 447 
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While the majority of these events could not be picked well enough by PhaseNet to obtain a 448 

sufficient number of phases for event location (Figure 7, see Figure S10 in Supplement), the 449 

advantage with this approach is that the events are registered in the catalog and preserved 450 

for subsequent processing steps. For example, manual refinement of picks during swarm 451 

activity could be envisaged. Despite its network-based character, Lassie includes many SDEs 452 

visible only on single stations in the initial catalog. These will only be removed after phase 453 

picking by requiring a minimum number of phases for subsequent location. The catalogs 454 

based on single station phase picking as initial processing steps effectively discard SDEs 455 

already during event association by the GaMMA associator with the chosen requirement of 456 

at least three P picks from different stations for event detection. 457 

We observed a high detection rate with EQTransformer and GaMMA, but this is mostly due 458 

to EQTransformer picking three times the amount of P phases compared to PhaseNet while 459 

the location results show that the pick quality is worse compared to the other approaches. In 460 

this study, PhaseNet as a picker combined with the GaMMA associator resulted in less false-461 

positives compared to EQTransformer. However, the performance of the used pickers on OBS 462 

data cannot be generalized. For example Chen et al. (2022) reported less false-positives when 463 

using EQTransformer compared to PhaseNet on an OBS dataset from the Southern Mariana 464 

Trench. With many events in their study located at distances > 10 km from the nearest station, 465 

and EQTransformer being trained on a global event catalog with events at distances of 466 

hundreds of kilometers, EQTransformer may not be applicable to local OBS studies with small 467 

aperture networks while performing well in regional studies. This agrees with the better pick 468 

performance of EQTransformer for a local OBS study when artificially increasing S-P travel 469 

times of the input data for EQTransformer by resampling it to 200 Hz (Gong et al., 2022).  470 
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Future models trained on OBS datasets could improve the performance of both event 471 

detection and phase picking. With the wide range of OBS instruments, network sizes, and 472 

regional specific noise levels even within a deployment (Stähler et al., 2016; Parnell-Turner et 473 

al., 2020; Meier et al., 2021; Chen et al., 2022; Trabattoni et al., 2023), large, manually picked 474 

training datasets are needed. As already observed for land-based datasets, the performance 475 

of deep-learning models can vary depending on the dataset they are trained and used on 476 

(García et al., 2022). Thus, future approaches utilizing OBS-trained deep-learning models will 477 

likely still require manual supervision depending on the dataset and aim of the study.  478 
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Schemes of Manual Re-Picking depending on the Aim of the Study 479 

We showed that available land-based deep-learning models can already be utilized during the 480 

workflow to save much of the time needed for manual phase picking. When using a suitable 481 

approach for the dataset (for this study: PhaseNet as a phase picker) the majority of P and S 482 

picks are within ± 0.1 s of a manual pick (Figure 4, c-j). Manual revision mainly includes 483 

removing false or misidentified picks and adding missed picks. Many badly picked events can 484 

be automatically removed from the catalog after location by applying strict location quality 485 

criteria. Resulting seismicity patterns from automatically picked well-constrained events are 486 

comparable to manually revised well-constrained events (Figure 6). Using a location algorithm 487 

that reliably recognizes and downweighs outlier picks during location can further improve the 488 

location results of fully automatic approaches, provided the majority of automatic picks is of 489 

good quality (Figure 4, c-j). For example, the EDT_OT_WT inversion scheme implemented in 490 

NonLinLoc downweighs outliers and the location results are very similar for both the 491 

PhaseNet picked and manually re-evaluated sub-catalogs with picks at ≥ 7 stations (see Figure 492 

S11 in Supplement). Location quality is improved compared to the GAU_ANALYTICAL 493 

inversion scheme (see Figure S12 in Supplement). However, if only few stations contribute 494 

phase picks, outliers may not be correctly identified and potentially high-quality picks may be 495 

rejected unless a measure of the pick quality (e.g., signal to noise ratio, phase probability) is 496 

considered during inversion. Therefore, weighing schemes as the EDT_OT_WT inversion 497 

scheme are best used for large networks, where a sufficient number of picks per event are 498 

available and outliers can be reliably identified as such.  499 

A fully automatic approach can give a good general overview of the recorded seismicity. 500 

However, manual phase refinement retains more high-quality events and achieves an overall 501 
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better location quality. Additionally, even badly picked events in automatic approaches may 502 

result in location parameters that pass the quality control thresholds and thus, extra care 503 

should be taken when interpreting the resulting seismicity patterns. For an in-depth analysis 504 

of small-scale features (e.g., intrusions, fluid flow, aseismic areas) manual re-picking should 505 

still be applied. This becomes especially important with small-scale local OBS deployments, 506 

where one or two false picks significantly impact the location result. Here, a detailed analysis 507 

of the location results and phase picks is needed to, e.g., identify a systematically mis-picked 508 

P phase at a single station (Figure 4, e). Furthermore, for a robust velocity model and station 509 

correction terms a high-quality, manually re-picked sub-catalog should be compiled as both 510 

impact the location results (Grevemeyer et al., 2019; Schlindwein, 2020) and the automatic 511 

pick accuracy is not sufficient yet (Chen et al., 2023). However, our study shows that fully 512 

automatic procedures and a preliminary location can give a good overview catalog that serves 513 

as a basis for subsequent detailed analysis. Depending on the aim of the study a sub-catalog 514 

of the best-constrained events to develop a velocity model can be extracted and refined by 515 

manual re-picking. Likewise, the manual labor of phase pick refining can be concentrated on 516 

previously poorly constrained events. Distributions of RMS (as in Figure 7, a-c) or station 517 

residuals (as in Figure 4, c-j) based on the automatically compiled preliminary catalog give an 518 

excellent overview of the data quality and can help to tailor dataset specific criteria for 519 

optimally targeting manual labor in order to retain more events that pass the quality control 520 

criteria. 521 

Catalog Completeness 522 

When comparing the magnitude ranges of the resulting well-constrained catalogs (Figure 5, 523 

g-h; Figure 7, j-l) we observed no correlation between the event magnitude and the pick 524 
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quality, e.g., events of smaller magnitudes being more prone to bad phase picking than larger 525 

events (see also Figure S8 and Figure S13 in Supplement). Instead, events with magnitudes of 526 

all sizes may be discarded on the basis of bad location parameters. Hence, magnitude of 527 

completeness thresholds and b-values determined from automatically compiled catalogs 528 

have to be considered with care. If catalog completeness is one aim of a study, it is best to 529 

use a detection approach independent of phase picks to detect as many events as possible 530 

and manually re-pick events above a targeted completeness threshold. Subsequent event 531 

location and magnitude determination results in robustly located events with only few events 532 

being removed by location quality criteria (Figure 5), such that completeness can be achieved 533 

and robust estimates of b-values can be obtained. 534 

Conclusions and Recommendations 535 

We showed that modern deep-learning and geometry-based earthquake detection and phase 536 

picking algorithms can already be utilized to obtain located earthquake catalogs from a local 537 

OBS dataset. All automatic approaches result in a similar seismicity pattern and seemingly 538 

catalog completeness. The main differences are the location quality and thus, the number of 539 

well-constrained events after applying quality control criteria varies. Good, geologically 540 

interpretable results were achieved with the combination of Lassie and PhaseNet as well as 541 

PhaseNet and GaMMA. EQTransformer is not working as well for local seismicity in the marine 542 

environment. The sharpest seismicity patterns can be achieved by manually re-picking the 543 

automatic picks. Manual picks should also be the base for developing a velocity model or for 544 

local tomography, as the quality of available pickers is still insufficient for these purposes. For 545 

large OBS networks with a sufficient number of picks per event, using an inversion scheme 546 

that identifies and downweighs outliers (e.g., EDT_OT_WT in NonLinLoc) can further improve 547 
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the location results. Using a network-based and pick-independent event detection software, 548 

like Lassie, results in an initial event catalog that includes also weak events for further analysis 549 

that go undetected in phase-pick dependent automatic procedures. 550 

When applying fully automatic catalog compilation approaches, we recommend to evaluate 551 

the performance of the used event detectors and phase pickers on a reference subset of 552 

manually detected and picked events. This way, appropriate algorithms can be tested and 553 

chosen based on the aim of the study, e.g., if false-positives or a potential systematic omission 554 

of small events are a concern. Additionally, station-specific systematic picking errors can be 555 

identified and their impact on the resulting seismicity pattern evaluated. Dataset- and 556 

purpose-tailored schemes of manual re-picking can then be developed to minimize manual 557 

work while optimizing the resulting catalog. Eventhough land-based deep-learning 558 

approaches in marine seismology still show limitations and additional supervisional steps 559 

during the automatic catalog compilation are necessary, the amount of time that can be saved 560 

compared to a completely manually compiled earthquake catalog is considerable. Datasets 561 

from large OBS networks can be automatically processed more effectively compared to small 562 

OBS networks, where the impact of a few mis-picked phases on the final location quality is 563 

more significant.  564 
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Data and Resources 565 

The Loki dataset is accessible at GEOFON (doi:10.14470/3Z326135), Bathymetry data in Figure 566 

1 is from Kartverket (www.kartverket.no), Figure 4 (a,b), S1, S2, S5, S6 and S7 were prepared 567 

using ObsPy (Beyreuther et al., 2010; Tobias Megies et al., 2011; Krischer et al., 2015), Figure 568 

1 Figure 6, Figure 8, S9, and S11 were prepared using Generic Mapping Tools version 6 (Wessel 569 

et al., 2019). Supplemental Material for this article includes waveform plots of the reference 570 

days, examples of event detections from different approaches, and a plot showing the 571 

number of events manually detected from the reference day which are automatically 572 

detected and left as well-constrained events after location. Further it includes plots for the 573 

magnitude distributions of events rejected by the location quality thresholds and the relation 574 

of the magnitude to the average error ellipsoid length for all catalogs, a plot showing the 575 

distance between located events for both sub-catalogs, and two plots showing the location 576 

results using NonLinLoc’s EDT_OT_WT inversion scheme. Electronic Supplement includes the 577 

five located earthquake catalogs used in this manuscripts. 578 
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Figure Captions List 768 

Figure 1: a): Overview map showing the study area (red square) ) in the Norwegian-769 

Greenland Sea. MR = Mohns Ridge, KR = Knipovich Ridge. b): Bathymetry of the Mohn-770 
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Knipovich Ridge bend including the positions and numbers of the OBS stations (yellow 771 

triangles) and the position of Loki’s Castle (red star). Bathymetry data from Kartverket 772 

(www.kartverket.no). 773 

Figure 2: Schematic workflows used for this study. a): For event detection we used a subset 774 

of 11 control days and compared a manually compiled event catalog to the event detections 775 

of three automatic detectors (Lassie, PhaseNet/GaMMA, and EQTransformer (EQT) 776 

/GaMMA). b): From the continuous dataset three automatically detected and picked event 777 

catalogs were compiled (top box, right). A sub-catalog of Lassie detected and PhaseNet 778 

picked, best- constrained events was manually re-picked for comparison with the original 779 

PhaseNet picks (top box, left). For event location, both sub-catalogs (bottom box, left) and 780 

the three automatically compiled catalogs (bottom box, right) were located and location 781 

quality-control criteria were applied before comparing the location results. Numbers in 782 

squares refer to the corresponding figures. 783 

Figure 3: Single day comparison of the three different event detection approaches with the 784 

reference event database. (a-c): Number of events automatically (green bars) and manually 785 

detected (black line, reference database) at ≥ 3 stations over time. (d-f): Number of 786 

automatically detected events that are also in the reference database (black line,) and 787 

additional events (orange bars) in relation to the Lassie detection value or GaMMA score. OUT 788 

indicates the number of manually detected event above the shown values. (g-i): Number of 789 

automatically detected events (green bars) that are part of the reference database (black line) 790 

in relation to the number of stations where the event was seen. 791 

Figure 4: (a-b): Example showing the automatic (PN = PhaseNet, EQT = EQTransformer) and 792 

manual P and S phase picks at station LOK03. Data is 8-25 Hz bandpass filtered and amplitude 793 
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is scaled to the maximum trace value. (c-j): Time difference between the manual and 794 

PhaseNet P (red) and S (green) phase picks for each station (bin width 0.1 s). O: Number of 795 

picks outside the shown x-limits, K: Percentage of PhaseNet picks that were kept unchanged, 796 

D: Percentage of deleted PhaseNet picks, A: Percentage of manually added picks in final picks. 797 

Figure 5: Statistics for the NonLinLoc location results comparing the catalogs based on 798 

automatic PhaseNet picks (a,c,e,g) and manual re-picks (b,d,f,h). Shown are the RMS residual 799 

(a,b, bin width 0.01 s), average error-ellipsoid length (c,d, bin width 0.05 km), hypocentral 800 

spread (e,f, bin width 0.02 km), and local magnitude ML (g,h, bin width 0.2, Mcg = goodness 801 

of fit; Mcc = maximum curvature) distributions after applying the location quality control 802 

thresholds (dashed lines). Black bars show the histogram distributions after applying 803 

thresholds. OUT indicates the number of events above the shown range. Nthr. = number of 804 

events below thresholds. 805 

Figure 6: Close-up map and cross-section of well-constrained earthquake locations of the 806 

PhaseNet picked (a-b, 968 events) and the manually re-picked sub-catalogs (c-d, 1391 events). 807 

Yellow triangles indicate the OBS stations. Cross-sections include earthquakes within 1 km 808 

distance of the profiles in (a) and (c). 1-uncertainty in map view is the average uncertainty 809 

of the error-ellipses of all plotted events, for the cross-sections it is the average of the vertical 810 

error of all events.  811 

Figure 7: Same as Figure 5 but for the automatic catalog compilation approaches ran on the 812 

~12-months continuous dataset: Lassie with PhaseNet (a,d,g,j), PhaseNet with GaMMA 813 

(b,e,h,k), and EQTtransformer with GaMMA (c,f,i,l). 814 
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Figure 8: Similar to Figure 6 but shown here are the well-constrained events from the 815 

automatic catalog compilation approaches: (a-b) Lassie and PhaseNet, (c-e) PhaseNet and 816 

GaMMA, (e-f) EQTransformer and GaMMA. 817 


