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Abstract: In this work, we revise the retrieval of extinction coefficient profiles from Raman
Lidar. This is an ill-posed problem, and we show that methods like Levenberg–Marquardt
or Tikhonov–Phillips can be applied. We test these methods for a synthetic Lidar profile
(known solution) with different noise realizations. Further, we apply these methods to
three different cases of data from the Arctic: under daylight (Arctic Haze), under daylight
with a high and vertically extended aerosol layer, and at nighttime with high extinction.
We show that our methods work and allow a trustful derivation of extinction up to clearly
higher altitudes (at about half a signal-to-noise ratio) compared with the traditional, non-
regularized Ansmann solution. However, these new methods are not trivial and require
a choice of parameters, which depend on the noise of the data. As the Lidar signal
quality quickly decreases with range, a separation of the profile into several sub-intervals
seems beneficial.

Keywords: Raman Lidar; aerosols; extinction coefficient profile; retrieval; regularization

1. Introduction
Atmospheric aerosols of different origins are found globally with high spatial and

temporal variability. Depending on their sizes, shapes, and chemical compositions, they
scatter or absorb light (direct radiative effect). Further, they interact with the surrounding
atmosphere, e.g., by the uptake of water vapor or reactive trace gases. In moist conditions,
atmospheric aerosols grow in clouds and determine cloud properties [1] (aerosol indirect
radiative effect). Due to the large amount of physical and chemical processes, the uncer-
tainty of aerosols in regard to their direct and indirect effects in climate models is very
large [2]. Recently, Li et al. [3] estimated an uncertainty of 30% of aerosol direct forcing and
100% of indirect forcing.

Using remote sensing, like Lidar (Light Detection and Ranging) and in situ instruments,
aerosol properties can be investigated. Both measurement types have been substantially
improved over the last decades in respect to spatial and temporal distribution. Chemical
analysis of aerosols is usually performed by in situ measurements, which are mostly lo-
cated on the ground. However, as aerosols modify the temperature profile and, hence, the
stability of the underlying atmosphere, their properties must be studied in the atmospheric
column [4,5]. Unfortunately, there is still a knowledge gap concerning the chemical compo-
sition of aerosols within the atmospheric column [6].
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One critical aerosol parameter is the single scattering albedo (SSA), defined as the
ratio of scattering to scattering plus absorption, as follows:

SSA(λ) =
σλ

σλ + absλ
=

σλ

αλ
(1)

where σλ, absλ, and αλ refer to the volumetric coefficients of scattering, absorption, and
extinction, respectively, for the light of the wavelength λ. Hence, a precise knowledge of
the SSA characterizes the aerosol absorption and needs to be known in order to determine
the sign of the radiative forcing in terms of cooling or warming [4].

Since multiple and internally totally different aerosol layers can occur simultaneously
in the atmospheric column, it is important to retrieve precise vertical profiles for extinction
and scattering. Lidar provides a technology to measure these quantities with a resolution of
about 10 m in a few minutes. A multi-wavelength Lidar, typically operating at wavelengths
of 355 nm, 532 nm, and 1064 nm, measures the aerosol backscatter coefficients of all laser
wavelengths and the aerosol depolarization [7,8]. With these parameters, the shape and
size of aerosol can be roughly estimated. However, to maximize the information content
of Lidar data, a real inversion to retrieve the microphysical aerosol properties (like size
distribution and refractive index) must be performed [9,10].

The retrieval of the particle size distribution is an inherent ill-posed problem and needs
regularizing inversion techniques, e.g., the regularization method of Tikhonov–Phillips
(successfully employed in [10,11]) or the regularizing Levenberg–Marquardt iteration (suc-
cessfully utilized in [12,13]). However, such an inversion additionally requires knowledge
of the extinction coefficients with high quality at two different wavelengths.

This information is typically provided by using the inelastic Raman effect at N2

(O2) molecules, which provides a fixed wavelength shift with respect to the laser
wavelength [7,8]. Ansmann et al. [14] describe a straightforward way to derive the ex-
tinction from the inelastic Raman Lidar equation, as follows:

SRa(R) := PRa(R) · R2 = C · NMol(z) exp
(
−

∫ R

R0

[
αλ0(R̂) + αλRa(R̂)

]
dR̂

)
(2)

where PRa(R) is the observed Raman Lidar profile at distance (Range) R, beginning at
the altitude of complete overlap R0 between a laser beam and the field of view of the
recording telescope; SRa is the corresponding “range corrected signal”; NMol is the number
concentrations of the gas of the considered Raman effect; C is basically an instrumental
constant; and α is the extinction coefficient at the original laser wavelength λ0 and at the
Raman-shifted wavelength λRa.

From this Equation (2), one can easily derive the aerosol extinction coefficient αλ0,Aer,
because the (total) extinction α is the sum of the extinction of the components of aerosol
(“Aer”) and Rayleigh (“Ray”) due to the molecules. Furthermore, the assumption is made
that the aerosol extinction at the laser and the Raman-shifted wavelengths are connected
via a power law of the Ångström exponent å, i.e.,

αλ0,Aer

αλRa,Aer
=

(
λRa

λ0

)å

(3)

An assumption of a value for å is uncritical, as pointed out by [14], because the
wavelength shift from λ0 to λRa is small. Hence, we directly obtain

αλ0,Aer(R) =

d
dR

[
ln NMol(R)

SRa(R)

]
− αλ0,Ray(R)− αλRa,Ray(R)

1 +
( λ0

λRa

)å(R)
(4)
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Equation (4) is the normal “Ansmann solution” for the extinction. It states that the
aerosol extinction can be directly retrieved from the range-corrected Raman Lidar signal
SRa, if an air density profile is available to calculate the number of molecules NMol for
the Raman scattering and the molecular contribution of extinction at the original and
Raman-shifted wavelengths (αRay at λ0 and λRa).

Even if the determination of the aerosol extinction from Raman Lidar data seems to
be straightforward without critical assumptions, one fundamental problem remains. The
extinction only enters the Raman Lidar equation by the exponential term at the right of
Equation (2). This term is infinitely often continuously differentiable (with respect to the
range). This means that whatever the extinction coefficient profile is, its impact on the Lidar
signal is smooth. Hence, the derivation of an extinction coefficient from Lidar data is, from
a mathematical point of view, an ill-posed problem. This has already been pointed out, e.g.,
by [15–17]. Therefore, noise can easily destroy the calculation of the extinction coefficient.
Hence, improving the retrieval of the extinction coefficient profile is still an important issue
since, for the microphysical retrieval, as mentioned above, high-quality data are necessary.
Recently, a new genetic algorithm was described by Hu et al. [18].

Here, we present a new method for improving the aerosol extinction retrieval
αλ0,Aer(R) from Raman Lidar using regularization techniques. In particular, we have

to find the derivative of the term ln
(

NMol(R)
SRa(R)

)
from Equation (4) in order to determine the

extinction by regularization. In Appendix A, we briefly give the mathematical fundamen-
tals of this topic.

The data for this study are taken from the AWIPEV station, a German–French research
base in Ny-Ålesund on the northwestern coast of Svalbard, an archipelago in the European
Arctic (see Figure 1). The Raman Lidar “KARL” (Koldewey Aerosol Raman Lidar) emits
three pulsed laser beams (355 nm, 532 nm, and 1064 nm) with 200 mJ per pulse at 50 Hz.
The backscattered signal is recorded by a 70 cm telescope operating at a field of view of
about 1.75 mrad, which has a complete overlap at an approximately 700 m altitude. More
information about the system can be found in Hoffmann [19]. This system uses transient
recorders from Licel, which records the Lidar profiles in both analog and photo-counting
mode [20].

Figure 1. Location of Ny-Ålesund with our Lidar system on the west coast of Spitsbergen in the Euro-
pean Arctic. Sources: https://geokart.npolar.no/Html5Viewer/index.html?viewer=Svalbardkartet
and https://de.wikipedia.org/wiki/Datei:Europe_on_the_globe_(red).svg (last accessed: 20 Febru-
ary 2025).

https://geokart.npolar.no/Html5Viewer/index.html?viewer=Svalbardkartet
https://de.wikipedia.org/wiki/Datei:Europe_on_the_globe_(red).svg
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2. Methods and Algorithms
As already mentioned in the Introduction, the derivative in our extinction equation

(Equation (4)) is x = y′ with

x(R) :=
d

dR
y(R) = − d

dR

[
ln

PRa(R) · R2

NMol(R)

]
. (5)

Again, R is the range, PRa is the Lidar signal of the Raman channel, and NMol is the
number concentration of the gas under consideration for the Raman effect.

Here, we use the regularization method of Tikhonov–Phillips (Equation (A8)) and the
regularizing Levenberg–Marquardt iteration (Equation (A9)) together with the L-curve
rule (see Appendix A). Both methods were already successfully used for the microphysical
retrieval, as mentioned in the Introduction. Note that from the Raman Lidar Equation (2),
it follows that

y(R) = ln
(

1
C

)
+

∫ R

R0

[
αλ0(r) + αλRa(r)

]
dr. (6)

Hence, y(R) has the physical meaning of a total optical depth, which does not start with
the value 0 at R0 due to the Lidar constant C. The profile y (or its discrete version Y) can be
seen as the cumulative total optical depth, when it is shifted constantly, such that y(0) = 0. In
the following, we will investigate the cumulative total optical depth just over an interval of
interest [R0, Rmax] ⊂ R+. A common choice in this work is R0 = 750 m (which is definitely
above our overlap height). Note that, in principle, the overlap can be corrected to some
extent, e.g., in Thorsen et al. [21] .

Now, we describe several possibilities to adopt the regularization standard meth-
ods to solve Equation (4), namely, to calculate the included derivative x of the term y
(Equations (5) and (6)). An example of y is given in Figure 2(right). Figure 2(left) shows
the analog signal of N2 at 607 nm in an arbitrary unit for a case with Arctic Haze. As men-
tioned before, the function y basically describes the cumulative sum of the total (aerosol +
Rayleigh) optical depth (cumulative total AOD) over our interval of interest [R0, Rmax].

Figure 2. (Left) Signal P607analog from 28 March 2022, 08:02 UT, in an arbitrary unit.
(Right) Corresponding term y, the cumulative total optical depth.

We investigate and compare the following methods. Methods 2–4 are improved
extensions of method 1.

1. The well-known method of Ansmann et al. [14,22];
2. Tikhonov–Phillips method (a) and variable Levenberg–Marquardt method (b) over

the entire interval of interest
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3. Tikhonov–Phillips method (a) and variable Levenberg–Marquardt method (b) over
part-intervals, which are determined by splitting the interval (SI) by a priori heuristi-
cally well-structured experiences;

4. Tikhonov–Phillips method (a) and variable Levenberg–Marquardt method (b) with
an a posteriori SI suggested in Pornsawad et al. [16].

2.1. Basic Algorithm

Any signal P is given as a discrete point set P = [P1, . . . , Pn]. In fact, there is an
equidistant grid {R0, . . . , Rn} with a grid length h from R0 = Hbase up to Rn = Hmax,
where Hbase is the height of the base station and Hmax is the maximum height, for which
we calculate the extinction. The discrete points are given by

Pi =
∫ Ri

Ri−1

P(r)dr ≈ hP(Ri) (7)

for i ∈ {1, . . . , n}. To apply the theory from Appendices A and B to these data, we need
a discretization of y (see Figure 2 as well). Therefore, we approximate y as a piece-wise
constant function

y(R) ≈
n

∑
i=1

yiϕi(R) (8)

with the base functions {ϕ1, . . . , ϕn} given by

ϕi : [R0, Rn] → R : r 7→ ϕi(r) :=

1 if Ri−1 < r ≤ Ri

0 else
(9)

similar to the base function from Appendix B. Instead of the true values y(Ri), which are
not available, we use approximated values y as coefficients. They are defined as follows (in
practice, the term ln(h) can be neglected since it is constant and cancels out in (11) anyway):

yi := − ln
P(Ri)R2

i
NMol(Ri)

+ ln(h) = − ln
1
h P(Ri)R2

i
NMol(Ri)

≈ − ln
P(Ri)R2

i
NMol(Ri)

= y(Ri). (10)

The task is to differentiate the data vector Y over the interval of interest [Rs, Rt] with
1 < s < t ≤ n; in detail, the vector is

Y = [ys, . . . , yt]− ys−1 · [1, . . . , 1] (11)

in [Rs, Rt] such that Rs is a height where now overlap occurs anymore. With respect to
Rt, we want to mention an a priori criterion for the data quality. The extinction coefficient
states how much (percentage) of the light is absorbed or scattered from particles at height R.
Thus, this value has to be always positive. Looking into Equation (4), we see that also the
derivative (see Equation (5)) has to be positive, even bigger than αλ0,Ray(R) + αλRa,Ray(R).
Hence, a monotonically increasing signal function y is expected. For our example, looking
at Figure 2(right), we deduce that, for heights R > 4500 m, no more information may be
contained in the Raman signal, and we should choose Rt < 4500 m.

Then, the solution function x = y′ in [Rs, Rt] is given as

x(R) ≈
t

∑
j=s

xjϕj(R) (12)
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where the coefficients X = [xs, . . . , xt] solve

AX = Y. (13)

Here, the matrix A is the discretization of the classical integral equation accord-
ing to Appendix B (see Equation (A19)). We point out that the constant shift ys−1 in
Equation (11) does not change the derivative, but is necessary as described in
Equations (A15) and (A18).

2.2. Algorithms for Splitting the Data (SI)

A variable noise level is a problem for regularization. Every theoretically admissible
parameter choice rule does depend on the noise level [23]. We deduce that, in general,
every parameter choice α for given noisy data fits best to a certain noise level. Hence, if
the noise level is not constant, the parameter α cannot be optimal for every part of the
solution. Thus, in methods 3 and 4, we consider splitting the data vector Y into smaller
pieces (splitting of interval (SI)), differentiating them piece-wise, and sticking the solution
together. We separate the interval of interest [Rs, Rt] into part-intervals as follows:

[Rs1 , Rs2 ], [Rs2 , Rs3 ], . . . , [RsK−1 , RsK ] (14)

with s = s1 < s2 <. . .< sK = t. By splitting the interval, we may compute different
regularization parameters for each part-interval. Sticking the solutions together should,
hence, lead to an improved result.

Although this turns out to be very promising, especially for high altitudes, we need to
decide how to split the interval. At least the following two a priori choices are possible:

1. Based on the noise of the data, choose an interval separation such that every single
interval has approximately the same noise level.

2. Based on the cumulative sum of the extinction solution αAer = βAer · LR from Klett’s
method, consisting of the backscatter coefficient βAer and the Lidar ratio (LR), deter-
mine an interval separation such that

si+1

∑
j=si

α(Rj) (15)

is constant for every i ∈ {1, . . . , K − 1}. That is, in every part-interval, there may be
the same amount of information (extinction).

Furthermore, we will test an a posteriori interval choice method from Pornsawad et al. [16],
which introduces the interval length as an additional regularization parameter. We define

It̃,k = [Rt̃, Rt̃+k] (16)

for k < t − t̃. The method works as follows:
Input: Discrete data Y for the interval [Rs, Rt] of interest (see Equation (11)).
Output: Regularized discrete derivative X.

1. Set t̃ = s.
2. For k ∈ {4, . . . , (t − t̃)}, compute the regularized derivative Xk of Y in It̃,k with a

regularization method and the L-curve parameter choice rule. Store the regularization
parameter αk and its corresponding curvature ck of the L-curve.

3. Set k∗ = arg max ck. Store Xk∗ as the final solution over It̃,k∗ = [Rt̃, Rt̃+k].
4. Set t̃ = t̃ + k + 1 and restart at (2) until t̃ ≥ t.
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The idea is to choose intervals with “good” L-curves. This should ensure that a good
regularized solution could have been determined. Note that k ≥ 4 in step 2 is necessary,
as this is the minimum number of points that we need to calculate the curvature of the
L-curve. By choosing a higher value for the lower bound of k, it is possible to enlarge the
minimum length of each part-interval.

Additionally, the two parameters kup and kdown can be specified. They define the
number of discrete points, which we are adding to the part-interval at both ends before
calculating the derivative. After computation, we just take the solution from the original
part-interval. Thus, we get rid of possible uncertainties occurring at the interval ends. For
example, we observed that, at both ends of the part-interval, mathematical oscillations may
occur. Furthermore, the solution near the left end of the interval is partly influenced by the
shift value.

2.3. Appropriate Shifting of the Data

As mentioned before, the shift of the data Y has an impact on the accuracy of the
solution. This is especially of interest when splitting the interval, as we need to shift the
data again for every part-interval. Since the data point ys−1 (default shift) may also be
highly influenced by noise, we must find another way to shift the data. The main idea
here is to approximate the shift ys−1 by the solution X = [xr, . . . , xs−1] of the below interval
[Rr, Rs−1], if it exists. We have

ys−1 ≈ y(Rs−1) = y(Rr−1) +
∫ Rs−1

Rr−1

d
dr

y(r)dr (17)

= y(Rr−1) +
∫ Rs−1

Rr−1

x(r)dr (18)

≈ yr−1 + h
s−1

∑
k=r

xk. (19)

Assuming that [xr, . . . , xs−1] is a good regularized approximation of X over [Rr, Rs−1],
the uncertainty of this shift mainly depends on the uncertainty of the data point Y(Rr).
Since the signal-to-noise ratio (SNR) is getting worse with height, this may have a lower
uncertainty than Y(Rs−1). We point out that if there is an uncertainty in the calculation of
X, this uncertainty is transported with this shift into the next interval. If no solution of a
lower interval is provided, but we are already at altitudes, where the data are very noisy,
we consider approximating the shift ys−1 by any running mean.

2.4. The Levenberg–Marquardt Method with Variable Step Width

The Levenberg–Marquardt method comes with a relaxation parameter γ in the fol-
lowing, considered as the step width. This step width can be chosen arbitrarily for the
Levenberg–Marquardt iteration [13,24,25]. Larger step widths allow a faster convergence
to the “exact” noisy solution, whereas small choices for γ result in very slow convergence
towards the “exact” noisy solution. Observations in test cases lead to the result that there
exists a relation between the L-curves of the iterated solutions for different values of γ.
Independent of the choice of γ, there exists always just one L-curve, i.e., a set in R2 on which
every pair (∥x∥, ∥Kx − y∥) of every possible iterated solution of the Levenberg–Marquardt
method obtained with any step width lies. If the step width now is too small, the progress
toward the exact solution is very slow, and it may occur that even large numbers of itera-
tions do not reach the L-corner. If the step width in return is too large, then the L-corner
may be “jumped over”. To prevent both, we consider calculating a few iterations with a
small step width and then restarting the iteration with a slightly larger step width. This
time, we take the last iterated solution as the starting value for the new one. Hence, we
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are making our way along the L-curve without making very big jumps. It turns out that
now the L-corner is much more likely to appear. However, small discontinuities of the
L-curve after an increased step width occur sometimes. As this may result in an unstable
curvature calculation, we consider interpolating the L-curve piece-wise. As this method
uses not just one but different values for the relaxation parameter γ, we call it the variable
Levenberg–Marquardt method.

3. Results
3.1. Sensitivity Quantification

Before presenting the proposed methods in different case studies of real Lidar data, we
will demonstrate the applicability of the regularized retrieval of the extinction coefficient
profile for a synthetic case with a known solution.

Exemplarily, we use the Levenberg–Marquardt method with an a priori interval
choice (method 3b). The focus does not depend on the choice of intervals, but rather on
the behavior of the method under variational noise. Therefore, a synthetic Lidar profile
was generated by solving the inelastic Lidar equation with an assumed extinction profile
(solution from Section 3.2 at UT 8:02). This Lidar profile has been disturbed twenty times
randomly by a uniform noise, which mimics a realistic noise level. We added this artificial
noise to the synthetic Lidar profile. This was performed by an estimation of the maximum
uncertainty of the Lidar profile for each height step. This uncertainty profile was then
multiplied twenty times with a random number in the range of [−1, 1] for each height step.

In Figure 3, the twenty different input Lidar signals and the average solution (the
extinction profile) over all these twenty cases are shown. The original, not smoothed,
non-regularized “direct” solution of Equation (5) is presented in cyan, while the regular-
ized solution, obtained with the Levenberg–Marquardt method, is presented in magenta.
Both functions of Figure 3(right) are the average of all noisy realizations. A drastic im-
provement of the precision was found, by which the extinction profile can be retrieved
using regularization.

Figure 3. (Left) Synthetic Lidar profile (red line) and 20 versions of perturbations by artificial noise.
The synthetic Lidar profile is obtained from the extinction of the 387 nm channel from 28 March 2022,
08:02 UT (cf. Figure A5). (Right) Extinction profile corresponding to the synthetic Lidar profiles with
artificially created noise. Profiles were obtained by averaging over the solutions from the 20 signals
shown in the right Figure. These solutions were computed with regularization method 3b (magenta
line) and without any regularization method (cyan line).

In Figure 4(left), the individual extinction profiles for these 20 Lidar profiles with
artificial noise are shown. We observe overall similar profiles that tend to deviate more with
height. Figure 4(right) displays the mean and maximum absolute deviation to the original
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extinction profile averaged by a running mean. The curves clearly show that the deviation
grows with altitude, which is natural, since the SNR decreases. Still, all individual solutions
appear similar in Figure 4. We conclude that, through regularization, the retrieval of the
extinction is possible up to higher altitudes compared with the non-regularized solution.

Figure 4. (Left) Extinction profiles of the 20 artificial noisy Lidar profiles shown in Figure 3(left)
computed with the Levenberg–Marquardt method and a priori SI (method 3b). (Right) Pointwise
maximum and mean deviation between the artificial extinction profiles from the left figure and the
original extinction profile that was obtained from the real Lidar signal (cf. Figure A5).

3.2. Analysis of Data from 28 March 2022

In this section, we will apply the regularization techniques to a case of Arctic Haze
during daylight. We will derive the extinction profiles for two different time steps and
interpret the results in terms of the local wind field.

3.2.1. Comparison of the Tikhonov–Phillips and Levenberg–Marquardt Methods

To present an overview of the conditions on this day, we consider the backscatter ratio
(BSR) at 532 nm first. The BSR at a given wavelength is defined as

BSR(R) :=
βAer(R) + βMol(R)

βMol(R)
(20)

and is shown in Figure 5.

Figure 5. Plot of the BSR on 28 March 2022 obtained with Klett’s method. The Lidar ratio was chosen
to be 50 sr.
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The data were obtained via Klett’s method, i.e., without the use of the Raman Lidar
signal. The solution with Klett’s method was computed with an arbitrarily predefined
constant Lidar ratio of 50 sr for these altitudes. One can easily see an increased backscatter
up to an approximately 2 km altitude. The maximum of the backscatter occurs between
08:00 UT and 09:00 UT at a height slightly above 1 km. Above a 2.5 km altitude, the
atmosphere is very clear and backscattering mainly occurs on air molecules.

A first step to evaluate the quality of the Raman Lidar signal P607 can be performed
by comparing the critical term Y (Equation (5)) with Klett’s solution. For the analysis of
this day, we decided on the analog measured signal (P607analog). A plot of this signal
and the corresponding term Y, which we want to differentiate, is shown in Figure 2 for
the time step at 08:02 UT. Looking at Y, we assume that its derivative should be positive
and nearly constant up to 1500 m. It should decrease afterwards to almost 0 above 2500 m.
Beyond this, the derivative should stay constant at 0, except for a small peak at 4500 m.
This observation fits approximately the extinction calculated from the Lidar ratio and the
backscatter coefficient obtained by Klett’s method Figure A6. Hence, we deduce that the
Raman Lidar signal contains enough information for a promising analysis with the method
of Ansmann et al. [14]. As the signal-to-noise ratio is relatively good up to 2000 m, we
expect that even the non-regularized solution is acceptable at this altitude and should, in
mean (averaging over time and height), give the same result as the regularized solution.

In Figure 6(left), the regularized solutions with Tikhonov–Phillips regularization and
the variable Levenberg–Marquardt method are shown for the selected time step. The
corresponding regularization parameters were determined using the L-curve method
(cf. Figure 7). Tables A1 and A2 in Appendix D list the parameters chosen for this case.

Figure 6. Regularized solutions of extinction coefficient for λ = 532 nm from 28 March, 08:02 UT.
(Left) Solutions are computed for the interval [750, 5500] m at once, i.e., methods 2a and 2b.
(Right) Solutions with a priori SI [750, 2000], [2000, 4000], and [4000, 5500] m, i.e., methods 3a and b.

We observe that both algorithms produce nearly the same solution, whereby the
solution of the Levenberg–Marquardt method seems to be a little bit smoother. The same
result occurs for other time steps (see Figure A7), because the L-curves, which are almost
identical for both methods, show good behavior. Therefore, we can assume that a solution
was found that fits well to the exact signal.



Remote Sens. 2025, 17, 841 11 of 33

Figure 7. L-curves corresponding to the regularized extinctions profiles (Figure 6) for λ = 532 nm
from 28 March 2022, 08:02 UTC. (Left) L-curves for solutions computed with methods 2a and 2b
(Figure 6(left)). (Right) L-curves for solutions computed with methods 3 and 4 (Figure 6(right)).
The left-most curves correspond to the interval [700, 2000] m, the centred curves to the interval
[2000, 4000] m, and the right curves to the interval [4000, 5500] m.

However, it can be seen that the solutions with methods 2a and 2b are quite over-
smoothed at lower altitudes (first half). This was expected since the signal-to-noise ratio
decays significantly over the interval. Hence, the regularization parameter fits best to the
worst noise level occurring at the end of the interval. Therefore, we consider to split the
interval, such that we have an approximately constant SNR in every interval. Looking at the
data, the choice of the intervals [750, 2000], [2000, 4000] and [4000, 5500] m is reasonable. The
solutions with methods 3a and 3b, i.e., with interval splitting, are shown in Figure 6(right).

Now, we observe that the first interval is not as smooth as before. Again, both methods
give approximately the same result, while the solution from the Levenberg–Marquardt
method seems a little bit smoother. In the third interval, both solutions are almost identical
to the solution from the first attempt. Here, the regularization parameters are the largest,
with just 10 iterations (α = 1

10 ) for the Levenberg–Marquardt solution and α = 1.4175 · 105

for the Tikhonov regularization. This result can also be observed for other time steps
(cf. Figure A7). An analysis of the Raman signal P387 shows results of similar quality.
In Figure A8 (left), the extinction for λ = 355 nm is shown. However, it seems like the
solution for the first interval is too noisy. Since the data for those time steps, as well as
the L-curves, look quite similar, we can manually adjust the regularization parameter for
the first interval. Fixing the number of iterations for the first solution to 40, we obtain
smoothed solutions shown in Figure A8(right). Now, we can see a clear correlation between
the data from one step to the next. This is a good sign since the aerosol particles in the air
change just a little over this period according to the BSR displayed in Figure 5. However,
also this small change is observable with the regularized solutions and will be shown in
the next subsection.

We were able to show that the regularization methods together with a manually chosen
interval separation provide adequate solutions for the extinction coefficient. Calculating an
average extinction value over certain time steps and altitudes can then be used to calculate
the particle size distribution in an appropriate layer. Nearby, determining the particle size
distribution from extinction and backscatter coefficients is again an ill-posed problem and
requires regularization for itself (cf. Ritter et al. [26], Dube et al. [27]). Hence, any additional
information, like the proposed stable results from the Raman Lidar signal or an additional
infrared wavelength (cf. Böckmann et al. [12]), may improve results significantly.
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3.2.2. Comparison with a Doppler Wind Lidar

At this point, we want to use the regularized extinction values to analyze any temporal
variability of the aerosols. The following comparison with the wind Lidar would not be
possible with a classical non-regularized solution of the extinction profile as such solution
is dominated by the noise. From the plot of the BSR in Figure 5, we observe the highest
concentration of aerosols between 8:00 and 9:00 UT in altitudes below 1500 m. The maximal
values of the BSR then clearly reduce until 10:00 UT. However it seems as if the particles
were vertically shifted upwards. Now, the task is to explain this behavior of the aerosols.
We analyze wind Lidar data from a Leosphere “windcube 200” at the same measurement
site as the Raman Lidar to test the hypothesis, whether the decrease in BSR might be an
advection phenomenon. More information about the wind Lidar is given in Graßl et al. [28].
Figure 8 presents the horizontal wind speed and the wind direction during that time. In
the altitude of maximal backscatter, about 1 km to 1.5 km altitude, a wind speed of about
8 ms−1 from the east is observed. This wind speed might have caused the advection of
different air masses, carrying distinct aerosol properties above Ny-Ålesund.

Figure 8. (Left): Horizontal wind speed. (Right) Wind speed direction on 28 March 2022.

Although the vertical wind speed slows down a bit at 8:00 UT at an altitude of
approximately 1000 m, the wind direction remains constant at 10:00 UT. Hence, we have no
indication that a completely new air mass is transported towards our observation site. Still,
temporal variations of aerosol load in an air mass does occur. To elaborate this, we compare
the aerosol extinction coefficient between approximately 8:00 and 9:00 UT and compare
this with the extinction between 9:40 and 10:40 UT. This result is presented in Figure 9.

Figure 9. Average extinction profiles of λ = 355 nm light from 28 March 2022. The solutions for each
time step were calculated with the Levenberg–Marquardt method with a posteriori SI (method 4a).
Since the regularization parameter αL at the L-corner seems to produce under-smoothed solutions (cf.
Figure A8), the L-corner algorithm was modified. Instead of αL, the algorithm chooses min(3, αL − 5).
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We observe that the extinction value of the latter time period is approximately
2 · 10−5m−1 smaller than at the earlier time. However, at this latter time, the aerosol
layer has a larger vertical extent as the extinction value declines about 200 m higher. Above
2500 m, both extinction values are almost equal. From this result, one can deduce that
the aerosols move vertically over time. By computing the cumulative sum (AOD) of both
solutions, we can compare the total aerosol load in both time periods. The AOD at 2500 m
from the first time period is AOD1 = 0.02509884, whereas the AOD at the same height
from the second time period is AOD2 = 0.0250964. This leads to a relative difference
of <0.1% and confirms the statement that we are observing the same aerosols. Finally, the
vertical wind profile shows that there were indeed mostly updrafts between both times
(Figure 10). Hence, the vertical wind from the wind Lidar gives an independent reference
for the calculated extinction coefficient. As also the cumulative backscatter (Figure 5) is
quite constant for both time intervals, our derived extinction profile can be easily explained
by a constant aerosol load, which is simply uplifted by the wind.

Figure 10. Vertical wind speed on 28 March 2022.

3.3. Analysis of Data from 2 August 2019

In this case study, we investigate aerosols in heights above 5000 m again under
daylight conditions. The aim is to compute a stable solution for the cumulative AOD. To
compare our results, we will use solutions of the cumulative AOD computed with Klett’s
method [29]. Klett’s solution was computed with a constant and arbitrary Lidar ratio of
50 sr (cf. Figure 11). Using the definition of the cumulative AOD, we expect its value
to increase stronger the higher the extinction coefficient is. Hence, up to 5 km, only low
extinction occurs. Depending on the time step, beyond 5 to 7 km, the cumulative AOD
increases significantly faster up to 15 km. Hence, in this interval, we expect more aerosols.
Now we will try to obtain similar solutions for the cumulative AOD from the Raman
signal. An analysis of the Raman Lidar signal P387analog shows that the term y starts to
decrease above 10000 m. Hence, we will set our interval of interest to [750, 10000] m. To
compute results at these high altitudes, it is recommended to use SI (methods 3 and 4).
We will compare all different regularized methods with Klett’s solution. Furthermore, it is
theoretically possible to compute the cumulative AOD directly from the total cumulative
AOD y. Since

y(R) = y(R0) +
∫ R

R0

[
αλ0(r) + αλRa(r)

]
dr (21)
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we can derive the cumulative AOD of λ = 355 nm light directly. Therefore, we use the
Ångström exponent equation (Equation (3)) with a sufficient choice of 1.2 of the Ångström
exponent [30]. Furthermore, we use the Rayleigh extinction of the 355 nm and 387 nm light.
They can be computed directly from air density and temperature. Putting it all together,
we decompose y to

AOD355nm(R) =
y − y(R0)−

∫ R
R0

[
αλ0,Ray(r) + αλRa,Ray(r)

]
dr

1 +
( 387

355
)1.2 . (22)

A positive result would be that the regularized solution behaves like the solution
from Klett’s method and at the same time like a good interpolation of the AOD derived in
Equation (22).

Figure 11. AOD retrieved from λ = 355 nm light on 2 August 2019. Solutions were computed with
Klett’s method [29].

We used the analog measured signal P387analog as well as a smoothed signal. (The
smoothing was performed by applying a running mean on the range and density corrected
Lidar signal.) Up to about a 11 km altitude, this smoothed signal approximates P387analog,
as can be seen in Figure 12. Above 11 km, the smoothed and the original signal diverge
and are dominated by noise.

Figure 12. (Left) Signal P387analog and a smoothed signal P387 from 2 August 2019, 15:05 UT, in
arbitrary units. (Right) Corresponding terms y (the cumulative total optical depth).
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All three regularized methods were applied to the analog signal P387analog. Fur-
thermore, one solution with the smoothed signal was calculated over the whole interval
[750, 10000 m] (method 2b). The results can be seen in Figure 13 for the time step 15:17 UT.
The regularization parameters for the methods with multiple intervals can be read up
in Appendix D in Tables A3–A5. Tables A3 and A4 correspond to methods 4a and 4b,
the a posteriori interval splitting methods. We observe that the regularization parameter
is increasing in both scenarios (recall that the regularization parameter for the Leven-
berg–Marquardt method is given as 1/(number of iterations)). This can be explained by the
fact that the signal-to-noise ratio is constantly decreasing with height, forcing a stronger
regularization. In contrast to the other methods, the regularization parameter does not
increase with height. This is not obscure in that case since the third interval contains a peak
of the extinction profile. To retrieve those high extinction values, a larger number of itera-
tions (smaller regularization parameter) was necessary, which could also be determined by
the algorithm.

Figure 13. Different solutions for the cumulative AOD for λ = 355 nm from 2 August 2019, 15:17 UT.
The decomposed data of Y are an AOD, directly obtained from the total cumulative AOD Y, as
described in Equation (22). Together with Klett’s solution (taken from Figure 11), it serves as a
comparison with our methods. The red solution is obtained with the variable Levenberg–Marquardt
method applied to the hole interval [750, 10,000 m] (method 2b). It uses the signal P387analog.
The yellow graph was computed with the same method but with a smoothed version of the signal
P387analog. All the other methods use again the original signal P387analog. The green graph is the
solution computed with the variable Levenberg–Marquardt method with an a priori SI (method 3b).
In this case, the part-intervals were chosen such that every interval contains approximately the same
AOD based on Klett’s solution. The last two solutions (purple and blue lines) are obtained with
methods 4a and 4b (a- posteriori SI).

Generally, it can be seen from Figure 13 that the cumulated AOD up to a 10 km altitude
in all different methods only differs by about 30%, and the uncertainty of the AOD retrieval
is about 0.011. As expected, the solutions calculated for the whole interval (method 2b)
tend to be over-smoothed. For this reason, the steep increase in extinction starting at about
a 7500 m altitude is underestimated in some solutions. The Tikhonov–Phillips method with
a posteriori SI (method 4a) does this as well. Compared with the AOD from Klett’s method,
the regularized methods produce higher AOD profiles. This is not necessarily an error,
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but instead indicates that the Lidar ratio in Klett’s method was slightly underestimated.
Comparing the qualities of the solution, we observe that the variable Levenberg–Marquardt
method with a posteriori SI (method 4b) and with SI according to Klett’s AOD (method 3b)
fit best to the AOD from Klett’s method. Both methods can determine a critical height
between 7000 m and 8000 m, where the AOD starts to increase faster. Especially, method 3b
(green graph in Figure 13) visually serves best as an approximation of the AOD, which
was directly computed from the signal P387analog (gray graph). The following four major
conclusions can be drawn from this case study:

• To prevent over-smoothing, it is recommended to use SI. This separation of the in-
tervals needs attention as too narrow intervals (too little information content) may
lead to non-physical results. In Figure 13, the solutions with a posteriori SI show few
altitudes, in which the cumulative AOD shows a decrease with altitude, corresponding
to a negative extinction. This can happen if the information content in the interval is
too small compared with the noise. Regularized solutions (of the extinction) are not
restricted to positive semi-definite values.

• Although the Levenberg–Marquardt and Tikhonov–Phillips regularization might
produce a similar result over a fixed interval, the solution can differ if the a posteriori
SI is used. In this case study, only the Levenberg–Marquardt method was able to give
meaningful results in combination with the a posteriori SI. Hence, it is in general good
to have both regularization techniques in hand.

• An interval split according to Klett’s solution is promising and produces, in this case,
the best-regularized solution.

• A pre-smoothing of the Lidar data does not clearly improve the range for a valid
retrieval of the extinction coefficient and is therefore not necessary.

3.4. Analysis of Data from 18 October 2021

Finally, we present a case with strong extinction (a cloud) under dark conditions.
Additionally, this example shows an increased range, in which a valid extinction coefficient
can be retrieved by regularization. The measurements are again from Ny-Ålesund on 18
October 2021. Inspection of the Raman Lidar profile (Figure 14) indicates a significant
extinction in heights between 2100 m and 2600 m. Above that altitude, noise in the Lidar
data is observable. Since we are in relatively low altitudes and measurements were taken
by night (no background light), the traditional Ansmann algorithm is already capable of
producing a plausible solution for the significant extinction between 2100 m and 2600 m
(cf. Figure 15d). We want to test in this case study if the regularized solutions verify
the Ansmann method up to 2600 m and give meaningful full results for the extinction
profile above.

Figure 14. (Left) Signal P387analog from 18 October 2021, 20:46 UT, in arbitrary units.
(Right) Corresponding term y, the cumulative total optical depth.
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Figure 15. Different solutions for the extinction of λ = 355 nm light on 18 October 2021, 20:46 UT. The
solution was always computed with the Levenberg–Marquardt method, and the interval separation
(method 3a) is given in the titles. The red dashed lines mark the altitudes, where we split the interval
for the following solution. (a) Solution was computed over the whole interval [700, 6000] m. We
recognize a cloud between 1900 m and 2600 m. (b) This solution shows that the cloud is even thinner
and must lie between 2100 m and 2800 m. (c) Detailed features of the cloud are visible in this plot. To
obtain an even more precise solution, we separate the middle interval into three smaller intervals
to isolate the peaks of the cloud. (d) Final solution obtained by the previous determined interval
separation. The solution is compared with the classical Ansmann solution (method 1).

We use this example to demonstrate the importance of selecting appropriate intervals
and show how it can be done. In the previous case study, we already used an a prior
SI method, which was based on Klett’s solution. In this example, we will develop a
solution by choosing a step-by-step finer part interval. We have chosen the variable
Levenberg–Marquardt regularization (method 3b) for computing the piece-wise solutions.
First, in Figure 15a, only one height interval (from 700 m up to 6 km) for the retrieval of
the extinction coefficient has been considered. An increased extinction is evident slightly
above a 2 km altitude. Hence, we subdivided the intervals from 700 m to 1900 m and
from 1900 m to 2800 m and above (red lines in Figure 15a). In this way, we obtained the
extinction profile of Figure 15b. In this plot, two distinct layers, which are now vertically
thinner but show higher extinction coefficients, become apparent. Hence, we redefined
the intervals and set the interval borders at 2100 m and 2600 m (red lines in Figure 15b) to
obtain the result of Figure 15c. Here, the existence of the two separate layers is confirmed,
but a non-physical behavior, just above 2600 m where the extinction becomes negative,
is obtained. Therefore, we further subdivided the intervals, as indicated in the plot, and
obtained the final solution in Figure 15d. For comparison, also the traditional Ansmann
solution (in black) is given. One can clearly see that the extinction of the two cloud layers
agrees quite well. Our interpretation is that, in “easy situations”, the simple unregularized
solution already gives a good approximation. However, the new regularized solution can
produce much more reliable extinction values in the cloud-free altitudes, as can be seen
from the lack of odd oscillations above a 2.6 km altitude. Hence, the effective range, in
which a valid extinction coefficient can be retrieved, is increased.
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In this study, a final strategy for an automated finding of appropriate intervals, in
which a regularized extinction is calculated, cannot be given. However, we note that the
cumulative AOD (e.g., from the onset of the full overlap up to that altitude in which the
Lidar signal becomes too noisy) hardly depends on the choice of these intervals. This is
demonstrated in Figure 16. Here, the four different solutions of Figure 15a–d are plotted,
which are clearly very similar. Hence, a different interval selection does influence how
much extinction (and AOD) is in each interval, but the sum of all AOD values of the
intervals is hardly affected by their number. This could be achieved by the use of an
adapted shift strategy that relies on the solutions of the lower intervals (cf. Section 2.3).

Figure 16. Cumulative AOD corresponding to the different solutions for the extinction of λ = 355 nm
light on 18 October 2021, 20:46 UT, from Figure 15. The lines (a–d) correspond to the extinction
profiles in Figure 15a–d, respectively.

4. Discussion
In this section, we briefly discuss the usefulness of our approach for real data.

4.1. Discussion of Case Studies

Figures 6(right) and 17 present the extinction profile from 28 March 2022 computed
with methods 3a and 3b. It can be seen from Figure 17 that the unregularized “Ansmann
solution” (green line, method 1) becomes completely useless beyond a 2 km altitude. The
Tikhonov–Phillips and Levenberg–Marquardt solutions (red and blue lines, respectively)
are very similar to each other. In Figure 6(right), both methods show an artificial jump
in the extinction profile at a 4 km altitude. This is probably due to an imperfect interval
selection in this range, as we were at this point mainly interested in the extinction in the
lower troposphere and the interval selection focused on a constant SNR in each of the three
intervals. The SNR for the 607 nm channel is presented in Figure 18. It can be seen that we
have an SNR of about 100 at slightly above a 2 km altitude, while at a 4.5 km altitude, the
SNR drops to approximately 50. If using another SI over the part-intervals [750, 2300] m
and [2300, 5500] m, the artificial jump disappears (see Figure 17) by, for example, using an
adapted SI with a focus also on the upper range; regularization allows for retrieving a valid
extinction coefficient in an increased altitude range too. Finally, we conclude that, for the
traditional unregularized solution of Ansmann, a SNR > 100 is mandatory, while, even
with suboptimal interval settings (disregarding the jump), our new approaches allow a
reliable retrieval of the extinction down to an SNR value of about 50.

A similar improvement in solutions could also be verified in the other case studies. The
example from 18 October 2021 (Section 3.4) showed that the new methods could identify
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a clear sky beyond 2600 m, whereas the traditional method produces noisy results (see
Figure 15).

Figure 17. Comparison of the retrieval of mean extinction profiles for 532 nm and the case of
28 March 2022; compare Section 3.2. The profiles were averaged over six time steps between 08:02
and 08:59 UT. The clear improvement compared with the non-regularized solution (green, method 1)
is evident.

Figure 18. Signal-to-noise ratio of the 607 nm Raman channel for the case of 28 March 2022; compare
Section 3.2.

4.2. Discussion of Method Adaptions

Within this study, we presented two regularization methods together with the L-curve
parameter choice rule. However, the methods come together with a fairly large variety
of different options and hyperparameters. Every new adaption that we introduced (for
example, splitting the interval, introducing various shift strategies, or enlarging the interval
borders with kup and kdown) in Section 2 improves the algorithm for our setting. On the
other hand, it makes the program more complex and difficult to configure. However, we
made sure that every new adaption addresses a specific weakness of the base algorithm.
Most of the hyperparameters can be set in the same way for different case studies. This
paper aims to present the new methods and summarizes various adaptions. The next
step would be to further automatize the program, such that it can be used without having
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to understand every detail of the algorithms. A first step was already performed by
Pornsawad et al. [16] with the automated choice of part intervals. Using this method, we
were able to compute good mean extinction profiles in our first case study (Section 3.2).
However, we observed that this approach does not always lead to meaningful results.
Hence, various a priori SI methods were introduced. So far, in each case study, there was at
least one strategy that resulted in an improvement of the classical Ansmann solution.

4.3. Utilizing Klett’s Solution to Derive an A Priori SI

At this point, we want to highlight the interval separation strategy based on Klett’s
solution. In Section 3.3, this method, together with the variable Levenberg–Marquardt
methods, produced the best solution. In the future, one could think of a combined algorithm
that may also improve Klett’s solution. Heuristically, it would work like the following:

1. Compute a regularized Ansmann solution of the extinction based on SI with
Klett’s solution.

2. Use the regularized extinction profile to update the Lidar ratio assumption for Klett’s
algorithm. Compute a possible improved Klett’s solution for the backscatter and
extinction coefficients with the updated Lidar ratio.

3. Repeat the above steps until the regularized extinction from Ansmann’s algorithm
and the extinction from Klett’s algorithm are arbitrarily equal.

Even if we do not use Klett’s solution for an interval separation, we could use the new
stable regularized extinction to update the Lidar ratio and so improve Klett’s solution.

4.4. Discussion of Parameter Choice by L-Curve

Finally, we want to discuss the regularization methods that were used. Both, the
Tikhonov–Phillips and the Levenberg–Marquardt methods seemed to be sufficient and
promising choices for this task. As we can see, especially in Section 3.2, they often lead to
almost identical solutions over the same intervals. However, as soon as we use advanced
interval separation (e.g., method 4), the solution may differ. Hence, it is recommended to
always have both in your hands.

Using the heuristic parameter choice rule from Hansen [31], which was already used
by Pornsawad et al. [16], it was in many cases possible to determine a good regulariza-
tion parameter. It worked best in cases, where the interval was large or the SNR was
sufficiently high. Especially in lower altitudes or over large intervals, a clear L-curve
could be observed. Although this L-corner did not always indicate the best solution, it
is located often near the best regularization parameter. Introducing the variable Leven-
berg–Marquardt method (Section 2.4) significantly improved the L-curve quality for the
Levenberg–Marquardt method.

5. Conclusions
In this study, we presented the retrieval of the extinction coefficients from Raman

Lidar data using different regularization techniques. We considered both solutions of
synthetic Lidar data and three different measurement cases from the Arctic, which provides
a demanding test environment due to the lack of darkness for more than 6 months and
generally low to moderate extinction values.

We applied and tested regularization methods, namely, adaptions of the Tikhonov–Phillips
and Levenberg–Marquardt methods. Our main conclusions can be summarized like this:

1. The retrieval of the extinction from Raman Lidar data is ill-posed. The main difficulty
occurs at the determination of the derivative of the Lidar signal with respect to
the altitude. Hence, regularization provides an adequate tool to handle this class
of problems.
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2. In principle, all presented methods work. The retrieval of a trustful extinction coeffi-
cient is possible into altitudes, which are clearly higher compared with the traditional
non-regularized solution. As a rule of thumb, only half of the signal-to-noise ratio is
necessary for our approaches. If the SNR of the Lidar data is very good, only a very
small regularization parameter will be found, and the regularized and non-regularized
solutions are basically identical.

3. The regularized solution depends on several hyperparameters, which need some
attention to obtain best results. Two important ones are the regularization parameter
and the interval separation for finding a solution. As the regularization parameter
depends on the noise level and seems to be adjusted to the part of a signal with the
worst quality (the upper end of each interval), very large intervals present a solution,
which is too smooth. Contrarily, in very narrow intervals, it may be difficult to find an
optimal regularization parameter, as the corresponding L-curve was oddly shaped.

4. Clearly, the cumulative AOD over an extended interval is a quality that is much easier
to obtain. In theory, it can be obtained directly by smoothing the Lidar signal (without
the need of a derivative). However, the cumulative AOD can also be computed by the
regularized solutions, as it is the integral (cumulative sum) of the extinction profile.
This is another good approach that comes without any smoothing.

Our main findings concerning the advantages, disadvantages, and peculiarities of
the applied methods are summarized in Table 1. Further, we provide a flowchart on the
principal concept in Appendix D in Figure A4.

Table 1. Comparison of the different methods that were used throughout the paper. The four methods
refer to the non-regularized “Ansmann solution” (1), regularized solution of the whole altitude range
(no selection of part-intervals) (2), regularization with an a priori selection of the intervals (3), and
regularization with an a posteriori selection of the intervals (4).

Method Description/Use Cases Weaknesses/Difficulties

1

• Classic approach
• Assumes that data are noise-free
• Only works for data with high SNR (mostly low

altitudes or might time conditions)

• Does not perform well if data are noisy (no
regularization used)

2

• Works well for small intervals
• Can be used to estimate aerosol peaks in a large

interval (cf. Figure 15a).
• Since we do not split the interval, there is no risk

of getting jumps in the solution from sticking two
solutions together

• Solution is rather a rough estimate and often
over-smoothed in the left half of the interval

3

• Splitting the interval is a way to include a priori
information as, e.g., the SNR or AOD estimated
from Klett’s method

• Different regularization parameters for each part-
interval are computed. Each regularization pa-
rameter fits better to the certain SNR in that part-
interval.

• Can be used to iteratively identify sharp transi-
tions in the extinction profile (cf. Section 3.4)

• If suitable interval split was found, it often ap-
plies well for successive time steps

• Potentially unrealistic jumps at the points,
where we stick the solution to part-intervals
together due to uncertainties of the solution
at the end of each part-interval.

• This effect is even worse if we average over
multiple solutions of successive time steps,
where we used the same interval split for
each solution
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Table 1. Cont.

Method Description/Use Cases Weaknesses/Difficulties

4

• Chooses interval split automatically, does not rely
on a priori heuristics

• If used for successive time steps, it will produce
slightly different interval splits for each time.
Hence, it is good to compute time-averaged pro-
files as uncertainties at the points, where we
stick part-intervals together, is averaged out (cf.
Figure 9)

• Requires choice of additional hyperparame-
ters, as, for example, the minimal and maxi-
mal length of a part-interval

• In general, it is more difficult to tune the
hyperparameters. The solution seems to be
more sensitive with respect to changes in the
hyperparameters compared with methods 2
and 3

6. Outlook
• In future work, one should work on an automated choice of the multiple parameters

that can be chosen in the presented methods. This could make the algorithms more
accessible to other researchers, since these regularization techniques are not only
applicable for determination of Arctic extinction coefficient profiles from Raman Lidar
but also at other places. In Figures 17 and 18, a relation between the SNR of the Lidar
data and the expected accuracy of the extinction profile is given, which should be
valid for other sites as well.

• Another aspect that one might consider in future work is the application of a multiple
parameter choice rules. When using the L-curve method, we rely on a correlation
between the solution norm and the data error. However, this correlation is sometimes
not ideal. Especially for very smooth solutions, the solution norm tends to increase
very late, which leads to a smaller regularization parameter at the L-corner. Hence,
the solution might be too noisy (Hansen [32], Chapter 8.1). In this case, Hansen [32]
recommends using a combination of multiple parameter choice rules. He encountered
that using both the L-curve method and a generalized cross-validation (GCV) gives in
many cases at least one of two good results. According to (Hansen [32], Chapter 7),
the L-curve method is more stable, while the GCV, if it works, tends to give a more
accurate regularization parameter. Considering the GCV method, especially if the
solution from the L-curve parameter choice rule seems too noisy, is something worth
studying in future work. More about GCV can be read in Wahba [33].

• Non-heuristic parameter choice rules, like the principle of Morzorov, are not suitable
for our studies due to the uncertainty about the noise level in our signal. When using
the Levenberg–Marquardt and Tikhonov–Phillips regularization during this paper,
we came to another interesting assumption. No matter which regularized solution
was chosen, it always seems like it fits perfectly to a certain constant noise level.
Since the noise level of the provided signal is increasing with height, this means that,
especially over large intervals, a regularized solution can only fit well to a certain
part of the interval. This also explains why separating the intervals mostly results in
better solutions.

• Our assumption can be underlined at least for the Tikhonov–Phillips method. As
shown in Kaipio and Somersalo [34], the Tikhonov–Phillips regularization is equiva-
lent to a Bayesian Inversion method, which models the true signal as well as the noise
as a Gaussian distributed random variable with zero mean and a constant variance.
Another idea for future work could be to apply other Bayesian models in Ansmann’s
algorithm instead of the Tikhonov–Phillips methods. One could choose different mod-
els for the noise distribution that may fit better to the given signals. A suitable family
of models could be the family of Lévy-α-processes [35], which could be capable of
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modeling an increasing noise level of the signal. Recent work from Suuronen et al. [35]
showed the practical usability of those processes as prior assumptions.
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Appendix A. Mathematical Preliminaries
Let K : X → Y be a linear bounded and compact operator between two Hilbert spaces

(e.g., adapted function spaces) X and Y . For given data y ∈ Y ,

Kx = y (A1)

is called an operator equation. In the context of this paper, K plays the role of the simple
integral operator. That means y = Kx is an antiderivative of x, and in return, x is the
derivative of y. Then, y is the crucial term ln NMol(R)

SRa(R) and x its derivative d
dR

[
ln NMol(R)

SRa(R)

]
.

In order to determine x, we face two problems: The data y are not provided exactly, since
they depend on the range corrected Lidar signal SRa. In fact, we have only access to noisy
data yδ. Second, solving the operator Equation (A1) is ill-posed, meaning that a small
deviation in the noisy data yδ might lead to a totally different derivative x. In the following,
we describe several regularization techniques that allow us to reconstruct a solution of
Equation (A1) just given the noisy data yδ.

Assuming that there exists a solution xδ of Equation (A1) for noisy data yδ, which
is not necessarily unique, we want to choose the solution x with minimal norm, i.e., the
best-approximate solution x+δ , which is now unique and given by

x+δ := K+yδ =
∞

∑
n=1

⟨un, yδ⟩
σn

vn. (A2)
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K+ is the Moore–Penrose generalized inverse of the operator K, δ is the noise level
of the given data, and (σn; vn, un) is the singular system of the compact operator K. The
singular values σn converge to zero

lim
n→∞

σn = 0. (A3)

With this representation, it is fairly easy to see why such infinite-dimensional problems
are ill-posed. A tiny noise δ in the nth coefficient is multiplied by 1

σn
. Since 1

σn
→ ∞ as

n → ∞, the higher coefficients has to be determined very precisely for obtaining a stable
result. The following question arises: how do we adjust the operator K+ to obtain a stable
but in the same way sufficiently accurate best-approximate solution x+δ ? We provide an
answer in the next paragraph.

Let M,N ⊂ R be closed subsets and X and Y be adapted function spaces on M
and N , respectively. We now regard a particular linear bounded and compact operator K,
namely, a Fredholm integral equation of the first kind, as follows:

y(s) = (Kx)(s) =
∫
M

k(s, t)x(t)dt (A4)

where k : N ×M → R is a functional and is called the integral kernel.
Our main problem is the stably numerical calculation of the derivative x of function y

using Equation (A4). The derivative inside Equation (4) can easily be rewritten into such
Fredholm integral equation of the first kind as follows:

K : L2([a, b],R) → L2([a, b],R) : x 7→ y(s) = (Kx)(s) =
∫ b

a
k(s, t)x(t)dt (A5)

with kernel

k : [a, b]× [a, b] → R : k(s, t) 7→

1 a ≤ t ≤ s ≤ b

0 a ≥ s > t ≥ b
,

For more details, see below.
The idea now is to replace the term 1/σn in Equation (A2) using a parameter-dependent

filter function Fα : (0, ∥K∥2] → R+ such that Fα is bounded away from 0. Then, the family
of operators Rα

x+δ,α = Rαyδ :=
∞

∑
n=1

Fα(σ
2
n)σn⟨un, yδ⟩vn (A6)

eventually could serve as a stable approximation of K+. Well-known filter regularization
methods are, e.g., Tikhonov–Phillips regularization and Levenberg–Marquardt regulariza-
tion. The unique “argmin” of the well-known Tikhonov functional Jα

x+δ,α := argmin
x∈D(K)

Jα = argmin
x∈D(K)

∥Kx − yδ∥2 + α∥x∥2 (A7)

can be computed via the solution of the well-known normal equation [36,37].
However, x+δ,α may also be represented as a filter method as follows:

x+δ,α = Rαyδ =
∞

∑
n=1

Fα(σ
2
n)σn⟨un, yδ⟩vn =

∞

∑
n=1

1
σ2

n + α
σn⟨un, yδ⟩vn (A8)
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with α > 0 ∈ R+. Now 1
σn+α ↛ ∞ if n → ∞. It converges to 1

α . The Levenberg–Marquardt
regularization is

x+δ,α = Rαyδ =
∞

∑
n=1

γ
1/α

∑
k=1

(1 + γσ2
n)

−kσn⟨un, yδ⟩vn (A9)

with α ∈ {1, 1
2 , 1

3 , . . . } and γ ∈ R+. The index k counts the number of iteration steps and
serves as regularization parameter α = 1/k. The parameter γ is a relaxation parameter,
which we explain in the next section in more detail. For the classical Levenberg–Marquardt
method, this relaxation parameter is chosen to be constant. However, we investigated
that the choice of a variable relaxation parameter can help to find the optimal solution. It
allows for computing sequences of solutions that work very well together with the L-curve
parameter choice rule. This so-called variable Levenberg–Marquardt method is further
explained in Section 2.4. It is equivalent to the classical Levenberg–Marquardt methods
with restarts.

Next, we need a parameter choice rule to select a suitable regularization parameter
α. In general, it depends on the noise level δ (a priori rule) and, additionally, on the given
noisy data yδ (a posteriori rule). There exist a range of different noise-dependent parameter
choice rules, like the discrepancy principle of Morozov [37]. However, they often do
require a certain accuracy of the noise level δ. If the noise is predicted to be too high, the
regularization parameter α will be chosen to be too large, and hence, the approximation
error ∥x+ − xα∥ becomes too big. On the other hand, if the noise is underestimated, the
data error ∥xα − xδ,α∥ is too high [37].

Therefore, the use of the so-called heuristic parameter choice rules is more convenient
for cases in which the noise level δ cannot be predicted accurately enough. It is worth
mentioning that such heuristic rules do not strongly fit into the mathematical theory but
often works fine in applications. In the following, we briefly present the L-curve parameter
choice rule according to Hansen [32]. Therefore, it is necessary to compute the regularized
solutions xδ,α for multiple values α and one chooses the “best” solution, which is explained
in the next paragraph. However, it is important to choose a wide range (0, αmax] of possible
parameters α to ensure that a good parameter α is inside the range.

Given a set of calculated regularized solutions {xα1 , . . . , xαi , . . . , xαm}, we derive the L-
curve by plotting the solution norms ∥xαi∥ against the residual norm ∥Kxαi − yδ∥, i = 1, . . . , m
in a log–log scale. The corresponding curve represents how both norms correlate. In parts
where the curve is flat, the residual norm decreases faster than the solution norm increases.
If the curve is steeper, the solution norm grows faster, and then the residual norm decreases.
In many applications, one observes that the curve is relatively flat for large regularization
parameters and becomes very steep if the regularization parameter tends toward 0. This often
results in an L-shaped curve. If such a shape can be observed, we choose the regularization
parameter for the point at the L-corner (see Figure A2).

In more detail, we have to recap the correlation between the residual versus solution
norm and the approximation versus data error. On the one hand, the residual norm is
directly correlated with the approximation error for the finite-dimensional problem. The
solution norm, on the other hand, has often a connection with the data error. If the solution
norm is high, one could assume that the solution is dominated by noise, and hence, the
data error is large. In return, a small solution norm indicates a smooth solution, which is, if
not over-smoothed, expected to be a good approximation of the true solution. The L-corner
now marks the point where the solution norm (≈ data error) starts to grow faster, and then
the residual norm (≈ approximation error) decreases. Therefore, one could expect that this
L-corner is the point where the approximation error is small (minimal) before the data error
dominates. An example of an L-curve using both methods (Equations (A8) and (A9)) is
shown in Figure A2.
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Appendix B. Discretization
For the implementation, we need to discretize the infinite-dimensional integral equa-

tion K (see Equation (A4)) into a finite-dimensional equation (system) A

AX = Y (A10)

where A is a (n × n)-matrix and X = [x1, . . . , xn] and Y = [y1, . . . , yn] are vectors now. We
use collocation discretization [37] with the following family of finite-dimensional subspaces
and basis [16,37]. Let n ∈ N and (ti)

n
i=0 be the equidistant grid on [a, b] of n + 1 points with

a = t0 < t1 < . . . < tn = b and a grid with h = b−a
n . We define the subsets

Sn :=
{

x ∈ L2([a, b],R)
∣∣∣ ∀i ∈ {1, . . . , n} : x

∣∣
(ti−1,ti ]

≡ const.
}

(A11)

Sn is clearly a n-dimensional vector space. As base functions of Sn, we choose {ϕ1, . . . , ϕn},
where

ϕi := 1(ti−1,ti ]
(A12)

for i ∈ {1, . . . , n}. The interpolation problem for Sn is always uniquely solvable since
det[ϕi(tj)] = 1 ̸= 0 and the interpolation operator is given as

Pn : L2([a, b],R) → Sn : x 7→ Pnx :=
n

∑
i=1

x(ti)ϕi. (A13)

In this manner, the discretizations of y and x are given as Pny and Pnx, that is,

Pny =
n

∑
i=1

y(ti)ϕi and Pnx =
n

∑
i=1

x(ti)ϕi (A14)

where (ϕi)
n
i=1 are the base functions of Sn. The family of projections is restrictive in a way

that the projected functions are always 0 at the left interval point a. However, this is no
obscure feature since every function y ∈ R(K) fulfills this property as well. Because adding
a constant shift to the given function y does not change its derivative x, we will shift the
function y by the value −y(a). This has the consequence that the projections serve as better
approximations of the measurement. We observed that our methods perform particularly
better if a sufficient “shift” y(a) is used. Hence, y is discretized in the following way:

P∗
n y := Pn(y − y(a)) =

n

∑
i=1

[y(ti)− y(a)]ϕi =
n

∑
i=1

yiϕi − y(a). (A15)

Using this discretization, we obtain the discrete integral equation

P∗
n y = KPnx. (A16)

We identify the discretizations of y and x via their coefficients

X = [x1, . . . , xn] := [x(t1), . . . , x(tn)] (A17)

and
Y = [y1, . . . , yn] := [y(t1), . . . , y(tn)]− y(a)[1, . . . , 1] (A18)



Remote Sens. 2025, 17, 841 27 of 33

By using the discrete integral equation, we obtain the following relation:

yj =(P∗
n y)(tj) = (KPnx)(tj) =

(
K

n

∑
i=1

xiϕi

)
(tj) =

∫ 1

0
k(s, tj)

n

∑
i=1

xiϕi(s)ds

=
n

∑
i=1

xi

∫ 1

0
k(s, tj)ϕi(s)ds =

n

∑
i=1

xi

∫ tj

0
ϕi(s)ds

=
j

∑
i=1

xi

∫ tj

tj−1

1ds =
j

∑
i=1

xi(tj − tj−1) =
j

∑
i=1

xih

This shows that the discrete integral Equation (A16) is solved if and only if the
coefficients of P∗

n y and Pnx fulfill AX = Y with

(A)ij =

h i ≤ j

0 i > j
∀i, j ∈ {1, ..., n}. (A19)

For more details about filter regularization methods, parameter choice rules, and dis-
cretization techniques, see Hansen [32], Engl et al. [36], Kirsch [37]. We give a simple illustra-
tion example (see Appendix C) to understand why the numerical calculation of the deriva-
tive of a function is often an ill-posed problem and therefore needs a regularization tech-
nique for their stable calculation. Both regularization methods (Equations (A8) and (A9))
together with the L-curve rule are used for our simple example in Appendix C.

Appendix C. Simple Example with Gaussian Noise
This section aims to present two issues. On the one hand, we show with a simple

example for the conveniences of the readers that, e.g., the standard method symmetric
different quotient works unstably for the numerical differentiation of a function, like
Equation (A20) (see Figures A1 and A3). On the other hand, we demonstrate the good
performance of the presented methods, i.e., differentiation with the Levenberg–Marquardt
and Tikhonov–Phillips regularization together with the L-curve parameter choice rule for
the numerical differentiation. The following example function should represent a good
model of the actual Lidar signal. Hence, an “unsmooth” function was chosen. Furthermore,
the data were perturbed by a Gaussian noise, which is a good model for the actual noise
in the Lidar signal that comes from sun and star light. The example function is given as a
discretization of

y : s 7→


0 s ≤ 1

0.5s2 − s + 0.5 1 < s ≤ 2

−s2 + 5s − 5.5 2 < s

(A20)

whereby an equidistant grid of 250 points (0.01 grid-width) over the interval [0, 2.5] km
was chosen. The function was disturbed at each point by a Gaussian noise Z ∼ N (0, 0.05).
The corresponding function is shown in Figure A1.

The noise is relatively small. However, it can be seen in Figure A3 that an unreg-
ularized solution, e.g., obtained with the symmetric difference quotient, becomes ex-
tremely noisy. Compared with this, we see that the regularized solutions obtained by
the Tikhonov–Phillips or Levenberg–Marquardt method (methods 2a and 2b) perform
much better. In this case, both methods produce nearly the same solution. Furthermore,
both L-curves have a similar paths (cf. Figure A2). Besides the “solution” with huge
amplitudes of the standard method, this method cannot find the sharp bend at t = 2.
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Figure A1. Example function y from Equation (A20) and its noisy version yδ (red line).

Figure A2. L-curves corresponding to the classical Tikhonov–Phillips and the variable Leven-
berg–Marquardt regularization methods applied to the noisy data yδ. The scaling of the residual norm
(horizontal axis) and of the solution norm (vertical axis) is log-converted as explained in Section 2.
Both L-curves have almost identical paths and, hence, also almost identical L-corners. Note that a
similar position of the L-corner does only imply that both solutions do have the same residual and
solution norm. It is always possible that both methods differ at some point.

Figure A3. Numerical derivative x of the example function y calculated by three different methods
with the noisy function yδ (1 unstable standard method (gray line with reduced scaling by factor 10)
and 2 stable regularization methods (red and blue lines)) and the exact analytical derivative of
function y (black line).
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Appendix D. Additional Lidar Application Figures and Tables

Figure A4. This flowchart displays a schematic approach on how to use method 3 to derive an
extinction profile. A blue box is a specific object or state that is either given a priori (i.e., the three
input boxes) or derived by a task. The tasks are represented by the green and red boxes and well
described throughout the paper. The red actions, especially adapting the hyperparameters, indicate
that this task requires some experience with the methods. Here, hyperparameters stand for the
various options that can be specified in the algorithm (cf. Sections 2.2–2.4), as for, example, the range
of regularization parameters, the step width in the Levenberg–Marquardt method, and the variables
kup and kdown, which specify how much the part-intervals should overlap. Those yet somewhat
difficult tasks might be further simplified or even automated in future work. The first task “Derive
an initial interval separation” is described in Section 2.2. If the solutions are not similar, that could
indicate an inappropriate choice of the hyperparameters. In this case, the range of the possible
regularization parameters has to be adapted. Additionally, if the solutions seem to be under- or
over-smoothed, the hyperparameters and interval selection must be adapted. Negative values or
rough jump points between part-intervals indicate under-smoothing.
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Figure A5. (Left) Lidar profile of the 387 nm Raman channel from 28 March 2022, 08:02 UT (blue
line), and corresponding synthetic Lidar profile (red line). The synthetic Lidar profile was obtained
by the evaluation of the Lidar Equation (2) with an extinction profile computed from the real Lidar
profile (blue line) with method 3b. This extinction profile is shown in the (right) Figure.

Figure A6. Backscatter coefficient from 28 March 2022, 08:02 UT, for λ = 532 nm light computed with
Klett’s method.

Figure A7. Extinction coefficients for λ = 532 nm and multiple time steps computed with the variable
Levenberg–Marquardt method. (Left) The solution was computed by separating the interval a priori
(method 3b). (Right) The solution was computed for the whole interval (method 2b).
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Figure A8. Extinction coefficients for λ = 355 nm and multiple time steps computed with the
Levenberg–Marquardt method and separated intervals. (Left) The regularization parameters are
chosen by the L-curve method. (Right) The regularization parameter for the first interval was fixed
at k = 40 iterations.

Table A1. Parameters settings for the computation of the regularized extinction for λ = 532 nm on
28 March 2022, 08:02 UTC, with the variable Levenberg–Marquardt method. The first row states the
parameter settings for method 2b (cf. Figure 6(left)). The second row displays the parameter settings
that were chosen for method 3b with part-intervals [750, 2000], [2000, 4000] and [4000, 5500] m (cf.
Figure 6(right)).

kdown kup Step Sizes γ Iterations per Step Size

10 100 1 × 10−6, 1 × 10−5,
1 × 10−4 10

10 30 1 × 10−7, 1 × 10−6,
1 × 10−5, 1 × 10−4 20

Table A2. Parameter settings for the computation of the regularized extinction for λ = 532 nm
on 28 March 2022, 08:02 UTC, with the Tikhonov–Phillips regularization. The first row states the
parameter settings for method 2a (cf. Figure 6(left)). The second row displays the parameter settings
that were chosen for method 3a with separated intervals [750, 2000], [2000, 4000] and [4000, 5500] m
(cf. Figure 6(right)).

kdown kup Exponents x of Reg. Param. 10x

10 100 40 equidistant values from [4, 7]
10 30 100 equidistant values from [3, 7]

Table A3. Regularization parameters corresponding to the AOD for λ = 355 nm on 2 August 2019,
15:17 UT, computed with the Levenberg–Marquardt regularization and a posteriori SI (method 4b).

Interval [m] Regularization Parameter
(Number of Iterations) Curvature at L-Corner

[697, 2860] 19 8.93
[2860, 4329] 10 4.51
[4329, 6023] 8 0.95
[6023, 6817] 4 0.12
[6817, 8661] 6 0.052
[8661, 10,220] 3 −0.0017
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Table A4. Regularization parameters corresponding to the AOD for λ = 355 nm on 2 August 2019,
15:17 UT, computed with the Tikhonov–Phillips regularization and a posteriori SI (method 4a).

Interval [m] Regularization Parameter Curvature at L-Corner

[697, 2860] 6.43 × 10+3 7.99
[2860, 5266] 8.70 × 10+4 2.41
[5266, 6847] 1.83 × 10+5 0.35
[6847, 9403] 7.39 × 10+5 0.05
[9403, 9995] 1.00 × 10+7 −0.0003

Table A5. Regularization parameters corresponding to the AOD for λ = 355 nm on 2 August 2019,
15:17 UT, computed with the Levenberg–Marquardt regularization and a priori SI (method 3a). The
SI was determined by finding intervals with equidistant AOD based on Klett’s solution.

Interval [m] Regularization Parameter (Number of Iterations)

[754, 6008] 12
[6008, 7792] 10
[7792, 8481] 15
[8481, 9995] 10
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